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1. Introduction 

An ordered set is said to be a cycle-free order if its comparability graph is chordal, 
i.e., its comparability graph does not contain an induced cycle of length greater 
than three. Many problems which are NP-complete for arbitrary ordered sets can 
be solved in polynomial time for cycle-free orders. One such example is the jump 
number problem. Bouchitte and Habib [l] have conjectured that the dimension 
problem is polynomial for cycle-free orders. Ma and Spinrad [6] suggested that this 
might be true for the trivial reason that cycle-free orders have dimension at most 3, 
and they proved that every cycle-free order has dimension at most 4. However, in 
this paper we prove that their bound is tight, and so one must work harder to 
determine the complexity of the dimension problem for cycle-free orders. 

THEOREM 1. There exists a cycle-free order P such that dim(P) = 4. 

The theorem is proved in Section 2. In Section 3 we present two related problems 
concerning the dimension of special classes of ordered sets along with some 
preliminary results. We shall denote the dimension, width, and height of an ordered 
set P by dim(P), w(P), and h(P), respectively. 
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Fig. 2.1. Q,. 

2. Proof of Theorem 3 

In order to prove Theorem 3, we shall construct a cycle-free ordered set CF and, 
using the Pigeon Hole Principle, show that it is 4-dimensional. The ordered setCF 
consists of n = 2727 + 1 copies of the sub-ordered sets Q,‘s, (Figure 2.1), where i 
runs from 1 to n, and a big chain C*: 

b;<. ’ . < by < b; < . . . < b’; . . - < b ;* < . . . < b;* < b f3 < . . . < by3 < b’d 

<’ ..<b:,<t~<...<t;l<t~<...<tl<t:<...<t~<...<t:, 

<- ‘.<fy2<t;,<.**<ty3. 

Foreachi,jwith l<j<13and l<i<n,bf<ej<dj<tj,andef,dfareincom- 
parable with any elements on the big chain C* between bf and t;. For each i, 
bb < ek < tk and eb is incomparable with any elements between bb and t; on the big 
chain C*. The ordered set CF is shown in Figure 2.3. 

Given a vertex x of an ordered set P, U(X) is used to represent the set 
(U E P: u > x}, called the upper set of x. Similarly, the down set of x is 
D(x)={vEP:v<x}. 

PROPOSITION 1. The ordered set CF is cycle-free. 
Proof. By contrapositive, we assume CF contains a cycle C of length 24 without 

chords. So C must be C,, for some k > 0 (Figure 2.2). 
By the construction of the ordered set CF, it is easy to see both U(dj) and U(eJ) 

are chains if j # 0. Therefore, for any 1 < q < k + 2, x4 can be neither d; nor ei for 
all i, j > 0, since U(x,) is not a chain. If xg is eb for some i, then y, and y, _ , 

yk+l yk+2 

Xl x2 X3 xk+2 

Fig. 2.2. C,. 
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Fig. 2.3. The cycle-free ordered set CF. 

(cyclically) can not both be in the big chain C*, because y, )I y,- 1, and hence at 
least one of y, and y, _ , , say y,, must be dj for some j. However, D(d;) - {e;} is 
a chain and hence .x4 + , (cyclically) has to be ej, contradicting what we observed 
above. Therefore, xq can only be from the big chain C* for all q, violating the fact 
that {x1, . . . , xkt2) is an antichain. n 
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Next, we are going to show that any 3 linear extensions of CF are not enough to 
realize it and so dim(CF) = 4. Given a linear extension L of CF, a vertex u from 
one of the Q’s is said to be up or down in L, if v is larger or less than any vertices 
incomparable with u in the big chain C*, respectively. Also, u is said to be neither 
in L, if Y is neither up nor down in L. 

