Large Regular Graphs with No Induced $\mathbf{2 K} \mathbf{K}_{\mathbf{2}}$

Madeleine Paoli ${ }^{1 *}$, G.W. Peck ${ }^{2}$, W.T. Trotter, Jr. ${ }^{3 *, * *}$ and Douglas B. West ${ }^{4 * * *}$
${ }^{1}$ University of South Carolina, Columbia, SC 29208, USA
${ }^{2}$ Massachusetts Institute of Technology, Cambridge, MA 02139, USA
${ }^{3}$ Bellcore, Morristow, NJ 07960, USA
${ }^{4}$ University of Illinois, Urbana, IL 61801, USA

Abstract

Let r be a positive integer. Consider r-regular graphs in which no induced subgraph on four vertices is an independent pair of edges. The number v of vertices in such a graph does not exceed $5 r / 2$; this proves a conjecture of Bermond. More generally, it is conjectured that if $v>2 r$, then the ratio v / r must be a rational number of the form $2+1 /(2 k)$. This is proved for $v / r \geq \frac{21}{10}$. The extremal graphs and many other classes of these graphs are described and characterized.

1. Introduction

A graph G is H-free if it has no copy of H as an induced subgraph, where H is a fixed graph. We say that an H-free graph avoids H. Let $2 K_{2}$ be the 4 -vertex graph consisting of two non-incident edges. We consider the class \mathbf{G}_{r} of all r-regular $2 K_{2}$-free graphs. We refer to a graph in $\mathbf{G}_{\boldsymbol{r}}$ as a $\mathbf{G}_{\boldsymbol{r}}$-graph (or a graph in $\mathbf{G}=\bigcup \mathbf{G}_{r}$ as a G-graph). Our interest in \mathbf{G}-graphs arose from a design problem for interconnection networks: maximize the number of vertices in a hypergraph of diameter 2 in which every edge has size r and every vertex has degree 2 (the edges and vertices of the hypergraph become the vertices and edges of the derived $\mathbf{G}_{\mathbf{r}}$-graph). We refer the reader to the survey paper [1] for a discussion of problems of similar type and an extensive bibliography. The more recent article [2] also explains the origin of the problem.

There are two ways to view this problem: extremally and structurally. When H is forbidden to occur as any subgraph of an n-vertex graph (not only as an induced subgraph), the problem of maximizing the number of edges is a classical problem of extremal graph theory. The appropriate analogue for H-free graphs is to maximize the number of edges in a connected H-free graph subject to a bound on the maximum degree, since when H is not complete a complete graph is H-free. This general problem is shown in [4] to be nontrivial precisely when H is a disjoint

[^0]union of paths. It is solved there for the 4-vertex path, and it is solved in [3] for $H=2 K_{2}$.

The structural motivation carries on a long tradition of characterizing graphs with various forbidden subgraphs or forbidden induced subgraphs; here we add the requirement of regularity. The reason for requiring the number of vertices to exceed twice the degree is that smaller graphs are relatively dense and likely to avoid $2 K_{2}$. When the number of vertices exceeds $2 r$, many structural properties emerge and restrict the possibilities for \mathbf{G}-graphs, so that we may hope to characterize these. This structural investigation arose from our examination of the following extremal conjecture of J.-C. Bermond:

Conjecture 0. A \mathbf{G}_{r}-graph has at most $5 r / 2$ vertices.
Our paper begins with a short proof of this conjecture. During the three-year period in which this paper was being refereed, a stronger and more difficult result was proved by Chung, Gyárfás, Tuza, and Trotter [3]; a $2 K_{2}$-free graph with maximum degree at most r has at most $5 r^{2} / 4$ edges. Hence the main focus of our paper is the structure of \mathbf{G}-graphs, including partial proofs of the stronger conjectures given below. We will completely describe all \mathbf{G}_{r}-graphs with at least $21 r / 10$ vertices. Conjecture 0 follows from the initial steps in this direction; meanwhile, the known examples of \mathbf{G}_{r}-graphs suggest a stronger conjecture:
Conjecture 1. If G is a \mathbf{G}_{r}-graph on v vertices, then r is even and v / r is a rational number of the form $2+1 /(2 k)$.

The following construction by R.L. Graham provides G-graphs with the ratios $v / r=2+1 /(2 k)$.

Example 1. Let $k \geq 1$. Define a graph G_{k} on $4 k+1$ vertices as follows. The vertices of G_{k} are the integers $0,1, \ldots, 4 k$, space equally around a circle. A vertex i is joined to each of the $2 k$ vertices at distance more than k from it around the circle; i.e., i, j are neighbors when $|i-j|>k \bmod (4 k+1)$. Suppose a, b, c, d (in that cyclic order) induce $2 K_{2}$ in G_{k}. A short case argument shows that the edges must be $a c$ and $b d$ (crossing), but then the 4 non-edges require the cyclic traversal of a, b, c, d to cover $4 k+1$ positions by traversing at most k positions in each of 4 steps. Hence G_{k} is a $\mathrm{G}_{2 k}$-graph, and $v / r=2+1 /(2 k)$. Note that G_{1} is the 5 -cycle C_{5}.

The next construction is an easy way to generate additional G-graphs.
Example 2. Let G be a \mathbf{G}_{r}-graph on v vertices. Given $p \geq 1$, let G^{p} denote the graph obtained by replacing each vertex x in G by a set $I(x)$ of p independent vertices. An edge $x y$ in G becomes a complete bipartite graph with partite sets $I(x)$ and $I(y)$ in G^{p}. Being $p r$-regular and $2 K_{2}$-free, G^{p} is a $\mathbf{G}_{p r}$-graph. Since G^{p} has $v p$ vertices, the vertex/ degree ratio is the same for G^{p} as for G. We call G^{p} the p-fold expansion of G. This is a special case of what is commonly called the lexicographic product $G[H]$, in which each vertex of G is expanded into a copy of H; here H is an independent set of size p.

Ideally, we would like to characterize G-graphs by providing a finite collection of "primitive" classes of G-graphs from which all G-graphs can be built using a
collection of operations such as expansion. We will present several such classes and another operation for building G-graphs from smaller ones. The variety of Ggraphs is surprisingly rich. Nevertheless, all evidence presently available supports a descriptive statement even stronger than Conjecture 1. Indeed, proving Conjecture 2 seems the most likely way to prove Conjecture 1.
Conjecture 2. Every \mathbf{G}_{r}-graph on $2 r+q$ vertices is the q-fold expansion of a $\mathbf{G}_{r / q^{-}}$ graph on $2 r / q+1$ vertices.

The example of C_{5}^{p} shows that Conjecture 0 is best possible for all even r. We will develop many structural properties of \mathbf{G}-graphs that enable us to describe all \mathbf{G}_{r}-graphs with at least $21 r / 10$ vertices. This yields a proof that C_{5}^{p} is the unique extremal graph (for r even) and a partial proof of Conjectures 1 and 2:

Theorem 1. If a \mathbf{G}_{r}-graph G has $v=2 r+q \geq 21 r / 10$ vertices, then $v / r \in\{2+1 /(2 k)$: $1 \leq k \leq 5\}$, and G is the q-fold expansion of $a \mathbf{G}_{r / q}$-graph on $2 r / q+1$ vertices.

Indeed, our structural results culminate at Theorem 19 with a proof that the G-graphs with $v / r \geq \frac{21}{10}$ are expansions of exactly 7 basic graphs.

We adopt several notational conveniences. Let $V=V(G)$ and $E=E(G)$ denote the vertex and edge sets of a finite simple graph G. If U, W are disjoint subsets of V, let $e(U)$ be the number of edges with both ends in U, and let $e(U, W)$ be the number of edges joining U and W. For vertices $x, y \in V$, let $x \leftrightarrow y$ denote adjacency, and let $x \| y$ denote nonadjacency. We choose this notation due to its easy extension to sets of vertices. We write $x \leftrightarrow A$ when $x \leftrightarrow a$ for all $a \in A$ and analogously define $x \| A, A \leftrightarrow B$, and $A \| B$.

Let $x y$ denote the edge between x and y when $x \leftrightarrow y$. For $x \in V(G)$, let $N(x)=$ $\{y: x \leftrightarrow y\}$ denote the neighbor set of x. The degree of x is $d(x)=|N(x)|$, with the degree of a regular graph being the common degree of its vertices. Let $\bar{N}(x)=\{y$: $x \| y\}$ denote the non-neighbor set of x; this includes x. It is convenient to define $N(S)=\bigcap_{u \in S} N(u)$, so that $x \in N(S)$ and $x \leftrightarrow S$ are equivalent (this differs from the more common usage of $N(S)$ for $\bigcup_{u \in S} N(u)$). Similarly, let $\bar{N}(S)=\bigcap_{u \in S} N(u)$, and define $N(S \mid T)=N(S) \cap \bar{N}(T)$. We extend the degree notation analogously: $d(S)=$ $|N(S)|$ and $d(S \mid T)=|N(S \mid T)|$. We drop set brackets where no confusion arises; for example, $N(a b \mid u z)=N(a) \cap N(b) \cap \bar{N}(u) \cap \bar{N}(z)$ and $S-x=S-\{x\}$. Finally, motivated by Conjecture 2 and the operation of expansion, we say that vertices with identical neighborhoods are equivalent, and we use $\langle u\rangle=\{x \in V: N(x)=N(u)\}$ to denote the equivalence class of u.

Due to the frequency and variety of its use, we do not explicitly state the condition that a \mathbf{G}-graph is $2 K_{2}$-free when we invoke it. Instead, we use stereotypic statements, indicated by the use of "\&" and the verb "force". We may say " $a \leftrightarrow b$ \& $c \leftrightarrow d$ force $a \leftrightarrow d$ " when we know $a\|c, b\| c$, and $b \| d$, or " $a \leftrightarrow b \& c \leftrightarrow d$ force $d \in N(a) \cup N(b)$ " when we know $c \|\{a, b\}$, or " $a \leftrightarrow b$ forces U independent" when we know $U \subset \bar{N}(a b)$. This convention becomes particularly useful when we apply it to sets of vertices, as in " $w \leftrightarrow z \& y \leftrightarrow S$ force $w \leftrightarrow S$."

