A NOTE ON DILWORTH'S EMBEDDING THEOREM

WILLIAM T. TROTTER, JR.

ABSTRACT. The dimension of a poset X is the smallest positive integer t for which there exists an embedding of X in the cartesian product of t chains. R. P. Dilworth proved that the dimension of a distributive lattice $L = 2^X$ is the width of X. In this paper we derive an analogous result for embedding distributive lattices in the cartesian product of chains of bounded length. We prove that for each $k \ge 2$, the smallest positive integer t for which the distributive lattice $L = 2^X$ can be embedded in the cartesian product of t chains each of length k equals the smallest positive integer t for which there exists a partition $X = C_1 \cup C_2 \cup \cdots \cup C_t$ where each C_i is a chain of at most k - 1 points.

1. Preliminaries. A poset consists of a pair (X, P) where X is a set and P is a reflexive, antisymmetric, and transitive relation on X. The notations $(x, y) \in P$ and $x \leq y$ in P are used interchangeably. If x and y are distinct points in X and neither (x, y) nor (y, x) is in P, then we say x and y are incomparable and write xly. For convenience we will frequently use a single symbol to denote a poset. If X and Y are isomorphic posets, then we write X = Y and if X is isomorphic to a subposet of Y, then we write $X \subseteq Y$. The dual of a poset X, denoted \hat{X} , is the poset on the same set with $x \leq y$ in \hat{X} iff $y \leq x$ in X.

If (X, P) and (Y, Q) are posets, their free sum, denoted X + Y, is the poset $(X \cup Y, P \cup Q)$ where \cup denotes disjoint union. Their cartesian product $X \times Y$ is the poset $(X \times Y, S)$ where $S = \{(x, y), (z, w)\}: x \leq z$ in Xand $y \leq w$ in $Y\}$. The cartesian product of n copies of X is denoted X^n . The join of (X, P) and (Y, Q), denoted $X \oplus Y$, is the poset $(X \cup Y, P \cup Q \cup X \times Y)$. A function $f: Y \to X$ is order preserving iff $y \leq w$ in Y implies $f(y) \leq f(w)$ in X. The cardinal power of X and Y, denoted X^Y , is the poset consisting of all ordering preserving functions from Y to X with $f \leq g$ in X^Y iff $f(y) \leq g(y)$ in X for every $y \in Y$.

A poset C for which $x, y \in C$ imply $x \leq y$ or $y \leq x$ is called a chain. We denote the *n* element chain $0 \leq 1 \leq 2 \leq \cdots \leq n-1$ by <u>n</u>. A chain (X, L) is said to be linear extension of (X, P) when $P \subseteq L$. We also say L is a linear extension of P. By a theorem of Szpilrajn [12], if \mathcal{C} denotes the collection of all linear extensions of P, then $\bigcap \mathcal{C} = P$.

Copyright © 1975, American Mathematical Society

Presented to the Society, November 8, 1974; received by the editors July 5, 1974. AMS (MOS) subject classifications (1970). Primary 06A10, 06A35.

Key words and phrases. Distributive lattice, dimension of a partitially ordered set, matching.

A poset A for which $x, y \in A$ and $x \neq y$ imply xly is called an antichain. We denote an element antichain by \overline{n} . The width of a poset X, denoted W(X), is the number of elements in a maximum antichain in X.

The justification for the exponential notation for the cardinal power of posets is given by the following property (see [2] for details).

Fact 1. $X^{Y+Z} = X^Y \times X^Z$.

In this paper we are concerned primarily with cardinal powers of the form 2^{X} . For such posets, we have

Fact 2. $2^{\frac{n}{2}} = \frac{n+1}{2}$ and $2^{\frac{n}{2}} = 2^{\frac{n}{2}}$.

If (X, P) and (Y, Q) are posets, X = Y, and $P \subseteq Q$, then it is easy to see that $\underline{2}^{Y} \subseteq \underline{2}^{X}$. In fact a stronger result holds.

Lemma 1. Let (X, P) and (Y, Q) be posets, $Y \subseteq X$, and $P \cap (Y \times Y) \subseteq Q$. Then $\underline{2}^Y \subseteq \underline{2}^X$.

