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Abstract 

Kierstead, H.A. and W.T. Trotter. Colorful induced subgraphs, Discrete Mathematics 101 
(1992) 165-169. 

A colored graph is a graph whose vertices have been properly, though not necessarily optimally 

colored, with integers. Colored graphs have a natural orientation in which edges are directed 

from the end point with smaller color to the end point with larger color. A subgraph of a 

colored graph is colorful if each of its vertices has a distinct color. We prove that there exists a 

function f (k, n) such that for any colored graph G, if x(G) > f (w(G), n) then G induces either 
a colorful out directed star with n leaves or a colorful directed path on n vertices. We also show 

that this result would be false if either alternative was omitted. Our results provide a solution 

to Problem 115. Discrete Math. 79. 

1. Introduction 

A triple G = (V, E, f) is a colored graph (digraph) if (V, E) is a graph 

(digraph) and f is a proper vertex coloring of the graph (digraph) (V, E) with 

integers. The coloring f need not be optimal; in fact an important special case is 

that f is one-to-one. In this case we say that G is colorful. Let G = (V, E, f) be a 

colored graph (digraph). The natural orientation of G is the colored digraph 

NG = (V, A, f), with arc set A = {(x, y): xy E E and f(x) <f(y)}. Note that NC 

is an acyclic orientation of G. Let H be a subset of V. The colored subgraph 

(subdigraph) of G induced by H is G[H] = (V, E’, f ‘), where (V, E’) is the 

subgraph (subdigraph) of (V, E) induced by H and f’ is f restricted to H. G[H] is 

said to be an induced colored subgraph of G. We also say that G induces H’ if H’ 

is isomorphic to G[H]. We simplify notation by writing H for G[H], when the 

meaning is clear from the context. Let DP,, denote the directed path on n vertices 

and DS, denote the star K1,, oriented so that all edges are directed away from the 

vertex of degree n. Let w(G) denote the clique number of (V, E) and x(G) 

denote the chromatic number of G. Let R(m, n) be the Ramsey function such 

that every graph on R(m, n) vertices contains either a clique of size m or an 

independent set of size n. We prove the following theorems. 
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Theorem 1. There exists a function h(k, n) such that for every colored graph 
G = (V, E, f), if x(G) > h(o(G), n) then the natural orientation NG induces 
either a colorful OS,, or a colorful DP,,. 

The following two theorems show that Theorem 1 cannot be strenghened by 

deleting either of the alternative conclusions. 

Theorem 2. For every natural number k, there exists a triangle free colored graph 
G = (V, E, f) such that x(G) = k, but the natural orientation NG does not induce a 
colorful OS,. 

We note that the graph G provided by Theorem 2 is not colorful. If G is 

colorful, then every induced subgraph of G is colorful. Thus, as Gyarfas pointed 

out, if G does not induce OS,,, then the out degree of G is bounded above by 

b = R(o(G) + 1, n), and thus x(G) is bounded in terms of w(G) and n by 

2b + 1. Gyarfas [5] asked whether the chromatic number of an acyclicly oriented 

digraph G, which does not induce DP,, is bounded in terms of w(G). Since NG is 

acyclicly oriented, the next theorem answers this question negatively. 

Theorem 3. For every natural number k, there exists a triangle free, colored graph 
G = (V, E, f) such that G is colorful and x(G) = k, but the natural orientation NG 
does not induce DP,. 

It is worth noting other results on the chromatic number of graphs which do not 

induce various orientations of P4. Chvatal [l] proved that an acyclicly oriented 

graph which does not induce t-++ (or +-+ t) is perfect. Gyarfas [5] points 

out that the shift graph G(n, 2), introduced in the next section, which is triangle 

free and has chromatic number ]lg nl, can be acyclicly oriented so that it does 

not induce *--, +. Kierstead [7] proved that the (on-line) chromatic number of 

an oriented graph which induces neither t+*, *+ t, nor a directed 3-cycle, 

is bounded by 20(G) - 1. 

Our interest in the questions addressed in this article arose from attempts to 

prove the following beautiful conjecture due independently to Gyarfas [3] and 

Sumner [lo]. Let H be a graph and let forb(H) denote the class of graphs which 

do not induce H. The conjecture is that for every tree T, there exists a function ft 

such that if G E forb(T), then x(G) <fT(w(G)). Gyarfas, Szemeredi, and Tuza 

[6] have proved the special case of the conjecture where T has radius two and G 

is triangle free. Kierstead and Penrice [9] have recently removed the restriction 

that G be triangle free. Also see [4] and [S] for related results. We believe that 

our results may have applications to this conjecture. 
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2. Proofs 

Let G = (V, E, f) be a colored graph. For a vertex v, the colored out degree of 

V in G is cod,(v)= I{f(x): vx E E and f(v)<f(x)}l. Let cod(G)= 

max{cod,(v): v E V}. 

Proof of Theorem 1. Let h = d’, where d = R(w(G) + 1, n) and t = (d - l)(n - 

1) + 1. If cod(G) 2 d, then NC induces a colorful OS,, so assume cod(G) < d. 