A triangle in a graph is a pairwise-adjacent triple of vertices or the subgraph they induce. In section 2 we characterize the triangle-free G-graphs. For other G-graphs, section 3 proves the existence of a "dominating triangle," meaning a
triangle having a neighbor of every vertex. The results in Section 3 suffice to prove Conjecture 0. Section 4 considers the structural consequences of edges not in triangles. Sections 5-6 show that all G-graphs have edges not on triangles and obtain other structural properties. In sections 7-9, these are applied to bound the size of G-graphs of various types.

2. Triangle-free G-Graphs

We begin with two elementary observations.

Lemma 1. Let I be an independent set of vertices in a $2 K_{2}$-free graph. For any pair x, y of non-adjacent vertices, the sets $N(x) \cap I$ and $N(y) \cap I$ are ordered by inclusion.

Lemma 2. For any ordered pair I_{1}, I_{2} of independent sets in a $2 K_{2}$-free graph, either there exists $x \in I_{1}$ with $x \leftrightarrow I_{2}$, or there exists $y \in I_{2}$ with $y \| I_{1}$.

These lemmas allow us to dispose of triangle-free G-graphs.
Theorem 2. If G is a triangle-free \mathbf{G}-graph, then r is even and $G=C_{5}^{r / 2}$.
Proof. Choose an arbitrary edge $a b$ in G. Let $A=N(a)-b$ and $B=N(b)-a$. To avoid triangles, A and B must be disjoint independent sets of size $r-1$. Let $U=\bar{N}(a b)$. If U is empty, then G has only $2 r$ vertices and is not a G-graph.

Hence $U \neq \varnothing$; now $a \leftrightarrow b$ forces U independent. Given $u, u^{\prime} \in U$, we claim $N(u)=N\left(u^{\prime}\right)$; suppose not. Since $N(u) \cup N\left(u^{\prime}\right) \subseteq A \cup B$ and $d(u)=d\left(u^{\prime}\right)=r$, Lemma 1 allows us to assume $N\left(u^{\prime}\right) \cap A \subset N(u) \cap A$ and $N(u) \cap B \subset N\left(u^{\prime}\right) \cap B$. Since $|A|=|B|=r-1, u$ and u^{\prime} have neighbors in each of A, B, so there exist $x \in N\left(a u u^{\prime}\right)$ and $y \in N\left(b u^{\prime} \mid u\right)$. Now $x \leftrightarrow u \& b \leftrightarrow y$ force $x \leftrightarrow y$, which makes $x u^{\prime} y$ a triangle. This contradiction yields $N(u)=N\left(u^{\prime}\right)$.

By the preceding paragraph, any $x \in A \cup B$ is adjacent to all or none of U. Let $S_{1}=A \cap N(U), S_{2}=A-S_{1}, T_{1}=B \cap N(U)$, and $T_{2}=B-T_{1}$. Avoiding triangles requires $S_{1} \| T_{1}$. Since $S_{2} \| U$, the neighbors of $x \in S_{2}$ are restricted to $N(b)$, and then r-regularity forces $N(x)=N(b)$. Similarly, $N(y)=N(a)$ for $y \in T_{2}$. With these observations, $V(G)$ has been partitioned into five independent sets ($\left.\langle a\rangle, S_{1}, U, T_{1},\langle b\rangle\right)$ such that vertices are adjacent if and only if they belong to cyclically consecutive sets. Regularity then forces each set to have $r / 2$ vertices. Therefore r is even and G is the $r / 2$-fold expansion of a 5 -cycle.

In view of Theorem 2, we henceforth consider only G-graphs containing triangles.

3. Dominating Triangles

We say that a triangle in G is a dominating triangle if every vertex of G is adjacent to at least one vertex of the triangle. We want to show that every G-graph with a triangle has a dominating triangle. First we need a lemma.

Lemma 3. Let I be an independent set in a G-graph G, and let S be an arbitrary set of vertices. If $x \leftrightarrow S$ and $I \|(S \cup x)$, then $N(S \cup I)$ is nonempty.

Proof. Since $x \leftrightarrow S, N(S)$ is nonempty. Choose $y \in N(S)$ to maximize $|N(y) \cap I|$. If there exists $z \in(I-N(y))$, choose $w \in N(z \mid y)$, which exists because $z \| S$ and G is regular. Now $w \leftrightarrow z \& y \leftrightarrow S$ force $w \leftrightarrow S$. Furthermore, since $w \| y$ and $z \in(I \cap N(w \mid y))$, Lemma 1 implies that w has more neighbors in I than y. This contradicts the maximality of $N(y) \cap I$, so we conclude $y \leftrightarrow I$.

Lemma 4. If a, b belong to a triangle in a G-graph, then there is a vertex c such that $a b c$ is a dominating triangle.

Proof. Choose a vertex $x \in N(a b)$, and let $T=\{a, b, x\}$. If T is not a dominating triangle, let $S=\{a, b\} \cup N(x \mid a b)$. Since $\bar{N}(a b)$ is independent, we have $\bar{N}(T)$ independent and $\bar{N}(T) \|(S \cup x)$. Applying Lemma 3 with $I=\bar{N}(T)$ yields a point c with $c \leftrightarrow(S \cup N(T))$. This includes $c \leftrightarrow N(a b)$, so $a b c$ is a dominating triangle.

Let $T=a b c$ be a dominating triangle. To simplify notation, we use capital letters to denote the sets of vertices not in T whose adjacencies in T are the corresponding lower-case letters. For example, set $A=N(a \mid b c), B C=N(b c \mid a)-a$, $A B C=N(T)$, etc. We also henceforth express v as $2 r+q$ with $q>0$, and we let $\alpha_{1}=|A|+|B|+|C|, \alpha_{2}=|A B|+|A C|+|B C|$, and $\alpha_{3}=|A B C|$. Various relationships among these sets follow easily.

Lemma 5. The following statements hold for a dominating triangle abc in a G-graph, with permutations of A, B, C freely applicable.

1. $q=|C|-d(a b)=|B|-d(a c)=|A|-d(b c)$.
2. $\alpha_{2}+2 \alpha_{3}<r-3$.
3. $|A| \geq 2, A$ is independent, and $x \in A$ implies $|N(x) \cap(B \cup C)| \geq 3$.
4. If $x \in A$ and $x \| B$, then $N(x) \cap C \neq \varnothing$ and $B \leftrightarrow N(x) \cap C$.

Proof. (1): Comparing $N(a b)$ and $V(G)$ yields $2 r=v+d(a b)-|C|$ (etc.). (2): Since T is dominating, $v-3=\alpha_{1}+\alpha_{2}+\alpha_{3}$, and the edges incident to T are counted by $3 r-6=\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}$. Hence $\alpha_{2}+2 \alpha_{3}=r-3-q$. (3): By (1), $|A| \geq q+1$. $A \subseteq \bar{N}(b c)$ implies $N(x) \subseteq(N(b) \cup N(c))$, so A is independent. If $N(x) \cap(B \cup C) \leq 2$, then x has at least $r-3$ neighbors in $A B \cup A C \cup B C \cup A B C$. The resulting $\alpha_{2}+$ $\alpha_{3} \geq r-3$ contradicts (2). (4): By (3), $N(x) \cap C \neq \varnothing$. Now $B \leftrightarrow b \& x \leftrightarrow N(x) \cap C$ force $B \leftrightarrow N(x) \cap C$.

When I_{1} and I_{2} are independent sets in a G-graph, we say that $\left\{I_{1}, I_{2}\right\}$ are linked (by $x y$) if there exist vertices $x \in I_{1}$ and $y \in I_{2}$ with $x \leftrightarrow I_{2}$ and $y \leftrightarrow I_{1}$. When $I_{1} \leftrightarrow I_{2}$, we say I_{1} and I_{2} are totally linked. Lemma 2 says that if a pair of independent sets is not linked, then one of them must have a vertex totally independent of the other. We use this to show that at least one of the pairs $\{A, B\},\{B, C\},\{A, C\}$ generated by a dominating triangle $a b c$ must be linked; in particular, if there is an unlinked pair, then another pair is totally linked.

Lemma 6. Let abc be a dominating triangle in a G-graph, and suppose $x \in A$ satisfies $x \| B$. Then $B \leftrightarrow C$ and $x \leftrightarrow C$. Equivalently, if abc is a dominating triangle for which $B \leftrightarrow C$ is false, then every vertex of A has a neighbor in each of B and C.

Proof. It suffices to show that $y \leftrightarrow C$ for some $y \in B$, since this means $x \leftrightarrow a \& y \leftrightarrow C$ force $x \leftrightarrow C$, and then $B \leftrightarrow b \& x \leftrightarrow C$ force $B \leftrightarrow C$. By Lemma 5.4, x has neighbors in C totally adjacent to B. If $\{B, C\}$ is not linked, then we have some $u \in C$ with $u \| B$ (Lemma 2). If $\{A, C\}$ also is not linked, then there exists $w \in A \cup C$ with $w \| A \cup C$, in which case w has neighbors in B that violate $x \| B$ or $u \| B$ (by Lemma 5.4).