Proof. Define a function $F: 2^Y \rightarrow 2^X$ by F(f)(x) = f(x) if $x \in Y$, F(f)(x) = 0 if $x \in X - Y$ and there exists $y \in Y$ such that y > x in X and f(y) = 0, and F(f)(x) = 1 otherwise. It is straightforward to verify that F is an embedding.

2. Introduction. Dushnik and Miller [5] defined the dimension of a poset X, denoted Dim X, as the smallest positive integer t for which there exist t linear extensions L_1, L_2, \ldots, L_t of the partial ordering P on X such that $L_1 \cap L_2 \cap \cdots \cap L_t = P$. Ore [9] gave an equivalent definition of Dim X as the smallest positive integer t for which $X \subseteq C_1 \times C_2 \times \cdots \times C_t$ where each C_i is a chain.

A very important example of a poset is a distributive lattice for which we have the following well-known representation theorem: A poset M is a distributive lattice iff $M = 2^X$ for some poset X. In 1950, R. P. Dilworth [4] published the following theorem giving the dimension of a distributive lattice.

Theorem 1. Dim $\underline{2}^X = W(X)$.

In order to prove Theorem 1, Dilworth derived his famous decomposition theorem.

Theorem 2. If X is a poset and W(X) = n, then the point set X can be partitioned into n subsets C_1, C_2, \ldots, C_n such that the subposet determined by each C_i is a chain.

Compact proofs of Theorem 2 appear in [10] and [15] and Theorem 1 is also discussed in [11].

In this paper we generalize the concept of dimension for posets to obtain an extension of Theorem 1. For an integer $k \ge 2$, we define the k-dimension of a poset X, denoted $\text{Dim}_k X$ as the smallest positive integer t for which $X \subseteq \underline{k}^t$. 3. Some elementary inequalities. In [13], the inequality $\text{Dim}_2 X \leq |X|$ for all X is established and the family of posets for which equality holds is determined. In [14], the inequalities $\text{Dim}_3 X \leq \{|X|/2\}$ for $|X| \geq 5$ and $\text{Dim}_4 X \leq [|X|/2]$ for $|X| \geq 6$ are established. Hiraguchi [6] proved that $\text{Dim} X \leq [|X|/2]$ for $|X| \geq 4$ and Bogart and Trotter [3] and Kimble [8] determined the collection of all posets for which equality holds.

Clearly Dim $X \leq \text{Dim}_k X$ and since $\underline{k}^t \subseteq \underline{k+1}^t$, we have $\text{Dim}_{k+1} X \leq \text{Dim}_k X$. Since there are k^t points in \underline{k}^t , we have $\text{Dim}_k X \geq \log_k |X|$ and since the longest chain in \underline{k}^t has length (k-1)t+1, we conclude $\text{Dim}_k \underline{n} = \{(n-1)/(k-1)\}$. It is also easy to compute $\text{Dim}_k \underline{n}$ by the methods compiled by Katona [6].

Theorem 3. $\text{Dim}_k X \leq 2 \text{ Dim}_{k+1} X$.

Proof. Suppose $\text{Dim}_{k+1} X = t$ and let $f: X \to \underline{k+1}^t$ be an embedding. Define $g: X \to \underline{k}^{2t}$ by:

 $g(x)(i) = \begin{cases} f(x)(i) - 1 & \text{when } f(x)(i) > 0 \text{ and } i \le t, \\ 0 & \text{when } f(x)(i) = 0 \text{ and } i \le t, \\ f(x)(i) & \text{when } f(x)(i) < k \text{ and } i > t, \\ k - 1 & \text{when } f(x)(i) = k \text{ and } i > t. \end{cases}$

It follows easily that g is an embedding and thus $\text{Dim}_k X \leq 2t$.

In order to determine whether or not the inequality of Theorem 3 is best possible, we need the following generalization of a well-known property (see [2, problem 7, p. 101]) of dimension which we state without proof.

Fact 4. If X and Y are posets, then $\text{Dim}_k X \times Y \leq \text{Dim}_k X + \text{Dim}_k Y$. If X and Y have distinct greatest and least elements, then equality holds.

Since $\text{Dim}_k \underline{k+1} = 2$ and $\text{Dim}_{k+1} \underline{k+1} = 1$, it follows from Fact 4 that $\text{Dim}_k \underline{k+1}^t = 2t$ while $\text{Dim}_{k+1} \underline{k+1}^t = t$ for all $t \ge 1$.