Fix any realizer {L,, L,, L3} of CF. We color each vertex u in one of the Ql’s by 
atriple(a,,a,,a,),wherea,,a,,a,~{-1,0,1},suchthatu,=-1ifvisdownin 
L,, a, = 0 if v is neither up nor down in L,, and a, = 1 if v is up in Li. So, 33 = 27 
colors are used. Then we assign to each Q, a color which is a sequence {c(e&), . , . , 
c(ei3), c(d;), . . . , ~(d;~)} of colors, where c(u) denotes the color a vertex v receives. 
In this way, we colored these Ql’s with 2727 colors. But there are (2727 + 1) Qi’s 
contained in our ordered set CF, and hence at least two Q,‘s receive the same color, 
say Q, and Q2. From the coloring we did, it follows that, in each linear extension 
Li, d: and e: are up, down or neither if and only if dj’ and e: are, respectively, 
where 1 <j < 13 and 0 <k d 13. 

Let A,, = ((e:, dj): e: is up in Li, dj is down in L,, and j > 0}, for i, k = 1,2,3. 
Since, for any j, it is impossible that ef is up and d,! is down in the same linear 
extension of CF, A,, = 0 for i = 1,2, 3. From the fact that, for each j = 
1,2,. . .) 13, e: is up in some linear extension L, and dj is down in some linear 
extension Lk, it follows that {(ef, d!): j= 1,. . . , 13) =A,,,uA~,~uA~,,uA~,~u 
AU VA,,,. Thus, lA1.21 + IALsI + (A2,1 1 + (-4,,,I+ IA,,, I+ [A,,,j B 13, and hence at 
least one Al,k, say A1,2, has size at least 3. Without loss of generality, we may 
assumethat{(ef,d~):j=1,2,3}~A,,Z. Hence ej is up in L, and d,! is down in L,, 
for j = I, 2, 3. Since Q2 has the same color as Q,, e,2 is up in L, and d,’ is down in 
Lz, for j = 1,2, 3, too. As a consequence, we obtained the following sub-ordered set 
Q* of CF with the properties we mentioned above (Figure 2.4). 

We claim that {L, , L,, L3} cannot realize all incomparable pairs contained in Q * 
shown in Figure 2.4. First, we make the following observation, given 2K,: 

X 

I I 
u 

Y V 

if v < x and y < u in all linear extensions, then we need two more linear extensions 
to realize this 2K,, since it is impossible that u < y and x < v in one linear 
extension. 

Since et, e:,e:, e:, e:, e: are all up in L,, we are forced to have the following 
order in L,, eh, ei < et < di <e: < df <e: < d: < es < d: < e: cd: <e: < d:. And 
in L,, since di , d:, d:, d:, dz, d: are all down, which forces e; and ei down, we 
have e& df, d:, Ai < e; in L,, as shown in Figure 2.5, where the relations between 
any two vertices not joined by a line segment are not known yet. 
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Fig. 2.4. Q’=. 

d: d: d: 
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Fig. 2.5. 
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Since ei, e:, e: < d: in L,, and ei < dt, dl, d: in both L, and Lz, it follows from 
our observation above applied to the following 2k,‘s: 

d: d, I I 
2 

e; 2 
eO 

for i = 1,2, 3, that d: < el , e:, e: in L,. So, et, e:, ei are not down in L,. By the 
coloring, e:, es, e: are not down in Lz, either. Hence they all must be down in L3. 
Therefore, in L3, we are forced to have e i < e: < ei < e: < e: < e:, the same order 
as they are in L, . It follows that, in L,, e: < e: and so e: < e: < d: -C e: -C d:. In L, 
and L,, however, e: < e: < d:, too. Hence, the incomparable pair (e:, d:) cannot be 
realized by {L,, L,, L3}, a contradiction. We conclude our proof. n 

3. Problems 

An ordered set P is said to be an interval order if its points can be represented by 
closed intervals of the real line R so that any two intervals Z and .Z satisfy Z < J in 
P iff the right end point of Z is less than the left end point of J. A circular arc 
graph is a graph whose vertices can be represented by arcs of a fixed circle so that 
any two arcs Z and J satisfy Z N J iff Z n J # 8. An ordered set is a circular-arc 
order if its comparability graph is a circular-arc graph. Four distinct vertices 
a,, a2, b,, and b2 are said to form a 2K, if a, < b,, a2 < b,, and a, and a, are 
incomparable to b2 and b,, respectively. Fishburn’s well known characterization 
[3] of interval orders states that an ordered set is an interval order iff it does not 
contain 2K, as a suborder. 