Hence the assumption that $\{B, C\}$ is not linked implies that $\{A, C\}$ is linked by some edge $w z$. We contradict this by showing it leads to $2 v \leq 4 r$. This follows from the fact that every vertex of G now has at least two neighbors in $\{a, c, w, z\}$. We consider vertices by their adjacencies in $a b c$; first $N(a c) \leftrightarrow a, c$ and $a \cup C \leftrightarrow c, w$ and $c \cup A \leftrightarrow a, z$. Also, we have $A B \cup B C \subset N(a) \cup N(c)$ by definition, and $A B \cup B C \leftrightarrow b$ $\& w \leftrightarrow z$ force $A B \cup B C \subset N(w) \cup N(z)$. Finally, $B \leftrightarrow b \& x \leftrightarrow z$ force $B \leftrightarrow z$, and $B \leftrightarrow b \& u \leftrightarrow w$ force $B \leftrightarrow w$, so $B \leftrightarrow w, z$.

Lemma 6 is the last tool needed to prove Conjecture 0 . The counting technique used in the proof appears again in later sections to bound the size of special classes of $\mathbf{G}_{\boldsymbol{r}}$-graphs.

Theorem 0. $A \mathbf{G}_{\boldsymbol{r}}$-graph has at most $5 r / 2$ vertices, and the only $\mathbf{G}_{\boldsymbol{r}}$-graph with $5 r / 2$ vertices is $C_{5}^{r / 2}$.

Proof. For triangle-free graphs, this is Theorem 2. Otherwise, we may assume that $a b c$ is a dominating triangle with $A B$ linked by $x y$. Note that $A B \cup A B C \leftrightarrow a, b$; also $A \leftrightarrow a, y$ and $B \leftrightarrow b, x$. Finally, $x \leftrightarrow y \& c \leftrightarrow N(c)$ force $N(c) \subseteq N(x) \cup N(y)$. Hence every vertex has at least two neighbors in $\{a, b, c, x, y\}$. Since a, b have three such neighbors, this implies $2 v<5 r$.

4. General Structure of G-Graphs

Lemma 6 also yields a classification of dominating triangles. We say that a dominating triangle $a b c$ is a Type i triangle for $i \in\{1,2,3\}$ if exactly i of the pairs $\{A, B\}$, $\{A, C\},\{B, C\}$ are linked. Lemma 6 implies that Type 1 and Type 2 triangles have a totally linked pair. The graphs G_{k} constructed in Example 1 have Type 3 triangles when $k \geq 2$. In particular, the triangle $a b c$ formed by the vertices $a=k+1, b=3 k$ and $c=0$ is a Type 3 triangle. To see this, observe that $A=\{3 k+1, \ldots, 4 k\}$, $B=\{1, \ldots, k\}, C=\{2 k, 2 k+1\}$, and $\{k, 2 k\} \leftrightarrow A,\{3 k+1,2 k+1\} \leftrightarrow B,\{1,4 k\} \leftrightarrow C$.

We next present a construction due partly to D.B. Shmoys that yields G-graphs with Type 2 triangles.
Example 3. Let m be a positive integer, and set $r=m^{2}+m$. Construct H_{m} as follows. Form $V\left(H_{m}\right)$ from disjoint sets $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}$ of sizes $m, m^{2}, m^{2}, 1, m$, respectively, and let Q_{1}, Q_{2}, Q_{3} be independent sets and Q_{5} be a clique. Put $Q_{i} \leftrightarrow Q_{i+1}$ (cyclically). Finally, we add some edges between Q_{3} and Q_{5}. Label the vertices in Q_{5} as u_{1}, \ldots, u_{m}, and partition Q_{3} into m blocks U_{1}, \ldots, U_{m} with m vertices each. Then put $u_{i} \| U_{i}$ and $u_{i} \leftrightarrow U_{j}$ for $i \neq j$. It is straightforward to check that H_{m} is r-regular and $2 K_{2}$-free.

Note that H_{1} is the 5 -cycle. For $m \geq 2$, choose $a=u_{1}, c=u_{2}$, and $b \in Q_{1}$. Then
$a b c$ is a dominating triangle, with $A=U_{2}, B=Q_{2}$, and $C=U_{1}$. Since $A \leftrightarrow C \leftrightarrow B$ and $A \| B, a b c$ is a Type 2 triangle. In fact, H_{m} has $\binom{m}{2}\left(m^{2}+m\right)$ dominating triangles (and $\binom{m}{2}$ non-dominating triangles), all of which are Type 2 and lead to the same structural decomposition of H_{m}. In this decomposition, the sizes of A, B, $C, A B, A C, B C, A B C$ are $m, m^{2}, m, 0, m^{2}-m, 0, m-2$, respectively. Although $\langle a\rangle=\langle c\rangle=1$, the set $\langle b\rangle$ consists of b and $m-1$ vertices of $A C$ (the remainder of Q_{1} in the description above). The set $A C$ also contains one special vertex z (the vertex of Q_{4} in the description above) such that $z \leftrightarrow \bar{N}(b)-z$ and $\bar{N}(b)-z$ is independent.

Our examples of G-graphs with Type 1 triangles arise naturally from the structure we prove that such graphs must have, so we postpone presentation of such a graph until Section 7. Meanwhile, we note that the adjacency structure in the subgraph induced by Q_{3} and Q_{5} in H_{m} will always occur under suitable conditions. However, applications of this lemma will require considerable knowledge about the structure of G-graphs. Hence we postpone it until Lemma 16 at the end of Section 6, even though it applies for arbitrary G-graphs with appropriate subsets, because its applications will come very late.

In the remainder of this section, we prove an important technical result about edges of \mathbf{G}-graphs not on triangles. As in the proof of Theorem 2, we seek to show that common non-neighbors of adjacent vertices not in a triangle have identical neighborhoods. The proof is much more difficult than the equality of neighborhoods in Theorem 2; it depends on the regularity of G-graphs via the counting of vertex neighborhoods. We first isolate a remark that applies to all edges and will be useful separately.

Remark 1. If $a b$ is an edge of $a \mathbf{G}$-graph, then $\bar{N}(a b)$ is an independent set of size $d(a b)+q$.

Proof. $a \leftrightarrow b$ forces independence, and $|N(u w)|=d(u)+d(w)+|\bar{N}(u w)|-v=$ $|\bar{N}(u w)|-q$.

Theorem 3. If $a b$ is an edge of a G-graph belonging to no triangle, then $\bar{N}(a b)$ is an equivalence class (of size q).

Proof. The set $U=\bar{N}(a b)$ is independent, and no vertex outside U can have the same neighborhood as a vertex in U. Thus it suffices to show $N\left(u_{1}\right)=N\left(u_{2}\right)$ for arbitrary distinct vertices $u_{1}, u_{2} \in U$. This requires several auxiliary sets and facts about their adjacencies. Let

$$
\begin{array}{cccc}
Q=\langle a\rangle & S=N(a)-R & S_{0}=N\left(u_{2}\right) \cap S & S_{1}=S-S_{0} \\
R=\langle b\rangle & T=N(b)-Q & T_{0}=N\left(u_{2}\right) \cap T & T_{1}=T-T_{0}
\end{array}
$$

Being equivalence classes, Q, R are independent sets. Since $\langle a\rangle \subseteq N(b)$ and $\langle b\rangle \subseteq N(a)$, the sets Q, R, S, T partition $V-U$. By construction, $S \leftrightarrow Q \leftrightarrow R \leftrightarrow T$.

Also, $S_{0} \leftrightarrow u_{2} \& b \leftrightarrow T_{1}$ force $S_{0} \leftrightarrow T_{1}$; similarly $T_{0} \leftrightarrow S_{1}$. The edges described thus far appear in Fig. 1.

Fig. 1. Sketch of a G-graph with an edge on no triangle

We claim that S_{1} and T_{1} are independent sets. It suffices to obtain a contradiction from assuming an edge $x y$ in S_{1}. First $x \leftrightarrow y \& b \leftrightarrow T_{1}$ force $T_{1} \subset N(x) \cup N(y)$, and $x \leftrightarrow y \& u_{2} \leftrightarrow S_{0}$ force $S_{0} \subset N(x) \cup N(y)$. Also $\{x, y\} \leftrightarrow\left(Q \cup T_{0}\right)$, as noted above. We have counted T_{1}, S_{0} at least once and Q, T_{0} twice, the total being at most $2 r-2$. However, $Q \cup T_{0} \cup T_{1}=N(b)$ and $S_{0} \cup T_{0} \cup Q=N\left(u_{2}\right) \cup Q$, which yields the contradiction $2 r+|Q| \leq 2 r-2$.

We next claim that if S_{1} or T_{1} is nonempty, then there exist $c \in S_{1}$ and $d \in T_{1}$ with $c \| T_{1}$ and $d \| S_{1}$. For each $x \in S_{1}$, there exists $y \in T_{1}$ with $x \| y$; otherwise $N(x) \supset N(b)$. Similarly, for each $y \in T_{1}$ there exists $x \in S_{1}$ with $x \| y$. Now the claim follows from Lemma 2.

For the remainder of the proof, we suppose that $N\left(u_{1}\right) \neq N\left(u_{2}\right)$ and seek a contradiction. We claim first that this forces $u_{1} \leftrightarrow\left(S_{1} \cup T_{1}\right)$. We may assume $u_{1} \leftrightarrow x$ for some $x \in S_{1}$, which also implies that T_{1} is nonempty. Now $u_{1} \leftrightarrow x \& b \leftrightarrow d$ force $u_{1} \leftrightarrow d$, after which $u_{1} \leftrightarrow d \& a \leftrightarrow S_{1}$ force $u_{1} \leftrightarrow S_{1}$ (including $u_{1} \leftrightarrow c$), and then $u_{1} \leftrightarrow c \& b \leftrightarrow T_{1}$ force $u_{1} \leftrightarrow T_{1}$.

