Colorful induced subgraphs

H.A. Kierstead and W.T. Trotter
Department of Mathematics, Arizona State University, Tempe, AZ 85287, USA

Received 29 October 1990
Revised 12 November 1991

Abstract

Kierstead, H.A. and W.T. Trotter, Colorful induced subgraphs, Discrete Mathematics 101 (1992) 165-169.

A colored graph is a graph whose vertices have been properly, though not necessarily optimally colored, with integers. Colored graphs have a natural orientation in which edges are directed from the end point with smaller color to the end point with larger color. A subgraph of a colored graph is colorful if each of its vertices has a distinct color. We prove that there exists a function $f(k, n)$ such that for any colored graph G, if $\chi(G)>f(\omega(G), n)$ then G induces either a colorful out directed star with n leaves or a colorful directed path on n vertices. We also show that this result would be false if either alternative was omitted. Our results provide a solution to Problem 115, Discrete Math. 79.

1. Introduction

A triple $G=(V, E, f)$ is a colored graph (digraph) if (V, E) is a graph (digraph) and f is a proper vertex coloring of the graph (digraph) (V, E) with integers. The coloring f need not be optimal; in fact an important special case is that f is one-to-one. In this case we say that G is colorful. Let $G=(V, E, f)$ be a colored graph (digraph). The natural orientation of G is the colored digraph $N G=(V, A, f)$, with arc set $A=\{(x, y): x y \in E$ and $f(x)<f(y)\}$. Note that $N G$ is an acyclic orientation of G. Let H be a subset of V. The colored subgraph (subdigraph) of G induced by H is $G[H]=\left(V, E^{\prime}, f^{\prime}\right)$, where (V, E^{\prime}) is the subgraph (subdigraph) of (V, E) induced by H and f^{\prime} is f restricted to $H . G[H]$ is said to be an induced colored subgraph of G. We also say that G induces H^{\prime} if H^{\prime} is isomorphic to $G[H]$. We simplify notation by writing H for $G[H]$, when the meaning is clear from the context. Let $D P_{n}$ denote the directed path on n vertices and $D S_{n}$ denote the star $K_{1, n}$ oriented so that all edges are directed away from the vertex of degree n. Let $\omega(G)$ denote the clique number of (V, E) and $\chi(G)$ denote the chromatic number of G. Let $R(m, n)$ be the Ramsey function such that every graph on $R(m, n)$ vertices contains either a clique of size m or an independent set of size n. We prove the following theorems.

Theorem 1. There exists a function $h(k, n)$ such that for every colored graph $G=(V, E, f)$, if $\chi(G)>h(\omega(G), n)$ then the natural orientation $N G$ induces either a colorful $D S_{n}$ or a colorful $D P_{n}$.

The following two theorems show that Theorem 1 cannot be strenghened by deleting either of the alternative conclusions.

Theorem 2. For every natural number k, there exists a triangle free colored graph $G=(V, E, f)$ such that $\chi(G)=k$, but the natural orientation $N G$ does not induce a colorful DS ${ }_{2}$.

We note that the graph G provided by Theorem 2 is not colorful. If G is colorful, then every induced subgraph of G is colorful. Thus, as Gyárfás pointed out, if G does not induce $D S_{n}$, then the out degree of G is bounded above by $b=R(\omega(G)+1, n)$, and thus $\chi(G)$ is bounded in terms of $\omega(G)$ and n by $2 b+1$. Gyárfás [5] asked whether the chromatic number of an acyclicly oriented digraph G, which does not induce $D P_{4}$, is bounded in terms of $\omega(G)$. Since $N G$ is acyclicly oriented, the next theorem answers this question negatively.

Theorem 3. For every natural number k, there exists a triangle free, colored graph $G=(V, E, f)$ such that G is colorful and $\chi(G)=k$, but the natural orientation $N G$ does not induce $D P_{4}$.

It is worth noting other results on the chromatic number of graphs which do not induce various orientations of P_{4}. Chvátal [1] proved that an acyclicly oriented graph which does not induce $\hookleftarrow \rightarrow$ (or $\rightarrow \rightarrow \leftarrow$) is perfect. Gyárfás [5] points out that the shift graph $G(n, 2)$, introduced in the next section, which is triangle free and has chromatic number $\lceil\lg n\rceil$, can be acyclicly oriented so that it does not induce $\longleftrightarrow \leftarrow$. Kierstead [7] proved that the (on-line) chromatic number of an oriented graph which induces neither $\longleftrightarrow \rightarrow \rightarrow, \rightarrow \rightarrow \leftarrow$, nor a directed 3-cycle, is bounded by $2^{\omega(G)}-1$.