PROBLEM 1 (Trotter [S]). Determine the maximum dimension of an interval order 
of width w. 

Using the following lemma of Rabinovitch [7] we can give an easy upper bound. 

LEMMA 1 (Rabinovitch [7]). Let P be an ordered set. Given two disjoint subsets 
A, B of P, suppose that there are no such vertices a,, a2 E A and b,, b, E B that form 
a 2K,. Then there exists a linear extension L of P such that for any x E A and 
y E B, tf x and y are incomparable in P, then x > y in L. n 

When the conclusion of the Lemma is satisfied we say that the linear extension L 
puts A above B. Note that if either A or B is a chain, or if P is an interval order, 
then the condition of Lemma 1 is satisfied, and so some linear extension L puts A 
above B. 
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PROPOSITION 2. Suppose P is an interval order. Then dim(P) < 2 log,(w(P)). 
Proof. Suppose P is an interval order with width w(P) = n. By Dilworth’s 

Theorem, P can be partitioned into n chains C, , . . . , C,,. Let t = [log, n] and 
s,,..., S,, be the enumeration of all subsets of (1, 2, . . . , t ). A realizer of P is 
constructed as follows. Given k E (1, 2, . . . , r}, let A, = Uk. s, C, and Bk = P - Ak. 
Then, using Lemma 1 and the following note, choose two linear extensions Lk and 
L; of P which put Ak above Bk and Bk above A,, respectively. 

Now we need to prove that {L,, . . . , L,, L;, . . . , L:} is a realizer of P. Given 
any two incomparable points x and y, x E C, and y E C, for some i #j. Without loss 
of generality, assume that S, - S’ # 0. Pick a number k E S, - 5”. It is easy to see 
x > y in Lk and x < y in L;, since x E A, and y E Bk. Our claim is proven and so 
dim(P) < 2t. n 

Recently Fiiredi, Hajnal, Rod], and Trotter [4] have shown that for any interval 
order P, dim(P) < log, log2(h(P)) + (l/2 + o( 1)) log, log, log,(h(P)). Thus if the 
upper bound of Proposition 1 is optimal, the interval order P that witnesses this 
must satisfy h(P) = G(2w(P)). 

PROBLEM 2. Determine the maximum dimension of a circular arc order. 

It is easy to see that crowns (ordered sets on at least six vertices whose comparabil- 
ity graph is a cycle) are three dimensional circular arc orders. In one of the earliest 
papers on the dimension of ordered sets, Dushnik and Miller [2] proved that the 
dimension of an ordered set P is less than or equal to 2 if and only if the 
complement of P is a comparability graph. This fact leads immediately to the 
following upper bound. 

PROPOSITION 3. Suppose P is a circular-arc order. Then dim(P) < 4. 
Proof. Suppose that P is a circular-arc order. Then there is a 1- 1 map assigning 

to each x E P an arc A, on a fixed circle C. Pick a point v on the circle C. Clearly, 
the set X = (x E P: v E A,} forms a chain of P, and P - X forms a sub-ordered set 
whose comparability graph G is an interval graph. Since the complement of G and 
hence the complement of P - X are a comparability graph, P - X has dimension 
~2. Let L, and L, be two linear extensions of P that realize P - X. Using Lemma 
1 and the following note, we can choose two more linear extensions L3 and L, of 
P such that L, puts Y above P - Y and L, puts P - Y above Y. An easy check 
shows that (L,, L?, L,, L4} is a realizer of P and so dim(P) ,< 4. n 
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