Hence $N\left(u_{1}\right) \cup N\left(u_{2}\right)=S \cup T$, and we can make the description symmetric in u_{1} and u_{2} by refining the partition so that $S_{1}=S \cap \bar{N}\left(u_{2}\right), S_{2}=S \cap \bar{N}\left(u_{1}\right)$, and $S_{3}=S \cap N\left(u_{1} u_{2}\right)$; similarly for T. By symmetry in u_{1}, u_{2}, all of $S_{1}, S_{2}, T_{1}, T_{2}$ are nonempty. This symmetry also implies $S_{2} \leftrightarrow\left(T_{1} \cup T_{3}\right)$ and $T_{2} \leftrightarrow\left(S_{1} \cup S_{3}\right)$. Finally, $S_{1} \leftrightarrow u_{1} \& u_{2} \leftrightarrow S_{2}$ force $S_{1} \leftrightarrow S_{2}$; similarly $T_{1} \leftrightarrow T_{2}$.

Now we count vertex neighborhoods. Given $x \in S_{1}$ and $y \in T_{1}$, we have Q, T_{3}, $T_{2}, S_{2} \subset N(x)$ and $R, S_{3}, S_{2}, T_{2} \subset N(y)$. Since $N(x), N(y)$ also contain u_{1}, u_{2}, the sizes of these eight sets sum to less than $2 r$. Using $2 r=|N(a)|+|N(b)|=|Q|+$ $|R|+|S|+|T|$ and canceling like terms, we obtain $\left|S_{1}\right|+\left|T_{1}\right|>\left|S_{2}\right|+\left|T_{2}\right|$. However, doing this with x, y in S_{2}, T_{2} instead of S_{1}, T_{1} yields $\left|S_{2}\right|+\left|T_{2}\right|>\left|S_{1}\right|+\left|T_{1}\right|$. This contradiction proves $N\left(u_{1}\right)=N\left(u_{2}\right)$.

Theorem 3 will help significantly if we can prove that every \mathbf{G}-graph has an edge not on a triangle. This is one aim of the next section.

5. Critical Triangles

We begin by selecting a special dominating triangle. If $a b c$ is a dominating triangle in a G-graph G, let $\mu(a b c)=\min \{|A|,|B|,|C|\}$, and let $\mu(G)=\min \{\mu(a b c)$: $a b c$ is a dominating triangle of $G\}$. A dominating triangle abc is a critical triangle in G if $\mu(a b c)=\mu(G)$. For convenience, we say that a critical triangle $a b c$ is c-critical if $\mu(G)=\mu(a b c)=|C|$, and that a G-graph is a Type $i \mathbf{G}$-graph if it has a Type i critical triangle. The illustration of a G-graph in Fig. 2 will aid visualization for the arguments of the next several sections.

Fig. 2. Sketch of a G-graph with dominating triangle $a b c$

We next make some easy but important remarks about dominating triangles, collected here to emphasize the current notational conventions.

Lemma 7. If abc be a dominating triangle in a G-graph, then

1. If $x \leftrightarrow y$ with $x \in A, y \in B$, then $N(c) \subset N(x) \cup N(y)$.
2. If $x y z$ is a triangle with $x \in A, y \in B, z \in C$, then $x y z$ is dominating.
3. If $\{A, B\}$ is linked by $x y$, then $N(z \mid x y) \subseteq A B \cup\{c\}$.
4. If abc is c-critical and $\{A, B\}$ is linked by $x y$, then $x y$ belongs to no triangle.
5. $\langle a\rangle \subseteq B C \cup a,\langle b\rangle \subseteq A C \cup b,\langle c\rangle \subseteq A B \cup c$.

Proof. (1): $x \leftrightarrow y \& c \leftrightarrow N(c)$ force $N(c) \subset N(x) \cup N(y)$. (2): Since $a b c$ is dominating, (1) applies to each edge of $x y z$. (3): Follows from $x \leftrightarrow A, y \leftrightarrow B$, and (1). (4): If $x y$ belongs to a triangle, it belongs to a dominating triangle $x y z$ (Lemma 4). Now (3) and Lemma 5.1 imply $d(z \mid x y) \leq d(a b)<|C|$, contradicting the criticality of $a b c$. (5): The specified set contains all vertices whose adjacencies in $\{a, b, c\}$ agree with the specified vertex.

Lemma 8. If abc is a c-critical triangle in G, then $C \leftrightarrow A B$.

Proof. Suppose there exist $u \in A B$ and $z \in C$ with $u \| z$. First, consider the case where $z \leftrightarrow A$ or $z \leftrightarrow B$; we may assume $z \leftrightarrow B$. Choose some $y \in B$, and let $A^{\prime}=A \cap \bar{N}(y)$. We eliminate this case by showing that $u y b$ is a dominating triangle with $\mu(u y b)<$ $\mu(a b c)$. First $u \leftrightarrow a \& z \leftrightarrow B$ force $u \leftrightarrow B$. We have $y \leftrightarrow A-A^{\prime}$ by definition. Also $z \leftrightarrow y \& a \leftrightarrow A^{\prime}$ force $z \leftrightarrow A^{\prime}$, and then $u \leftrightarrow b \& z \leftrightarrow A^{\prime}$ force $u \leftrightarrow A^{\prime}$. Finally, $u \leftrightarrow y$ forces $N(c) \subseteq N(u) \cup N(y)$. Hence $u y b$ is dominating and $d(b \mid u y) \leq d(a b)<|C|$ (Lemma 5.1).

Therefore, z must be nonadjacent to some $x^{\prime} \in A$ and $y^{\prime} \in B$. Now $c \leftrightarrow z$ forces $x^{\prime} \| y^{\prime}$. The absence of edges among $\left\{x^{\prime}, y^{\prime}, z\right\}$ implies that no pair of $\{A, B, C\}$ is totally linked; hence $a b c$ is a Type 3 triangle. This means $\{A, B\}$ is linked by some edge $x y$. But now $x \leftrightarrow y^{\prime} \& c \leftrightarrow z$ force $x \leftrightarrow z$, and $y \leftrightarrow x^{\prime} \& c \leftrightarrow z$ force $y \leftrightarrow z$. This makes $x y z$ a triangle, which is forbidden by Lemma 7.4.

To guarantee edges not on triangles, it suffices to show that $\{A, B\}$ is linked when $a b c$ is c-critical, since every edge linking them then belongs to no triangle (by Lemma 7.4). This is easy to show for c-critical triangles of Types 2 and 3, and proving it for Type 1 will be our main task in the remainder of the section.

Lemma 9. If abc is a Type 2 or Type $3 c$-critical triangle, then $\{A, B\}$ is linked.
Proof. If $a b c$ is Type 3 , we are done. If it is Type 2 and $\{A, B\}$ is not linked, then by Lemma 2 and symmetry of A and B we may choose $x \in A$ with $x \| B$. Since $\{A, C\}$ must be linked, there exists $z \in C$ with $z \leftrightarrow A$. Consider $\bar{N}(c)=A \cup B \cup A B \cup c$. We have $z \leftrightarrow A \cup c$ by choice, $z \leftrightarrow B$ by Lemma 6 , and $z \leftrightarrow A B$ by Lemma 8, so $N(c) \cup N(z)=V$. This yields the contradiction $v \leq 2 r$.

When we consider triangles $a b c$ with $\{A, B\}$ linked by an edge $x y$, there is a natural $x y$-partition of C; its definition and fundamental properties follow next.

Lemma 10. Suppose that abc is a dominating triangle for which $\{A, B\}$ is linked by $x y$, and let $C_{1}=C \cap N(x \mid y), C_{2}=C \cap N(y \mid x)$, and $C_{3}=C \cap N(x y)$.

1. C_{1}, C_{2}, C_{3} partition C.
2. $C_{1} \leftrightarrow A$ and $C_{2} \leftrightarrow B$.
3. If $a b c$ is c-critical, then $C_{3}=\varnothing$.
4. If abc is Type 1 , or if abc is Type 3 and c-critical, then C_{1} and C_{2} are nonempty.

Proof. (1): Lemma 7.1. (2): $C_{1} \leftrightarrow c \& y \leftrightarrow A$ force $C_{1} \leftrightarrow A$; similarly for $C_{2} \leftrightarrow B$. (3): Lemma 7.4. (4): If $a b c$ is Type 3 and c-critical, this follows from (3) and $\{A, C\}$, $\{B, C\}$ linked. If $a b c$ is Type 1 , then C_{1} empty implies $y \leftrightarrow C$, in which case $\{B, C\}$ is also linked unless there exists $y^{\prime} \in B$ with $y^{\prime} \| C$, which implies $A \leftrightarrow C$ (Lemma 6) and contradicts the fact that $a b c$ is Type 1 (similarly for C_{2}).

The next result uses the $x y$-partition to establish fundamental adjacencies in G-graphs. It will be applied in this section to show that $\{A, B\}$ is the unique linked pair in a c-critical Type 1 triangle $a b c$. It will be used again later for both Type 1 and Type 3 graphs. The two contexts are combined here because the argument is almost the same. The graphs H_{m} of Example 3 show that the conclusion of Lemma 11 (and the nonemptiness of C_{1} and C_{2} in Lemma 10) does not hold for Type 2 graphs; in fact, $B \| A C$ and $C_{1}=\varnothing$ in those graphs.

Lemma 11. Suppose abc is a dominating triangle for which $\{A, B\}$ is linked. If abc is Type 1 , or if abc is Type 3 and c-critical, then $B \leftrightarrow A C$ and $A \leftrightarrow B C$.

Proof. We use the $x y$-partition of C. Also, let $S=B C \cap N(x), S^{\prime}=B C-S, T=$ $A C \cap N(y), T^{\prime}=A C-T$. We reduce the task to proving $S^{\prime}=T^{\prime}=\varnothing$. If $a b c$ is Type 1 this suffices because $A \leftrightarrow B$ and we can select any edge between them as $x y$. Under the other hypothesis, abc c-critical implies $y \| S$ (Lemma 7.4), and then $S \leftrightarrow c \& y \leftrightarrow A$ force $S \leftrightarrow A$ (similarly, $T \leftrightarrow B$).