4. Dilworth's embedding theorem. A short proof of Dilworth's embedding theorem (Theorem 1) is given here for the sake of completeness. We assume Theorem 2.

To show that $\text{Dim } \underline{2}^X \leq W(X)$, let |X| = m, W(X) = n, and $X = C_1 \cup C_2 \cup \cdots \cup C_n$ be a decomposition into chains. It follows that

$$\underline{2}^{X} \subseteq \underline{2}^{C_1 + C_2 + \dots + C_n} = \underline{2}^{C_1} \times \underline{2}^{C_2} \times \dots \times \underline{2}^{C_n} \subseteq \underline{m+1}^n$$

and thus Dim $\underline{2}^X \leq n$.

On the other hand if A is an antichain of X with |A| = n, then $\underline{2}^n = \underline{2}^A \subseteq \underline{2}^X$ and we conclude that $\operatorname{Dim} \underline{2}^X \ge \operatorname{Dim} \underline{2}^n = n$.

The reader is invited to compare this argument with the proof of Theorem 3 in [13].

5. Some additional inequalities. For a poset X and an integer $m \ge 1$, let $P_m(X)$ be the smallest positive integer t for which there exists a partition of the point set of X of the form $X = C_1 \cup C_2 \cup \cdots \cup C_t$ where the subposet determined by each C_i is a chain with $|C_i| \le m$. The first half of the argument given in the preceding section allows us to conclude that $\text{Dim}_k \ 2^X \le P_{k-1}(X)$.

Now every poset Y can be written as the free sum $Y = Y_1 + Y_2 + \cdots + Y_r$ of its components. For a poset Y with components Y_1, Y_2, \ldots, Y_r and an integer $m \ge 1$, we then define $S_m(Y) = \sum_{i=1}^r \{|Y_i|/m\}$. To provide a generalization of the concept of width, we define $W_m(X) = \max\{S_m(Y): Y \subseteq X\}$. Dilworth's decomposition theorem can then be restated in the following form.

Theorem 4. For every poset X, there exists an integer m_0 such that $m \ge m_0$ implies $P_m(X) = W_m(X)$.

To see the connection between these definitions and Dilworth's embedding theorem we observe that the following result holds.

Theorem 5. For every poset X and every integer $k \ge 2$, $W_{k-1}(X) \le \text{Dim}_k \underbrace{2}^X \le P_{k-1}(X)$.

Proof. Choose a subposet $Y \subseteq X$ with $W_{k-1}(X) = S_{k-1}(Y)$; let the components of Y be Y_1, Y_2, \ldots, Y_r and for each $i \leq r$ let C_i be a linear extension of Y_i . If follows that

$$\underline{2}^{C_1} \times \underline{2}^{C_2} \times \cdots \times \underline{2}^{C_r} \subseteq \underline{2}^{Y_1} \times \underline{2}^{Y_2} \times \cdots \times \underline{2}^{Y_r}$$
$$= \underline{2}^{Y_1 + Y_2 + \cdots + Y_r} = \underline{2}^Y \subseteq \underline{2}^X$$

and therefore

$$\operatorname{Dim}_{k}(\underline{2}^{C_{1}} \times \underline{2}^{C_{2}} \times \cdots \times \underline{2}^{C_{r}}) \leq \operatorname{Dim}_{k}\underline{2}^{X}.$$

$$\operatorname{Dim}_{k}(\underline{2}^{C_{1}} \times \underline{2}^{C_{2}} \times \cdots \times \underline{2}^{C_{r}}) = \sum_{i=1}^{r} \{|C_{i}|/(k-1)\} = \sum_{i=1}^{r} \{|Y_{i}|/(k-1)\}$$

$$= S_{k-1}(Y) = W_{k-1}(X).$$

For m = 1, $W_1(X) = P_1(X) = |X|$ for all X. It is also true that $W_2(X) = P_2(X)$ for all X; in fact a more general result holds which we outline here. For a graph H with components H_1, H_2, \ldots, H_r let $S_m(H) = \sum_{i=1}^r \{|H_i|/m\}$. For a graph G, let $W_m(G) = \max\{S_m(H): H \text{ is an induced subgraph of } G\}$. Also let $P_m(G)$ be the smallest positive integer n for which there exists a partition of the vertex set of G into n subsets so that the induced subgraph spanned by each subset is a complete graph on at most m vertices. For a poset X the comparability graph of X, denoted G_X , is the graph whose vertex set is the point set of X with distinct points x, $y \in X$ adjacent in G_X iff x < y or y < x in X. Clearly $P_m(X) = P_m(G_X)$ and $W_m(X) = W_m(G_X)$.

