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ABSTRACT. The dimension of a poset X is the smallest positive inte- 

ger t for which there exists an embedding of X in the cartesian product of 

t chains. R. P. Dilworth proved that the dimension of a distributive lattice 

L = 2X is the width of X. In this paper we derive an analogous result for 

embedding distributive lattices in the cartesian product of chains of bound- 

ed length. We prove that for each k , 2, the smallest positive integer t 

for which the distributive lattice L _ 2Xcan be embedded in the cartesian 

product of t chains each of length k equals the smallest positive integer t 

for which there exists a partition X = C1 u C u. u u C where each C. is 1 2 t 
a chain of at most k -1 points. 

1. Preliminaries. A poset consists of a pair (X, P) where X is a set 
and P is a reflexive, antisymmetric, and transitive relation on X. The nota- 
tions (x, y) E P and x < y in P are used interchangeably. If x and y are 

distinct points in X and neither (x, y) nor (y, x) is in P, then we say x 

and y are incomparable and write xly. For convenience we will frequently 

use a single symbol to denote a poset. If X and Y are isomorphic posets, 

then we write X = Y and if X is isomorphic to a subposet of Y, then we 

write X C Y. The dual of a poset X, denoted X, is the poset on the same 

set with x < y in X iff y < x in X. 

If (X, P) and (Y, Q) are posets, their free sum, denoted X + Y, is the 

poset (X U Y, P C Q) where CU denotes disjoint union. Their cartesian prod- 

uct X x Y is the poset (X x Y, S) where S = ((x, y), (z, w)): x < z in X 

and y < w in YL. The cartesian product of n copies of X is denoted Xn. 

The join of (X, P) and (Y, Q), denoted Xffl Y, is the poset (X 0 Y, P u Q 

UX x Y). A function f: Y - X is order preserving iff y < w in Y implies 

f(y) < f(w) in X. The cardinal power of X and Y, denoted Xy, is the poset 

consisting of all ordering preserving functions from Y to X with f < g in 

XY iff f(y) < g(y) in X for every y E Y. 
A poset C for which x, y E C imply x < y or y K x is called a chain. 

We denote the n element chain 0 < 1 < 2 < ...< n 1 by n. A chain (X, L) 

is said to be linear extension of (X, P) when P C L. We also say L is a 

linear extension of P. By a theorem of Szpilrajn [12], if C denotes the col- 

lection of all linear extensions of P, then nf= P. 

Presented to the Society, November 8, 1974; received by the editors July 5, 1974. 

AMS (MOS) subject classifications (1970). Primary 06A10, 06A35. 

Key words and phrases. Distributive lattice, dimenision of a partitially ordered 

set, matching. 
Copyright (C 1975, American Mathematical Society 

33 



*34 W. T. TROTTER, JR. 

A poset A for which x, y E A and x 4 y imply xly is called an anti- 

chain. We denote an element antichain by W. The width of a poset X, de- 

noted W(X), is the number of elements in a maximum antichain in X. 

The justification for the exponential notation for the cardinal power of 

posets is given by the following property (see [2] for details). 

Fact 1. Xy Z_- XY x XZ. 

In this paper we are concerned primarily with cardinal powers of the form 
2X. For such posets, we have 

Fact 2. 2 - = n + 1 and 2n 2n. 

If (X, P) and (Y, Q) are posets, X = Y, and P C Q, then it is easy to 

see that 2 Y C 2 x. In fact a stronger result holds. 

Lemma 1. Let (X, P) and (Y, Q) be posets, Y C X, and P n (Y x Y) 
Q. Then 2Y C 2X. 

Proof. Define a function F: 2 '-. 2x by F(f)(x) = f (x) if x E Y, F(fx)(x) 

- 0 if x e X - Y and there exists y E Y such that y > x in X and f(y) = 

0, and F(f) (x) = 1 otherwise. It is straightforward to verity that F is an embedding. 

2. Introduction. Dushnik and Miller [5] defined the dimension of a poset 
X, denoted Dim X, as the smallest positive integer t for which there exist 

t linear extensions L1, L2,..., Lt of the partial ordering P on X such 

that L1 n L, n.. *n Lt = P. Ore [9] gave an equivalent definition of Dim X 

as the smallest positive integer t for which X C Cl X C2 X * *x Ct where 

each Ci is a chain. 

A very important example of a poset is a distributive lattice for which we 

have the following well-known representation theorem: A poset M is a dis- 
tributive lattice iff M- 2x for some poset X. In 1950, R. P. Dilworth [4] 

published the following theorem giving the dimension of a distributive lattice. 

Theorem 1. Dim Zx = W(X). 

In order to prove Theorem 1, Dilworth derived his famous decomposition 
theorem . 

Theorem 2. If X is a poset and W(X) = n, then the point set X can be 

partitioned into n subsets C1, C21..., Cn such that the subposet determined 

by each C. is a chain. 

Compact proofs of Theorem 2 appear in [10] and [15] and Theorem 1 is 

also discussed in [11]. 