Whether S^{\prime}, T^{\prime} are empty or not, $S^{\prime} \leftrightarrow c \& x \leftrightarrow B$ force $S^{\prime} \leftrightarrow B$, also $S^{\prime} \leftrightarrow b \&$ $x \leftrightarrow C_{1} \cup C_{3}$ force $S^{\prime} \leftrightarrow C_{1} \cup C_{3}$, and $S^{\prime} \|\{a, x\} \& a \leftrightarrow x$ force $S^{\prime} \| C_{2}$. Similarly, $T^{\prime} \leftrightarrow$ $A \cup C_{2} \cup C_{3}$ and $T^{\prime} \| C_{1}$. Finally, $S^{\prime} \leftrightarrow C_{1} \& T^{\prime} \leftrightarrow C_{2}$ force $S^{\prime} \leftrightarrow T^{\prime}$, since C_{1} and C_{2} are nonempty (Lemma 10).

If S^{\prime}, T^{\prime} are not both empty, we may select $u \in S^{\prime}$. We prove that $u y b$ is a dominating triangle and use this to prove $T^{\prime} \neq \varnothing$. We know that $y \leftrightarrow A, C_{1}, C_{3}, T$, b and $u \leftrightarrow C_{2}, C_{3}, T^{\prime}, b$; hence $\bar{N}(b) \subseteq N(u) \cup N(y)$. Let $U=N(u \mid y b)$ and $Y=$ $N(y \mid b u)$. If $T^{\prime}=\varnothing$, then $U \subseteq C_{2} \cup C_{3}$. Since $a \in N(b \mid u y)$ and $a \| C_{2} \cup C_{3}$, Lemma 6 then implies $U \leftrightarrow Y$. Since C is independent, we conclude $Y \cap C=\varnothing$. Since C_{2} is nonempty, this contradicts $C_{2} \subseteq Y$, which follows from $C_{2} \| b, u$.

Hence we can also select $w \in T^{\prime}$. It now suffices to show that each vertex of G is adjacent to at least two of $\{u, w, y, z\}$, which yields the contradiction $2 v \leq 4 r$. We have already observed that $u \leftrightarrow B, C_{1}, C_{3}, T^{\prime}, b, c$ and $y \leftrightarrow A, C_{2}, C_{3}, T, S^{\prime}, b$; similarly $w \leftrightarrow A, C_{2}, C_{3}, S^{\prime}, a, c$ and $x \leftrightarrow B, C_{1}, C_{3}, S, T^{\prime}, a$. This proves the claim except for vertices in $S \cup T \cup N(a b)$. For $N(a b), u \leftrightarrow y \& N(a b) \leftrightarrow a$ force $N(a b) \subset$ $N(u) \cup N(y)$, and $w \leftrightarrow x \& N(a b) \leftrightarrow b$ force $N(a b) \subset N(w) \cup N(x)$.

Finally, we have $S \subset N(z)$ and $T \subset N(y)$ and need another neighbor for vertices in $S \cup T$; by symmetry, we need only consider $v \in S$. Recall that $T^{\prime}\left\|C_{1}\right\| S^{\prime}$ and $T^{\prime} \leftrightarrow C_{2} \| S^{\prime}$. If $v \| w$, then $c \leftrightarrow w \& w \| C_{1}$ force $v \| C_{1}$, and $v \leftrightarrow b \& w \leftrightarrow C_{2}$ force $v \leftrightarrow$ C_{2}. If $v \| u$, then $v \leftrightarrow C_{2} \& u \leftrightarrow C_{1}$ force $v \leftrightarrow C_{1}$. This incompatibility between v and the (nonempty) set C_{1} prohibits $v \| w$, u, which completes the proof.

For the next result about Type 1 triangles, we need the following lemma.
Lemma 12. If I and S are disjoint vertex sets in a G-graph, I is independent, and $\bar{N}(S) \cap I=\varnothing$, then there is a clique in S containing a neighbor of every vertex in I.

Proof. By hypothesis, every vertex of I has a neighbor in S. Let K be a minimal subset of S containing a neighbor of every vertex in I. If any vertices of K were nonadjacent, their neighborhoods in I would be ordered by inclusion (Lemma 1), which would violate the minimality of K.

Now we can guarantee two special vertices with respect to Type 1 triangles.
Lemma 13. If abc is a Type 1 triangle and $\{A, B\}$ is the unique linked pair, then $A C$ and $B C$ each contain a vertex adjacent to all of C.

Proof. Let $C_{A}=C \cap N(A)-N(B)$ and $C_{B}=C \cap N(B)-N(A)$, with $C^{*}=C \cap$ $N(B) \cap N(A)$. Since $C \leftrightarrow c \& A \leftrightarrow B$, these three sets partition C. Let $C_{A^{\prime}}=C \cap \bar{N}(B)$ and $C_{B^{\prime}}=C \cap \bar{N}(A)$; note that $C_{A^{\prime}} \subseteq C_{A}$ and $C_{B^{\prime}} \subseteq C_{B}$. Since every vertex of $C-$ $C_{B^{\prime}}$ has a neighbor in A, there exists $x \in A$ with $x \leftrightarrow\left(C-C_{B^{\prime}}\right)$ (Lemma 2). Similarly,
there exists $y \in B$ with $y \leftrightarrow\left(C-C_{A^{\prime}}\right)$. If $C_{B^{\prime}}=\varnothing$, then $x \leftrightarrow C$, in which case $\{A, C\}$ is also linked unless there exists $x^{\prime} \in B$ with $x^{\prime} \| C$, which implies $B \leftrightarrow C$ (Lemma 6) and contradicts the fact that $a b c$ is Type 1 . Hence $C_{B^{\prime}}, C_{A^{\prime}}$ are nonempty.

If $z \| A C \cup A=N(a \mid b)$ for some $z \in C$, then C being independent implies $N(z) \subseteq$ $N(b)-a$, which violates regularity. Since $C_{B^{\prime}} \| A$, every vertex of $C_{B^{\prime}}$, thus has a neighbor in $A C$, and then Lemma 12 guarantees that $A C$ contains a minimal complete graph K whose vertices together dominate $C_{B^{\prime}}$. Most of this proof involves showing $K \leftrightarrow C_{A} \cup C^{*}$, from which the desired vertices will emerge easily at the end.

Let $Q=N\left(C_{A} \cup C^{*}\right) \cap K$ and $U=K-Q$, with $m=|Q|$ and $n=|U|$. We claim that $U \leftrightarrow A$. Otherwise, consider $u \in U$ with $u \notin N(A)$. By the choice of K, u has a neighbor $x \in C_{B^{\prime}}$. Now $u \leftrightarrow x \& A \leftrightarrow\left(C_{A} \cup C^{*}\right)$ force $u \leftrightarrow\left(C_{A} \cup C^{*}\right)$, contradicting $u \in U$.

We aim to show $n=0$. Otherwise, we count $2(n+m)$ vertex neighborhoods and obtain a total count of at least $v(n+m)$, contradicting $v>2 r$. The easy case is $m=0, n>0$. Here the $2 n$ neighborhoods are $N(x), n-1$ copies of $N(c)$, and $N(u)$ for each $u \in K$. First $K \leftrightarrow B$ (Lemma 11) and $K \leftrightarrow A \cup a \cup c$ imply that vertices of $B \cup A \cup a \cup c$ are counted at least n times, and in fact $x \leftrightarrow B$ implies that B is counted $n+1$ times. Vertices in $N(c)$ are counted $n-1$ times from c; for the additional incidence in $N(c \mid a)$, we have $z \leftrightarrow\left(C-C_{B^{\prime}}\right) \cup B C$ (Lemma 10) and every vertex of $C_{B^{\prime}}$ adjacent to at least one vertex of K. The remainder of $N(c)$ is $N(a c)$; since $|B|>|N(a c)|$ (Lemma 5.1), the excess count on B remedies the possible deficiency on $N(a c)$. The remaining vertices are $w \in A B$, where $w \leftrightarrow b \&$ edges of K force w adjacent to at least $n-1$ vertices of K. Now $w \leftrightarrow b \& K \leftrightarrow z$ force $w \leftrightarrow K$ or $w \leftrightarrow z$, which remedies the deficiency.

Hence we may assume $m>0$. Here the $2(m+n)$ neighborhoods are $N(a), n$ copies of $N(c), m-1$ copies of $N(y)$, and $N(u)$ for each $u \in K$. Since $A \leftrightarrow U \cup y \cup a$, A is counted at least $n+m$ times. Also, $A C \leftrightarrow B$ (Lemma 11) implies that $B \cup A C \cup$ $c \cup b$ is counted $n+m$ times. If $w \in N(b)$, then $w \leftrightarrow b \&$ edges of K force w adjacent to at least $n+m-1$ vertices of K; a provides the additional neighbor when $w \in N(a b)$, and c provides n additional neighbors when $w \in B C$.

This leaves C, which is counted n times from c. For $C_{A} \cup C^{*}$, we find the m additional neighbors in Q. For C_{B}, we count $m-1$ for $N(y)$. For $C_{B^{\prime}}$, we are guaranteed a neighbor in K, but for $C_{B}-C_{B^{\prime}}$ we may have a deficiency of 1 . The deficiency is eliminated if $u \| x$ for some $u \in Q$, because then $u \notin \bar{N}\left(C_{B^{\prime}}\right) \& x \leftrightarrow$ $\left(C-C_{B^{\prime}}\right.$) force $u \leftrightarrow\left(C-C_{B^{\prime}}\right)$. Hence we may assume $K \leftrightarrow x$. Now we remedy the deficiency by proving that $T=N(a b \mid x)$ is as large as $C_{B}-C_{B^{\prime}}$ and has excess count. Since $K \leftrightarrow x \& b \leftrightarrow T$ force $K \leftrightarrow T, T$ is counted at least $m+n+1$ times. By Lemma 11 and the choice of T and x, respectively, $x \leftrightarrow N(b \mid a) \cup(N(a b)-T) \cup$ $\left(C-C_{B^{\prime}}\right)$. Hence $r \geq d(b \mid a)+d(a b)-|T|+\left|C-C_{B^{\prime}}\right|$, or $|T| \geq\left|C-C_{B^{\prime}}\right|$.