Theorem 6. $W_2(G) = P_2(G)$ for all graphs.

Proof. We assume Hall's matching theorem for graphs and then proceed by induction on |X|. Now suppose G is a graph with $W_2(G) = t$ and let H be a subgraph of G with components H_1, H_2, \ldots, H_r so that $W_2(G) = W_2(H)$ $= \sum_{i=1}^{r} \{|H_i|/2\} = t$. We further assume that H is chosen so that r is maximal and |H| is minimal. Thus $W_2(H_i - x) < W_2(H_i)$ for every $i \le r$ and every $x \in H_i$ and we may assume that $H \ne X$.

Now construct a bipartite graph (X, Y) with $X = \{v_1, v_2, \ldots, v_r\}$ and Y = G - H. A vertex $y \in Y$ is adjacent to v_i in (X, Y) iff y is adjacent to at least one vertex of H_i in G.

By Hall's matching theorem, there exists a matching of Y into X for if $Y^1 \subseteq Y$, $X^1 = \{v \in X : v \perp y \text{ for some } y \in Y^1\}$, and $|X^1| \leq |Y^1|$, then $W_2(H \cup Y^1) > W_2(H)$.

We then assume that the elements of Y are labeled so that $Y = \{y_1, y_2, \ldots, y_s\}$, $s \leq r$, and $y_i \perp H_i$ in (X, Y) for each $i \leq s$. We then choose vertices a_1, a_2, \ldots, a_s from H_1, H_2, \ldots, H_s so that $y_i \perp a_i$ in G for each $i \leq s$. From the inductive hypothesis, we conclude that for each $i \leq s$, the subgraph $H_i - a_i$ can be partitioned into $W_2(H_i) - 1$ complete subgraphs each of at most two vertices.

Since $s \ge 1$, we may partition for each *i* with $s + 1 \le i \le r$, the subgraph H_i into $W_2(H_i)$ complete subgraphs of at most two vertices. When combined with $\{y_1, a_1\}, \{y_2, a_2\}, \ldots, \{y_s, a_s\}$, the construction produces a partition of *G* into $W_2(G)$ complete subgraphs of at most two vertices.

Anderson [1] uses a similar argument to give an elementary proof of Tutte's factor theorem from Hall's matching theorem.

It is not true that $W_3(G) = P_3(G)$ for all graphs. An example of a poset X for which $W_3(X) < P_3(X)$ is $(\underline{3} + \underline{3}) + \overline{3}$.

6. An extension of Dilworth's embedding theorem. In this section we consider the structure of $\underline{2}^{X}$ in more detail in order to make an exact computation of $\text{Dim}_{\underline{k}}\underline{2}^{X}$.

Theorem 7. $\operatorname{Dim}_{k} \underline{2}^{X} = P_{k-1}(X)$ for all X.

Proof. Suppose $\text{Dim}_k \underline{2}^X = t$ and let $F: \underline{2}^X \to \underline{k}^t$ be an embedding. For each $x \in X$ let $f_x: X \to \underline{2}$ be defined by $f_x(y) = 0$ if $y \le x$ in X and $f_x(y) = 1$ otherwise. It follows that $f_x \in \underline{2}^X$ for every $x \in X$ and $f_x < f_y$ in $\underline{2}^X$

iff x > y in X, i.e. the map $g: \hat{X} \to \underline{2}^X$ defined by $g(x) = f_x$ is an embedding.

For each $i \leq t$ let $X_i = \{x \in X : y < x \text{ or } y | x \text{ implies } F(f_x)(i) < F(f_y)(i)\}$. Then each X_i is a chain in X with $|X_i| \leq k$. Furthermore if $|X_i| = k$, then the least element in X_i is also the least element in X.