Our interest in the questions addressed in this article arose from attempts to prove the following beautiful conjecture due independently to Gyárfás [3] and Sumner [10]. Let H be a graph and let forb (H) denote the class of graphs which do not induce H. The conjecture is that for every tree T, there exists a function f_{t} such that if $G \in \operatorname{forb}(T)$, then $\chi(G)<f_{T}(\omega(G))$. Gyárfás, Szemerédi, and Tuza [6] have proved the special case of the conjecture where T has radius two and G is triangle free. Kierstead and Penrice [9] have recently removed the restriction that G be triangle free. Also see [4] and [8] for related results. We believe that our results may have applications to this conjecture.

2. Proofs

Let $G=(V, E, f)$ be a colored graph. For a vertex v, the colored out degree of v in G is $\operatorname{cod}_{G}(v)=\mid\{f(x): v x \in E$ and $f(v)<f(x)\} \mid$. Let $\operatorname{cod}(G)=$ $\max \left\{\operatorname{cod}_{G}(v): v \in V\right\}$.

Proof of Theorem 1. Let $h=d^{t}$, where $d=R(\omega(G)+1, n)$ and $t=(d-1)(n-$ 1) +1 . If $\operatorname{cod}(G) \geqslant d$, then $N G$ induces a colorful $D S_{n}$, so assume $\operatorname{cod}(G)<d$. We define a coloring c on V such that $c(v)$ has the form ($c_{1}(v), \ldots, c_{t}(v)$), by recursion on i as follows. Let $c_{0}(v)=0$, for all $v \in V$. Suppose we have defined $c_{j}(v)$ for all $j \leqslant i$ and for all $v \in V$. Let $V(v, i)=\left\{w \in V: c_{j}(v)=c_{j}(w)\right.$, for all $j \leqslant i\}$. Let $c_{i+1}(v)=\operatorname{cod}_{G[V(v, i)]}(v)$.

Clearly c is a d^{t}-coloring of G. The proof will be done if we show that either (1) c is a proper coloring of G, i.e., $V(v, t)$ is an independent set for all $v \in V$, or (2) G induces a colorful $D P_{n}$. If $c_{t}(v)=0$ then (1) clearly holds. Thus it suffices to show that if $c_{t}(v)>0$, then v is the first point of a colorful induced $D P_{n}$. Clearly $c_{i}(v) \geqslant c_{i+1}(v)$, for all i. Thus for some $i \leqslant t-n, c_{i+1}(v)=c_{i+2}(v)=\cdots=$ $c_{i+n}(v)>0$. We shall actually show, by induction on s, that if $c_{i+1}(v)=c_{i+2}(v)=$ $\cdots=c_{i+s}(v)>0$, then v is the first point of a colorful induced $D P_{s}$ contained in $V(v, i)$.
Base Step: $s=1$. Trivial.
Inductive Step: $s=r+1$. Since $\operatorname{cod}(v)$ in $V(v, i+r)$ is at least one, there exists $w \in V(v, i+r)$ such that $v w \in E$ and $f(v)<f(w)$. Choose w so that $f(w)$ is as large as possible. Since $c_{i+1}(w)=c_{i+2}(w)=\cdots=c_{i+1}(w)=c_{i+r}(v)>0, w$ is the first vertex of a colorful induced $D P_{r}$, say P, contained in $V(w, i)=V(v, i)$. Since $V(v, i+r) \subset V(v, i)$ and $\operatorname{cod}_{V(v, i)}(v)=\operatorname{cod}_{V(v, i+r)}(v), v$ is not adjacent to any vertex $x \in V(v, i)$ such that $f(x)>f(w)$. In particular, w is the only vertex of P which v is adjacent to. Thus $P+v$ is the desired colorful $D P_{s}$.

For integers n and k, with $n>k$, Erdôs and Hajnal [2] defined the shift graph $G(n, k)$ to be the graph whose vertices are the k-subsets of $\{1, \ldots, n\}$, where two vertices $X=\left\{x_{1}<\cdots<x_{k}\right\}$ and $Y=\left\{y_{1}<\cdots<y_{k}\right\}$ are adjacent iff $X \cap Y=\left\{x_{2}<\cdots<x_{k}\right\}=\left\{y_{1}<\cdots<y_{k-1}\right\}$ or vice versa. Clearly $\omega(G(n, k)=$ 2. Erdốs and Hajnal proved that $\chi(G(n, k))=(1-o(1)) \lg ^{(k-1)} n$. In particular, $\chi(G(n, 2))=\lceil\lg n\rceil$, and if $\lg \lg n+\lg \lg \lg n>k$, then $\chi(G(n, 3))>k$.