We have now assigned a count of at least $m+n$ to each vertex, except that vertices of $B C$ have been counted $m+2 n-1$ times, for c and their neighbors in K. This is at least $m+n$ if $n>0$, and if $K \leftrightarrow B C$ we have an additional neighbor in K. Hence we have proved that $n=0$ (i.e. $K \leftrightarrow C_{A} \cup C^{*}$) and that $u \| w$ for some $u \in K$, $w \in B C$. Now $w \leftrightarrow b \& u \leftrightarrow\left(C_{A} \cup C^{*}\right)$ force $w \leftrightarrow\left(C_{A} \cup C^{*}\right)$. This means that w itself is a minimal clique in $B C$ that dominates $C_{A^{\prime}}$. By the argument symmetric to that
above, we conclude that $w \leftrightarrow C_{B} \cup C^{*}$. Hence $w \leftrightarrow C$. Now $u \leftrightarrow a \& w \leftrightarrow C$ force $u \leftrightarrow C$, and u, w are the desired vertices.

Finally, we reach the objective of this section, which by Lemma 7.4 yields edges not on triangles.

Theorem 4. If abc is a c-critical triangle, then

1. $\{A, B\}$ is linked by an edge $x y$.
2. $\langle c\rangle=\bar{N}(x y)$, and $|\langle c\rangle|=q$.
3. $|C| \geq 2 q+|A B C|$.

Proof. (1): Immediate by Lemma 9 unless $a b c$ is Type 1, in which case we may assume that $\{B, C\}$ is its unique linked pair. Lemma 13 then guarantees $u \in A C$ with $u \leftrightarrow A$. Since $u \leftrightarrow B$ (Lemma 11), acu is a dominating triangle. Since $u \leftrightarrow A$, we have $N(a \mid c u) \subseteq A B$, implying $|N(a \mid c u)| \leq|A B|<|C|$ (Lemma 5.1) and contradicting the c-criticality of $a b c$. (2): From (1), Lemma 7.4, and Theorem 3. (3): From (2) and Remark 1, applied to $C=\bar{N}(a b)$.

Since $\{A, B\}$ is linked whenever $a b c$ is a c-critical triangle, Type $2 \mathbf{G}$-graphs lack the symmetry of a and b in their c-critical triangles, so our approach to characterizing them differs from that for Type 1 and Type 3 G-graphs. We postpone the discussion of Type 2 G-graphs to Section 9.

6. Structure of Type 1 and Type 3 G-Graphs

We can now sketch out the structure of Type 1 and 3 G-graphs. We assume $a b c$ is a c-critical triangle, so $\{A, B\}$ is linked by an edge $x y$ (Lemma 13). Let $C_{1}=$ $C \cap N(x \mid y)$ and $C_{2}=N(y \mid x)$ be the $x y$-partition of C (Lemma 10). The next theorem follows readily from earlier results.

Theorem 5. If abc is a c-critical Type 1 or Type 3 triangle and $\{A, B\}$ is linked by $x y$, then

1. $C_{1}=\bar{N}(b y)$ and $C_{2}=\bar{N}(a x)$.
2. The edges by and ax belong to no triangles.
3. C_{1} and C_{2} are equivalence classes of size q.
4. $A B C=\varnothing$.

Proof. (1): From $y \leftrightarrow A, x \leftrightarrow B$, and Lemma 11. (2): From (1), the criticality of $a b c$, and the fact that C_{1}, C_{2} are both nonempty (Lemma 10.4) and therefore smaller than C, (3): From (1) and (2) by Theorem 3. (4): From (3) and Theorem 4.3.

Note that Theorem 5.3 and 5.4 agree with Lemma 5.1 and Theorem 4.2, i.e. $2 q=\left|C_{1}\right|+\left|C_{2}\right|=|C|=1+|A B|+|A B C|+q$. To study the structure of other vertex subsets not self-symmetric in A and B, we introduce more detailed notation. In addition to C_{1}, C_{2}, this notation applies whenever we discuss a c-critical Type 1 or Type 3 triangle $a b c$ (through Section 8). Define $A_{1}=A \cap N(B), B_{1}=B \cap N(A)$,
$S=A C \cap N(C), S^{\prime}=A C \cap \bar{N}(C), \quad T=B C \cap N(C), T^{\prime}=B C \cap \bar{N}(C)$. Note that $x \in A_{1}$ and $y \in B_{1}$ and that we already know $C_{1} \leftrightarrow A$ and $C_{2} \leftrightarrow B$ (Lemma 10.2).

Theorem 6. If abc is a c-critical Type 1 or Type 3 triangle and $\{A, B\}$ is linked by $x y$, then

1. $A_{1} \| N(a)$ and $B_{1} \| N(b)$.
2. $\langle c\rangle=A B \cup c$.
3. $N\left(C_{1}\right) \cap B=B-B_{1}$ and $N\left(C_{2}\right) \cap A=A-A_{1}$.
4. $S \leftrightarrow T^{\prime}$ and $T \leftrightarrow S^{\prime}$.
5. If $u \in S$, then $|B C-N(u)|=2 q+d(u a \mid b)$ (and $w \in T$ implies $d(a c \mid b w)=2 q+$ $d(w b \mid a))$.
6. $A C=S \cup S^{\prime}$ and $B C=T \cup T^{\prime}$.
7. S^{\prime} and T^{\prime} are independent sets, with $\langle b\rangle \subseteq S^{\prime} \cup b$ and $\langle a\rangle \subseteq T^{\prime} \cup a$.

Proof. We verify the first in each symmetric pair of statements. (1): From Theorem 5.2. (2): $\langle c\rangle \subseteq A B \cup c \subseteq \bar{N}(x y)=\langle c\rangle$ by Lemma 7.5, (1), and Theorem 4.2, respectively. (3): Theorem 5.1 implies $B_{1} \| C_{1}$. For $w \in B-B_{1}$, we can choose $u \in A$ with $u \| w$, and then $w \leftrightarrow b \& u \leftrightarrow C_{1}$ force $w \leftrightarrow C_{1}$. (4): $S \leftrightarrow C_{1} \& b \leftrightarrow T^{\prime}$ force $S \leftrightarrow T^{\prime}$. (5): $u \leftrightarrow B$ (Lemma 11) implies $B C-N(u)=N(u a)$, which by Remark 1 has size $q+$ $d(u a)$. Also, $A B C=\varnothing$ (Theorem 5.4) implies $N(u a b)=\langle c\rangle$, which has size q (Theorem 4.2).
(6): Since C_{1} and C_{2} are equivalence classes (Theorem 5.3), it suffices to show $u \leftrightarrow C_{1}$ if and only if $u \leftrightarrow C_{2}$ for $u \in A C$. For sufficiency, $u \leftrightarrow C_{2} \& x \leftrightarrow C_{1}$ (by (1)) force $u \leftrightarrow C_{1}$. For necessity, (5) guarantees a vertex $w \in B C-N(u)$. Now $w \leftrightarrow b \&$ $u \leftrightarrow C_{1}$ force $w \leftrightarrow C_{1}$, next $w \leftrightarrow C_{1} \& y \leftrightarrow C_{2}$ (by (1)) force $w \leftrightarrow C_{2}$, and finally $u \leftrightarrow a$ $\& w \leftrightarrow C_{2}$ force $u \leftrightarrow C_{2}$. (7): By (1), $A_{1} \leftrightarrow C_{1}$ forces S^{\prime} independent. Using Lemma $7.5,(6)$, and $C \leftrightarrow S$, we have $\langle b\rangle \subseteq S^{\prime} \cup b$.

For Type $1 \mathbf{G}$-graphs, $A \leftrightarrow B$ makes some statements trivial; in particular, $A-A_{1}=B-B_{1}=\varnothing$ for a Type $1 c$-critical triangle. We employ this simplification in the next section. However, there are still arguments that we can apply to Type 1 and Type 3 triangles simultaneously. For S^{\prime}, T^{\prime} and $A-A_{1}, B-B_{1}$, we need a lemma that will partition a pair of independent sets into subsets with identical neighborhoods among these vertices. This will be a simple extension of Lemma 2.

When A and B are independent sets in a G-graph and the vertices of A have k distinct neighborhoods in B, we define the B-partition of A to be the partition of A into sets A_{1}, \ldots, A_{k} such that $N(u) \cap B \supset N(w) \cap B$ for $u \in A_{i}$ and $w \in A_{j}$ with $i<j$. We refer to the B-partition of A and the A-partition of B as the mutual partitions of $\{A, B\}$.

Lemma 14. Let A and B be independent sets in a G-graph, and let A_{1}, \ldots, A_{k} and B_{1}, \ldots, B_{l} be the mutual partitions of $\{A, B\}$. If A and B are linked, then $k=l$, $i+j \leq k+1$ implies $A_{i} \leftrightarrow B_{j}$, and $i+j>k+1$ implies $A_{i} \| B_{j}$. If $A[B]$ has a vertex independent of $B[A]$, then the same conclusion holds with k replaced by $k-1$ [l replaced by l-1] (or both).

Proof. Index the vertices of $A=\left\{x_{i}\right\}$ and $B=\left\{y_{j}\right\}$ in decreasing order of number of neighbors in the other set. Since these neighborhoods are ordered by inclusion (Lemma 1), the nonzero positions of the resulting adjacency matrix form the Ferrers diagram for a partition of an integer, the integer being the number of edges between A and B. When $\{A, B\}$ is linked, the number of distinct $\left|N\left(x_{i}\right) \cap B\right|$ (row sizes) and the number of distinct $\left|N\left(y_{j}\right) \cap A\right|$ (column sizes) is equal; it is the number of "corner dots" (end of a row and a column) in the partition. The dots of the partition encode the adjacencies, which yields the statement about the adjacency of A_{i} and B_{j}.