In this paper we generalize the concept of dimension for posets to ob- 
tain an extension of Theorem 1. For an integer k > 2, we define the k-dim- 
ension of a poset X, denoted Dimk X as the smallest positive integer t for 
which X C kt. 
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3. Some elementary inequalities. In [13], the inequality Dim2 X < |XI 

for all X is established and the family of posets for which equality holds is 

determined. In [14], the inequalities Dim3 X < IIX1/21 for |XI > 5 and 

Dim4 X < [|X|./2] for I XI 6 are established. Hiraguchi [6] proved that 

Dim X < [|X|/2] for |X| > 4 and Bogart and Trotter [3] and Kimble [8] deter- 

mined the collection of all posets for which equality holds. 
Clearly Dim X < Dimk X and since kt C k w lt,we have Dimk+l X < 

DimkX. Since there are kt points in kt, we have Dimk X > logk |XI and 

since the longest chain in ht has length (k - 1)t + 1, we conclude Dimk n 
= l(n i)/(k - i)}. It is also easy to compute Dimk n by the methods com- 

piled by Katona [6]. 

Theorem 3. Dimk X < 2 Dimk+l X. 

Proof. Suppose Dimk+l X t and let f: X k + lt be an embedding. 
Define g: X--+ kt by: 

f (x)(i) - 1 when f(x)(i) > 0 and i < t, 

g(x)(i) 0 when f(x)(i) = 0 and i < t, 

f (X)(i) when f (x)(i) < k and i > t, 

k - 1 when f (x)(i) = k and i > t. 

It follows easily that g' is an embedding and thus Dimk X < 2t. 

In order to determine whether or not the inequality of Theorem 3 is best 

possible, we need the following generalization of a well-known property (see 

[2, problem 7, p. 101]) of dimension which we state without proof. 
Fact 4. If X and Y are posets, then Dimk X x Y < Dimk X + Dimk Y. 

If X and Y have distinct greatest and least elements, then equality holds. 

Since Dimk k + 1 = 2 and Dimk+lkL?1 1, it follows from Fact 4 that 

Dimk k + It = 2t while Dimk+l k - it = t for all t > 1. 

4. Dilworth's embedding theorem. A short proof of Dilworth's embedding 

theorem (Theorem 1) is given here for the sake of completeness. We assume 

Theorem 2. 
To show that Dim 2 < W(X), let |XI - m, W(X) =n, and X= C1 U 

C2 U -U Cn be a decomposition into chains. It follows that 

c +c + +c c c c 2XC 1 2 n 2 1 x2 2x x2 Cm+ ln 

and thus Dim 2 x < n 

On the other hand if A is an antichain of X with JAI = n, then 2n 

2A C 2X and we conclude that Dim 2x > Dim 2n = n. 

The reader is invited to compare this argument with the proof of Theorem 

3 in [13]. 
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5. Some additional inequalities. For a poset X and an integer m > 1, 
let Pm(X) be the smallest positive integer t for which there exists a par- 

tition of the point set of X of the form X = C1 U C2 U... U C, where the 

subposet determined by each Ci is a chain with ICil < m. The first half 

of the argument given in the preceding section allows us to conclude that 

Dim, 2~ < P 1(X). 

Now every poset Y can be written as the free sum Y= Yi + Y2 + - 

Yr of its components. For a poset Y with components Y1, Y2,'. .., Yr and 

an integer m > 1, we then define Sm(Y) = Ir Yii/m}. To provide a gen- 

eralization of the concept of width, we define Wm(X) = maxlSm(Y): Y C Xi. 

Dilworth's decomposition theorem can then be restated in the following form. 

Theorem 4. For every poset X, there exists an integer m0 such that 

m > mO implies Pm(X) = Wm(X). 

To see the connection between these definitions and Dilworth's embed- 

ding theorem we observe that the following result holds. 

Theorem 5. For every poset X and every integer k > 2, Wk 1(X) < 

Dim, 2 < Pk 1(X). 

Proof. Choose a subposet Y C X with Wk.1(X) = Sk-1(Y); let the com- 

ponents of Y be Y1, Y2, ..., Yr and for each i < r let Ci be a linear ex- 

tension of Yi. If follows that 

cl C2 C Y Y2 Y 
2 x2 x ..x2 rc2 x2 x .x2 

=21 2 r =Yc 2x 

and therefore 

Dimk(2 1 x 2 2 x x2r) < Diin 2 . 

Dimk(C1C 
r r 

Dim (2 x 2_C 2 x ** x 2 r) = EII }|C,I/(k 
- 1)} I I Yill(k -1)( 

i=1 i=1 

k- I(Y) = Wk- i(X). 

For m = 1, W1(X) P1(X)= |XI for all X. It is also true that W2(X) 

P2(X) for all X; in fact a more general result holds which we outline here. 