We define a coloring c on V such that c(v) has the form (c,(v), . . . , c,(v)), by 

recursion on i as follows. Let c,,(v) = 0, for all v E V. Suppose we have defined 

c,(v) for all j c i and for all v E V. Let V(V, i) = {W E V: C,(V) = Cj(W), for all 

j < i}. Let q+i(v) = codc,Vcu,i,l(v). 

Clearly c is a d’-coloring of G. The proof will be done if we show that either (1) 

c is a proper coloring of G, i.e., V(v, t) is an independent set for all v E V, or (2) 

G induces a colorful DP,. If c,(v) = 0 then (1) clearly holds. Thus it suffices to 

show that if c,(v) > 0, then v is the first point of a colorful induced DP,. Clearly 

c,(v)~c~+~(v), for all i. Thus for some i<t -n, c,+,(v) =c~+~(v) =. *. = 

ci+“(v) > 0. We shall actually show, by induction on s, that if c;+~(v) = c~+~(v) = 
. ..= ci+Jv) > 0, then v is the first point of a colorful induced DP, contained in 

V(v, i). 

Base Step: s = 1. Trivial. 

Inductive Step: s = r + 1. Since cod(v) in V(v, i + r) is at least one, there exists 

w E V(v, i + r) such that VW E E and f(v) <f(w). Choose w so that f(w) is as 

large as possible. Since ci+i(w) = c~+~(w) = . * * = Ci+,(W) = c~+,(v) > 0, w is the 

first vertex of a colorful induced DP,, say P, contained in V(w, i) = V(v, i). Since 

V(v, i + r) c V(v, i) and cod,,(,,Jv) = cOdv(u,i+,)(V), v is not adjacent to any 

vertex x E V(v, i) such that f(x) >f(w). In particular, w is the only vertex of P 

which v is adjacent to. Thus P + v is the desired colorful DP,. 0 

For integers n and k, with n > k, Erdiis and Hajnal [2] defined the shift graph 

G(n, k) to be the graph whose vertices are the k-subsets of (1, . . . , n}, where 

two vertices X={xl<..*<xk} and Y={yl<...<yk} are adjacent iff 

XrlY={x,<* . . <Xk} = {y, <. . * <Y~-~} or vice versa. Clearly o(G(n, k) = 

2. Erdiis and Hajnal proved that x(G(n, k)) = (1 - o(l))lg’k-l’n. In particular, 

x(G(n, 2)) = ]lg n], and if lg lg n + lg lg lg n > k, then x(G(n, 3)) > k. 

Proof of Theorem 2. Fix a natural number k. Let G = (V, E, f) be the colored 

graph such that G(2’=, 3) = (V, E) and f({xi <x2 <x3}) =x2. Clearly f is a 

proper coloring of G. By the remarks above, o(G) = 2 and x(G) 3 k. Consider a 

vertex X = {xi <x2 <x3}. If XY is an oriented edge in NC, then Y has the form 

Y = {x2 < xg < y}, and thus f(Y) = x3. We conclude that NC does not induce a 

colorful 0%. 0 
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To prove Theorem 3, we modify a construction of Zykov [ll], which produces 

sparse triangle free graphs with large chromatic number. Our modification 

introduces new edges to eliminate induced DP,‘s without increasing the clique 

size. 

Proof of Theorem 3. We shall construct a sequence of colorful, colored graphs 

Gi = (K, Ei, f;) such that Gi is an induced subgraph of Gi+l and the vertices of 

Vi+1 - vi receive lower colors than the vertices of v. In addition we will maintain 

a partition of the edges into red and blue edges so that: 

(i) any two vertices are the end points of at most one red directed path; 

(ii) all blue edges join vertices on red directed paths; and 

(iii) the vertices on each red directed path induce a complete bipartite graph 

with red and blue edges. 

We first show that (ii) and (iii) will ensure that G = Gi triangle free and does 

not induce DP,. First note that both an oriented triangle and DP, contain a 

directed Hamiltonian path. But if a subgraph H of G contains a directed 

Hamiltonian path, then by (ii), V(H) is a subset of a red directed path, and by 

(iii), H is as complete bipartite subgraph of G. In paticular, H is not a triangle or 

DP,. 

Next we give the recursive construction of G. Let G, be the graph on one 

vertex. Now suppose we have constructed Gi. Let Gi+l consist of i independent 

copies (with distinct color sets) G{ = (Vi, Ej) of Gi and a new IV,I’-set Z,,, of 

independent vertices, where f(x) <f(v) for all vertices x E Z,,, and u E Vj, j = 

1 , . . . , i. For each i-tuple (v’, . . . , vi) with vi E Vi, choose x E Z,,, and join x to 

each vi by a red edge. Then (i) will be satisfied. This creates some new directed 

red paths with initial vertex x. For each such path P = (x = x0, xl, . . . , x,), join x 

to each xzk_,, 2 s k s [r/2], by a blue edge. This maintains (ii) and, by (i), does 

not violate (iii). The construction is now complete. 

To see that X(Gi+,) = i + 1, note that any proper i-coloring of Gi+l - Z,, 1 uses i 

distinct colors on each of Vi, for Z = 1, . . . , i, and thus some vertex of Zi+,, 

requires an additional color. This completes the proof. 0 
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