If A has a vertex independent of B, then $A_{k}=A \cap \bar{N}(B)$. Now $A-A_{k}$ and B are linked independent sets, and we can apply the previous result for $k-1$ and l. If also B has a vertex independence of A, then $B_{l}=B \cap \bar{N}(A)$, and we can delete B_{l} and apply the main result for $k-1$ and $l-1$.

This lemma suggests several partitions, again applicable through Section 8. Let A_{1}, \ldots, A_{k} and B_{1}, \ldots, B_{k} be the mutual partitions of $\{A, B\}$; note that A_{1} and B_{1} are the same as previously defined. Since S^{\prime}, T^{\prime} are independent (Theorem 6.7), and also $S^{\prime} \| C_{2} \cup b$ and $T^{\prime} \| C_{1} \cup a$, the sets $S^{*}=S^{\prime} \cup C_{2} \cup b$ and $T^{*}=T^{\prime} \cup C_{1} \cup a$ are independent. Let $S_{1}^{\prime}, \ldots, S_{l}^{\prime}$ and $T_{1}^{\prime}, \ldots, T_{l}^{\prime}$ be the mutual partitions of $\left\{S^{*}, T^{*}\right\}$; they have the same number of parts because $C_{2} \| T^{*}$ and $C_{1} \| S^{*}$. Also $a \leftrightarrow\left(S^{*}-C_{2}\right)$ implies $S_{I}^{\prime}=C_{2}$, and examination of $N(a)$ shows $T_{1}^{\prime}=\langle a\rangle$. Similarly $T_{I}^{\prime}=C_{1}$ and $S_{1}^{\prime}=\langle b\rangle$. A sketch of the structure we have developed, indicating edges guaranteed but not those forbidden or undecided, appears in Fig. 3.

Using these vertex subsets, we can describe most of the edges and non-edges of Type 1 and Type $3 \mathbf{G}$-graphs in a block adjacency matrix. The information we have

Fig. 3. Sketch of Type 1 and Type 3 G-graphs
determined is recorded in Figures 4 and 5. We complete this section by characterizing the remaining conditions for these graphs to be $2 K_{2}$-free. The third condition is vacuous for Type $1 \mathbf{G}$-graphs.

Lemma 15. A graph with block adjacencies as in Figure 4 or Figure 5 is $2 K_{2}$-free if and only if the following all hold.

1. The subgraphs induced by $S \cup T, S \cup S^{\prime}$, and $T \cup T^{\prime}$ are $2 K_{2}$-free.
2. $T \subset N(u) \cup N\left(u^{\prime}\right)$ when $u u^{\prime}$ is an edge of S; similarly for edges in T.
3. Suppose $u \| w$ with $u \in S$ and $w \in T$. If $u \leftrightarrow A_{j}$ is false for some $j>1$, then $w \leftrightarrow$ $\left(B_{k+2-j} \cup \cdots \cup B_{k}\right)$. Similarly if $w \leftrightarrow B_{j}$ is false.

Proof. The subgraph induced by $V(G)-S-T$ is $2 K_{2}$-free; we need only consider edges corresponding to question marks in Figs. 4 and 5 . The case of four vertices in $S, S^{\prime}, T, T^{\prime}$ is handled by (1). (2) is forced by $b \leftrightarrow T$ for edges of S and by $a \leftrightarrow S$ for edges of T; no other $2 K_{2}$ can use an edge of S or T. For (3), consider the nonadjacencies guaranteed in the mutual partitions of $\{A, B\} ; w \leftrightarrow A_{j} \& u \leftrightarrow$ $\left(B_{k+2-j} \cup \cdots \cup B_{k}\right)$ force $w \leftrightarrow\left(B_{k+2-j} \cup \cdots \cup B_{k}\right)$. (3) also eliminates the possibility of a $2 K_{2}$ containing only one vertex of $S \cup T$.

As yet we know little about S and T; in particular, we do not know whether these are independent sets. In the next two sections, we will characterize all Type 1 and Type $\mathbf{3} \mathbf{G}$-graphs in which S and T are independent sets. Unfortunately, there do exist G-graphs of both Types in which S and T are not independent sets; we will construct arbitrarily large examples. Fortunately, such graphs have a smaller ratio of v / r, and none yet discovered violates Conjecture 1 or 2 .

Before embarking on the separate study of Type 1 and Type 3 graphs, we prove a lemma that is applicable to appropriate vertex subsets of arbitrary G-graphs. It will be applied to G-graphs of each Type, but these applications require considerable structural knowledge and therefore come late in the subsequent sections. Hence we have placed this lemma here instead of earlier; it can be contrasted with Lemma 14.

Lemma 16. Suppose that I and K are disjoint vertex subsets of a G-graph and there is a vertex $a \notin I \cup K$ such that $a \leftrightarrow I$ and $a \| K$. If I is independent, no vertex of K is adjacent to all of I, and all vertices of K have equal degree in $I \cup K$, then I and K have partitions into I_{1}, \ldots, I_{m} and K_{1}, \ldots, K_{m} such that each K_{i} is independent, $I_{i} \| K_{i}$, and $K_{i} \leftrightarrow I_{j} \cup K_{j}$ if $i \neq j$. If vertices of I also have equal degree in $I \cup K$, then $\left|I_{i}\right|$ and $\left|K_{i}\right|$ are constant over i.

Proof. We show first that vertices of I with common non-neighbors in K have identical neighbors in K. For $u, u^{\prime} \in I$, select $w \in \bar{N}\left(u u^{\prime}\right) \cap K$. If $N(u) \cap K \neq N\left(u^{\prime}\right) \cap K$, then we may select $x \in K \cap N\left(u^{\prime} \mid u\right)$ (by symmetry). Now $a \leftrightarrow u$ forces $w \| x$, and then $N(w) \cap I \subset N(x) \cap I$ (Lemma 1). Since x, w have equal-sized neighborhoods in $I \cup K$, we may select $y \in K \cap N(w \mid x)$. Now $y \leftrightarrow w \& a \leftrightarrow I$ forces $y \leftrightarrow \bar{N}(w) \cap I$. By Lemma 1, this implies $x \leftrightarrow I$ or $y \leftrightarrow I$, which contradicts the hypothesis.

Now partition I into maximal sets I_{1}, \ldots, I_{m} with identical neighborhoods in K. By the preceding paragraph, the sets $K_{i}=K \cap \bar{N}\left(I_{i}\right)$ are disjoint. They also exhaust
K, since no vertex of K is adjacent to all of I. Finally, $a \leftrightarrow I_{i}$ forces K_{i} independent, and $K_{i} \leftrightarrow I_{j} \& I_{i} \leftrightarrow K_{j}$ forces $K_{i} \leftrightarrow K_{j}$.

7. Bounds and Partial Characterization for Type 1 G-graphs

For Type 1 G-graphs, $A=A_{1}$ and $B=B_{1}$. This means we have determined all edges in these graphs except for the edges involving S and T. For easy reference, this information appears in Fig. 4, with question marks where we do not know all the edges. By Lemma 15, the problem of constructing Type $1 \mathbf{G}$-graphs reduces to that of inserting edges involving $S \cup T$ so as to satisfy Lemma 15 and maintain regularity by appropriate choices for the sizes of the other sets. The simplest choice is S, T independent; we characterize the resulting graphs in Theorem 8. More complicated choices are considered subsequently. Meanwhile, in Theorem 7 we derive some constraints on the sizes of the blocks. The first result verifies the weaker part of Conjecture 1 for Type $1 \mathbf{G}$-graphs; r is even.

Fig. 4. Block adjacency matrix for Type 1 G -graphs

Theorem 7. If abc is a c-critical Type 1 triangle, then r is even. In addition,

1. $r / 2=|A|=|B|=\left|T^{*}\right|+|T|=\left|S^{*}\right|+|S|$.
2. $|S|=\left|T^{*}\right|-q=\left|T^{\prime}\right|+1$ and $|T|=\left|S^{*}\right|-q=\left|S^{\prime}\right|+1$.
3. $|S|+|T|=r / 2-q,\left|S^{*}\right|+\left|T^{*}\right|=r / 2+q,\left|S^{\prime}\right|+\left|T^{\prime}\right|=r / 2-2-q$.
4. $S, S^{\prime} T, T^{\prime}$, are all nonempty.
5. For $u \in S^{*},\left|N(u) \cap\left(S \cup T^{*}\right)\right|=\left|T^{*}\right|-q$. Similarly for $w \in T^{*}$.
6. For $u \in S_{j}^{\prime},|N(u) \cap S|=\sum_{i=1}^{j=1}\left|T_{l-i}^{\prime}\right|$. Similarly for $w \in T_{j}^{\prime}$.
7. $S \| S^{\prime}$ iff $l=2$ iff $T \| T^{\prime}$.
8. $e(S \cup T)=\left(\sum_{i+j \leq l}\left|S_{j}^{\prime} \| T_{j}^{\prime}\right|\right)-q(r / 2-q)$.