For a graph H with components H1, H2,..., Hr let Sm(H) = I Hillm}. 
For a graph G, let Wm(G) = maxlSm(H): H is an induced subgraph of GI. Also 

let Pm(G) be the smallest positive integer n for which there exists a par- 
tition of the vertex set of G into n subsets so that the induced subgraph 

spanned by each subset is a complete graph on at most m vertices. 
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For a poset X the comparability graph of X, denoted Gx, is the graph 

whose vertex set is the point set of X with distinct points X, y 6 X adja- 

cent in Gx iff x K y or y < x in X. Clearly Pm(X) - Pm(GX) and Wm(X) 

WM(GX). 

Theorem 6. W2(G) = P2(G) for all graphs. 

Proof. We assume Hall's matching theorem for graphs and then proceed 

by induction on |Xi. Now suppose G is a graph with W2(G) = t and let H 

be a subgraph of G with components H19 H2 ... Hr so that W2(G)- W2(H) 

= ._1lHHl/2i= t. We further assume that H is chosen so that r is maximal 

and |HI is minimal. Thus W2(Hi - x) < W2(H) for every i < r and every x 

E H. and we may assume that H / X. 

Now construct a bipartite graph (X, Y) with X = lv, v20... vr} and 

Y G- H. A vertex y E Y is adjacent to vi in (X, Y) iff y is adjacent 

to at least one vertex of Hi in G. 

By Hall's matching theorem, there exists a matching of Y into X for 

if Y c Y, X' =- v EX: v l y for some y E Y'l, and IX'l < I1Yl, then 
W2(H U yl) > W2(H). 

We then assume that the elements of Y are labeled so that Y =yl 

Y2.9*...* ysi, s < r, and yi i Hi in (X, Y) for each i < s. We then choose vertices 

al, a2, .. ., a from H1 H2,0... HS sothat y,I a. in G for each i < s. 

From the inductive hypothesis, we conclude that for each i < s, the subgraph 

Hi- a. can be partitioned into W2 (H ) 1 complete subgraphs each of at 

most two vertices. 

Since s > 1, we may partition for each i with s + 1 < i < r, the subgraph 

Hi into W (H) complete subgraphs of at most two vertices. When combined 

with 1yi, all$ 1Y2, a2, .., lys, asI, the construction produces a partition 
of G into W(2G) complete subgraphs of at most two vertices. 

Anderson [1i uses a similar argument to give an elementary proof of 

Tutte's factor theorem from Hall's matching theorem. 

It is not true that W3(G) - P3(G) for all graphs. An example of a poset 

X for which W3(X) < P3(X) is (3 + 3 ) + T. 

6. An extension of Dilworth's embedding theorem. In this section we 

consider the structure of 2x in more detail in order to make an exact com- 

putation of Dim 2x. 

Theorem 7. Dim. 2 Pk 1(X) for all X. 

Proof. Suppose Dimk2X = t and let F: 2 X- kt be an embedding. For 

each x E X let fx/ X-2 be defined by fx(y) 0 O if y < x in X and fx(y) 
= 1 otherwise. It follows that fx E 2 x for every x E X and fx < f in 2 x 

y 
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iff x > y in X, i.e. the map g: X-_ 2x defined by g(x) = fx is an embedding. 

For each i < t let Xi = tx e X: y < x or ylx implies F(/x)(i) < F(fy)(i)}. 

Then each Xi is a chain in X with lxii < k. Furthermore if lXii = k, then 

the least element in Xi is also the least element in X. 

We now show that X = X1 J X2 U. ..U Xt. Suppose on the contrary that 

there exists x E X with x ? X1 U X2 U. *-U X. Then for each i < t, there 

exists a point y E X with y j X but F(fx)(i) > F(f/y) (i). Let C be the col- 

lection of all subsets A C X such that (1) a E A implies a 2 x and (2) for 

every i < t, there exists a E A with F(fx) (i) > F(/a) (i). Now among the sets 

in C, choose one set say A0 with lAOI minimum. It follows that AO is an 

antichain and IA0 l> 2. Now define a function f/: X .- 2 by f0(y) = 0 if 

y < a for some a E AO and f0(y) = 1 otherwise. It follows that f Je 2X and 

/o K/fa in 2 x for every a E AO. Furthermore fo ; fx in 2 X since to(x) = 1 

and f/(x) 0. Since F is an embedding of 2 in kt, there exist i < t with 

F(f0)(i)> F(fx)(i) and thus F(fa)(i)> F(/x)(i) for every a E A0. The con- 

tradiction shows that X = X1 U X2 ... U.1 X . 
If X has no least element, then IXil <k - 1 for all i < t and thus 

Pk 1(X) < t. If X has a least element x, remove x from each chain in 

which it appears and let the resulting chains be Y1, Y2.*, Yt. If lYil < 

k - 2 for some i < t, then we conclude that Pk- 1(X) < t since 

X=Y uY u u U(Y u ixD)u uYt. 
1 2 

If lYil = k - 1 for every i < t, then F(fx)(i)= k - 1 for every i < t. Define 

h: X -4 2 by h(y) 1 for all y E X. Then h > fx in 2 but F(fX) > F(h) in 

k t. The contradiction completes the proof. 
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