Proof of Theorem 2. Fix a natural number k. Let $G=(V, E, f)$ be the colored graph such that $G\left(2^{2^{2 k}}, 3\right)=(V, E)$ and $f\left(\left\{x_{1}<x_{2}<x_{3}\right\}\right)=x_{2}$. Clearly f is a proper coloring of G. By the remarks above, $\omega(G)=2$ and $\chi(G) \geqslant k$. Consider a vertex $X=\left\{x_{1}<x_{2}<x_{3}\right\}$. If $X Y$ is an oriented edge in $N G$, then Y has the form $Y=\left\{x_{2}<x_{3}<y\right\}$, and thus $f(Y)=x_{3}$. We conclude that $N G$ does not induce a colorful $D S_{2}$.

To prove Theorem 3, we modify a construction of Zykov [11], which produces sparse triangle free graphs with large chromatic number. Our modification introduces new edges to eliminate induced $D P_{4}$'s without increasing the clique size.

Proof of Theorem 3. We shall construct a sequence of colorful, colored graphs $G_{i}=\left(V_{i}, E_{i}, f_{i}\right)$ such that G_{i} is an induced subgraph of G_{i+1} and the vertices of $V_{i+1}-V_{i}$ receive lower colors than the vertices of V_{i}. In addition we will maintain a partition of the edges into red and blue edges so that:
(i) any two vertices are the end points of at most one red directed path;
(ii) all blue edges join vertices on red directed paths; and
(iii) the vertices on each red directed path induce a complete bipartite graph with red and blue edges.

We first show that (ii) and (iii) will ensure that $G=G_{i}$ triangle free and does not induce $D P_{4}$. First note that both an oriented triangle and $D P_{4}$ contain a directed Hamiltonian path. But if a subgraph H of G contains a directed Hamiltonian path, then by (ii), $V(H)$ is a subset of a red directed path, and by (iii), H is as complete bipartite subgraph of G. In paticular, H is not a triangle or $D P_{4}$.

Next we give the recursive construction of G. Let G_{1} be the graph on one vertex. Now suppose we have constructed G_{i}. Let G_{i+1} consist of i independent copies (with distinct color sets) $G_{i}^{j}=\left(V_{i}^{j}, E_{i}^{j}\right)$ of G_{i} and a new $\left|V_{i}\right|^{i}$-set I_{i+1} of independent vertices, where $f(x)<f(v)$ for all vertices $x \in I_{i+1}$ and $v \in V_{i}^{j}$, $j=$ $1, \ldots, i$. For each i-tuple $\left(v^{1}, \ldots, v^{i}\right)$ with $v^{j} \in V_{i}^{i}$, choose $x \in I_{i+1}$ and join x to each \boldsymbol{v}^{i} by a red edge. Then (i) will be satisficd. This creates some new directed red paths with initial vertex x. For each such path $P=\left(x=x_{0}, x_{1}, \ldots, x_{r}\right)$, join x to each $x_{2 k-1}, 2 \leqslant k \leqslant\lceil r / 2\rceil$, by a blue edge. This maintains (ii) and, by (i), does not violate (iii). The construction is now complete.

To see that $\chi\left(G_{i+1}\right)=i+1$, note that any proper i-coloring of $G_{i+1}-I_{i+1}$ uses i distinct colors on each of V_{i}^{j}, for $j=1, \ldots, i$, and thus some vertex of I_{i+1}, requires an additional color. This completes the proof.

References

[1] V. Chvátal, Perfectly ordered graphs, in: Topics on Perfect Graphs, Ann. Discrete Math. 21 (1989) 63-65.
[2] P. Erdốs and A. Hajnal, On the structure of set mappings, Acta Math. Acad. Sci. Hungar. 9 (1958) 111-131.
[3] A. Gyárfás, On Ramsey covering-numbers, Infinite and Finite Sets, Coll. Math. Soc. János Bolyai 10, 801-816.
[4] A. Gyárfás, Problems from the world surrounding perfect graphs, Zastowania Matematyki Applicationes Mathemacticae XIX (1985) 413-441.
[5] A. Gyărfás, Problem 115, Discrete Math. 79 (1990) 109-110.
[6] A. Gyárfás, E. Szemerédi and Tuza, Induced subtrees in graphs of a large chromatic number, Discrete Math. 30 (1980) 235-244.
[7] H. Kierstead, Recursive ordered sets, Contemp. Math. 57 (1986) 75-102.
[8] H. Kierstead and S. Penrice, Recent results on a conjecture of Gyárfás, preprint.
[9] H. Kierstead and S. Penrice, Radius two trees specify χ-bounded classes, preprint.
[10] D.P. Sumner, Subtrees of a graph and chromatic number, in: G. Chartrand, ed., The Theory and Applications of Graphs (Wiley, New York, 1981) 557-576.
[11] A. Zykov, On some properties of linear complexes (in Russian), Mat. Sbornik N.S. 24 (1949) 163-188; English translation in: Amer. Math. Soc. Transl. 79 (1952).