We now show that $X = X_1 \cup X_2 \cup \cdots \cup X_t$. Suppose on the contrary that there exists $x \in X$ with $x \notin X_1 \cup X_2 \cup \cdots \cup X_t$. Then for each $i \leq t$, there exists a point $y \in X$ with $y \not\geq X$ but $F(f_x)(i) \geq F(f_y)(i)$. Let \mathcal{C} be the collection of all subsets $A \subseteq X$ such that (1) $a \in A$ implies $a \not\geq x$ and (2) for every $i \leq t$, there exists $a \in A$ with $F(f_x)(i) \geq F(f_a)(i)$. Now among the sets in \mathcal{C} , choose one set say A_0 with $|A_0|$ minimum. It follows that A_0 is an antichain and $|A_0| \geq 2$. Now define a function $f_0: X \to 2$ by $f_0(y) = 0$ if $y \leq a$ for some $a \in A_0$ and $f_0(y) = 1$ otherwise. It follows that $f_0 \in 2^X$ and $f_0 \leq f_a$ in 2^X for every $a \in A_0$. Furthermore $f_0 \not\leq f_x$ in 2^X since $f_0(x) = 1$ and $f_x(x) = 0$. Since F is an embedding of 2^X in \underline{k}^t , there exist $i \leq t$ with $F(f_0)(i) > F(f_x)(i)$ and thus $F(f_a)(i) > F(f_x)(i)$ for every $a \in A_0$. The contradiction shows that $X = X_1 \cup X_2 \cup \cdots \cup X_t$.

If X has no least element, then $|X_i| \le k - 1$ for all $i \le t$ and thus $P_{k-1}(X) \le t$. If X has a least element x, remove x from each chain in which it appears and let the resulting chains be Y_1, Y_2, \ldots, Y_t . If $|Y_i| \le k-2$ for some $i \le t$, then we conclude that $P_{k-1}(X) \le t$ since

$$X = Y_1 \cup Y_2 \cup \cdots \cup (Y_i \cup \{x\}) \cup \cdots \cup Y_i$$

If $|Y_i| = k - 1$ for every $i \le t$, then $F(f_x)(i) = k - 1$ for every $i \le t$. Define $h: X \to \underline{2}$ by h(y) = 1 for all $y \in X$. Then $h > f_x$ in $\underline{2}^X$ but $F(f_x) \ge F(h)$ in \underline{k}^t . The contradiction completes the proof.

BIBLIOGRAPHY

1. I. Anderson, Perfect matching of a graph, J. Combinational Theory Ser. B 10 (1971), 183-186. MR 43 #1853.

2. G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1967. MR 37 #2638.

3. K. P. Bogart and W. T. Trotter, Maximal dimensional partially ordered sets. II. Characterization of 2 n-element posets with dimension n, Discrete Math. 5 (1973), 33-43. MR 47 #6563.

4. R. P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. (2) 51 (1950), 161-166. MR 11, 309.

5. B. Dushnik and E. W. Miller, *Partially ordered sets*, Amer. J. Math. 63 (1974), 600-610. MR 3, 73.

6. T. Hiraguchi, On the dimension of orders, Sci. Rep. Kanazawa Univ. 4 (1955), no. 1, 1-20. MR 17, 1045; 19, 1431.

7. Gyula Katona, A generalization of some generalizations of Spemer's theorem, J. Combinatorial Theory Ser. B 12 (1972), 72-81. MR 44 #2620.

8. R. Kimble, Extremal problems in dimension theory for partially ordered sets, Ph. D. Thesis, M.I.T., Cambridge, Mass., 1973.

9. O. Ore, *Theory of graphs*, Amer. Math. Soc. Colloq. Publ., vol. 38, Amer. Math. Soc., Providence, R. I., 1962. MR 27 #740.

10. M. A. Perles, A proof of Dilworth's decomposition theorem for partially ordered sets, Israel J. Math. 1 (1963), 105-107. MR 29 #5758.

11. G.-C. Rota and L. H. Harper, *Matching theory*, an introduction, Advances in Probability and Related Topics, vol. 1, Dekker, New York, 1971, pp. 169-215. MR 44 #89.

12 E. Szpilrajn, Sur l'extension de l'ordre partiel, Fund. Math. 16 (1930), 386-389.

13. W. T. Trotter, Embedding finite posets in cubes, Discrete Math. (to appear).

14. ——, A generalization of Hiraguchi's inequality for posets, J. Combinatorial Theory Ser. A (to appear).

15. H. Tverberg, On Dilworth's decomposition theorem for partially ordered sets, J. Combinational Theory 3 (1967), 305-306. MR 35 #5366.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SOUTH CAROLINA 29208