Proof. Recall $|\langle c\rangle|=\left|C_{1}\right|=\left|C_{2}\right|=q$ and compare (block) neighborhoods as listed in Fig. 4. (1): $N\left(C_{1}\right)$ vs. $N\left(C_{2}\right)$ yields $|A|=|B|$, and $\bar{N}(c)=\langle c\rangle \cup A \cup B$ yields
$|A|+|B|=r$; hence $|A|=|B|=r / 2 . N(c)$ vs. $N(B)$ yields $|A|=\left|T^{*}\right|+|T|$, and $N(c)$ vs. $N(A)$ yields $|B|=\left|S^{*}\right|+|S|$. (2): $N\left(C_{2}\right)$ vs. $N(b)$ and $B\left(C_{1}\right)$ vs. $N(a)$. (3): Apply $r=d(c)=|S|+\left|S^{*}\right|+\left|T^{*}\right|+|T|$ and (2). (4): First S and T are nonempty by (2), then $|S| \geq 2 q$ and $|T| \geq 2 q$ by Theorem 6.5 , and finally S^{\prime} and T^{\prime} are nonempty by (2). $(5,6): N(u)$ vs. $N(b)$. (7): $N\left(S_{1}^{\prime}\right)$ vs. $N\left(S_{2}^{\prime}\right)$.
(8): Let $U=S \cup T ; e(U)=\frac{1}{2}[r(|S|+|T|)-e(U, \bar{U})]$. By (1) and Figure 4, $e\left(U, S^{*} \cup T^{*}\right)=\left|S^{*}\right|\left(|T|+\left|T^{*}\right|-q\right)+\left|T^{*}\right|\left(|S|+\left|S^{*}\right|-q\right)-2 \sum_{i+j \leq l}\left|S_{i}^{\prime}\right|\left|T_{j}^{\prime}\right|$, and $e(U, A \cup\langle c\rangle \cup B)=(r / 2+q)(|S|+|T|)$. Using (2), the computation simplifies to the formula claimed.

Letting $S, S^{\prime}, T, T^{\prime}$ be as small as possible yields our first Type $1 \mathbf{G}$-graph. This graph J is a member of several classes, one of which we present immediately.

Example 4. Let J be a graph having block adjacency matrix as in Fig. 4, with the parameter l set to 2 , all unknown entries set to 0 , and block sizes as follows: set $|A|=|B|=5,|\langle c\rangle|=\left|C_{1}\right|=\left|C_{2}\right|=1$, and $|S|=|T|=|\langle a\rangle|=|\langle b\rangle|=2$. In fact, $q=1$ and $r=10$ imply these block sizes (Theorem 7). By inspection (Lemma 15), J is a \mathbf{G}_{10}-graph with 21 vertices. The triangles using one vertex each of $\langle a\rangle,\langle b\rangle$, $\langle c\rangle$ are critical Type 1 triangles.

More generally, define J_{l} for each value of $l \geq 2$ in Figure 4. To complete the block adjacency matrix, let $\{S, T\}$ be independent sets, and let S_{1}, \ldots, S_{l-1} and T_{1}, \ldots, T_{l-1} be a mutual partition of $\{S, T\}$ with $S_{i} \leftrightarrow T_{j}$ if $i+j<l$ and $S_{i} \| T_{j}$ if $i+j \geq l$. The remaining adjacencies are $S_{i} \leftrightarrow S_{j}^{\prime}, T_{i} \leftrightarrow T_{j}^{\prime}$ if $i+j>l$ and $S_{i}\left\|S_{j}^{\prime}, T_{i}\right\| T_{j}^{\prime}$ if $i+j \leq l$, in accordance with Theorem 7.6. Maintaining regularity requires satisfying the constraints of Theorem 7. Set $|A|=|B|=4 l-3,|\langle c\rangle|=\left|C_{1}\right|=\left|C_{2}\right|=1$, and $\left|S_{i}\right|=\left|T_{i}\right|=\left|S_{i}^{\prime}\right|=\left|T_{i}^{\prime}\right|=2$ for $1 \leq i<l$. The graph J_{l} is regular of degree $r=8 l-6$ and has $16 l-11=2 r+1$ vertices. Note that $J_{2}=J$ and that setting $l=1$ yields a 5 -cycle, which is a \mathbf{G}-graph but not Type 1.

The graphs of Example 4 characterize the Type 1 G-graphs for which S and T are independent sets.

Theorem 8. If abc is a c-critical Type 1 triangle and S, T are independent, then G is the q-fold expansion of the graph J_{l} of Example 4 , for some $l \geq 2$.

Proof. When S is independent, Theorem 7.6 implies that $S_{l}^{\prime}, \ldots, S_{1}^{\prime}$ is the S-partition of S^{*}. Since $S_{l}^{\prime}=C_{2} \leftrightarrow S$ and $S_{1}^{\prime}=\langle b\rangle \| S$, the S^{*}-partition of S is some S_{l-1}, \ldots, S_{1}, with $S_{i} \leftrightarrow S_{j}^{\prime}$ if $i+j>l$ and $S_{i} \| S_{j}^{\prime}$ if $i+j \leq l$. Similarly, $T_{l}^{\prime}, \ldots, T_{1}^{\prime}$ is the T-partition of T^{*}, and we obtain the T^{*}-partition T_{l-1}, \ldots, T_{1} of T. Given $x \in S_{i}$ and $y \in S_{j}$ with $i \leq j$, we have $N(x)-T \subseteq N(y)-T$, with equality if and only if $i=j$. With T independent, this forces $N(x) \cap T \supseteq N(y) \cap T$, with equality if and only if $i=j$. Therefore, S_{1}, \ldots, S_{l-1} is the T-partition of S; similarly, T_{1}, \ldots, T_{l-1} is the S-partition of T.

This establishes blocks and block adjacencies as in J_{l}, and we need only determine the block sizes. $N\left(T_{i}\right)$ vs. $N\left(T_{i+1}\right)$ and $N\left(S_{i}^{\prime}\right)$ vs. $N\left(S_{i+1}^{\prime}\right)$ yield $\left|S_{1}\right|=\left|T_{2}^{\prime}\right|=$ $\left|S_{2}\right|=\cdots=\left|T_{l-1}^{\prime}\right|=\left|S_{l-1}\right|=s$. Also $N\left(S_{i}\right)$ vs. $N\left(S_{i+1}\right)$ and $N\left(T_{i}^{\prime}\right)$ vs. $N\left(T_{i+1}^{\prime}\right)$ yield $\left|T_{1}\right|=\left|S_{2}^{\prime}\right|=\left|T_{2}\right|=\cdots=\left|S_{l-1}^{\prime}\right|=\left|T_{l-1}\right|=t$. Now $\langle a\rangle$ vs. T_{1} (or $\langle b\rangle$ vs. S_{1}) yields $s=2 q=t$. Finally, $r=d(c)=2 q(4 l-4)+2 q=q(8 l-6)$. Since $|A|=|B|=r / 2$, this completes the description of the graph as the q-fold expansion of J_{l}.

Next we drop the requirement that both S and T be independent. Our discussion of Type $1 \mathbf{G}$-graphs thus far has been symmetric in A vs. B and S vs. T; the next example departs from this. These graphs will characterize the Type $1 \mathbf{G}$-graphs in which $A C$ is independent.

Example 5. We construct L_{m} based on the matrix of Fig. 4. Set $l=2$. To specify the remaining adjacencies, let T be the complete m-partite graph with partite sets $\left\{T_{i}\right\}$ of size 2 , and let S be an independent set of size $2 m^{2}$ partitioned into sets $\left\{S_{i}\right\}$ of size $2 m$. Put $S_{i} \| T_{i}$, but $S_{i} \leftrightarrow T_{j}$ for $i \neq j$. Since $l=2,2 K_{2}$ can only occur within $S \cup T$. Since nonadjacent vertices of T have the same neighborhood and S is independent, none occur. It now suffices to specify set sizes for regularity. Let $|\langle c\rangle|=\left|C_{1}\right|=$ $\left|C_{2}\right|=1,|\langle b\rangle|=2 m,|\langle a\rangle|=2 m^{2}$, and $|A|=|B|=1+2 m+2 m^{2}$. Now L_{m} has $2 r+1$ vertices and is $\left(2+4 m+4 m^{2}\right)$-regular. Note that L_{1} is J of Example 4.

The condition of the next theorem is equivalent to $A C$ independent (and symmetric to $B C$ independent).

Theorem 9. If abc is a c-critical Type 1 triangle and $S \|\left(S \cup S^{\prime}\right)$, then G is the q-fold expansion of the graph L_{m} of Example 5, for some $m \geq 1$.

Proof. By Theorem 7.7, $S \| S^{\prime}$ implies $l=2$. Hence vertices of T have identical neighborhoods outside $S \cup T$ and identical degrees inside. With S independent and $S \leftrightarrow a \| T$, Lemma 16 reduces the block adjacency matrix to that of L_{m}. Now consider the set sizes. When $S \| S^{\prime}$, we have $d(u a \mid b)=0$ (Fig. 4), and then $\left|T_{i}\right|=2 q$ (Theorem 6.5). Now $N(a)$ vs. $N\left(T_{i}\right)$ yields $\left|S_{i}\right|=|C|+\left|T-T_{i}\right|=2 m q$, also $N(b)$ vs. $N\left(C_{2}\right)$ yields $|\langle a\rangle|=|S|=2 m^{2} q$, and $N(a)$ vs. $N\left(C_{1}\right)$ yields $|\langle b\rangle|=|T|=2 m q$. Finally, $r=|N(c)|=2 q+4 q m+4 q m^{2}$, so $|A|=|B|=r / 2=\left(1+2 m+2 m^{2}\right) q$, and G is the q-fold expansion of L_{m}.

There are also Type $1 \mathbf{G}$-graphs in which neither S nor T is independent. The following example introduces another operation for building large G-graphs from smaller ones.

Example 6. Let H be an s-regular G-graph with $2 s+4 q$ vertices. We construct a collection $f(H)$ of Type $1 \mathbf{G}_{r}$-graphs with $r=4 s+10 q$ and $v=2 r+q$. Let $l=2$, and let the subgraph induced by $S \cup T$ be H. Allocate the vertices of H equally to S and T in a way that satisfies the condition of Lemma 15.2 . Since $l=2$ implies $S \| S^{\prime}$ and $T \| T^{\prime}$, Lemma 15 says any resulting graph is $2 K_{2}$-free. Since $l=2$, we need only specify block sizes to satisfy regularity. Let $\left|C_{1}\right|=\left|C_{2}\right|=|\langle c\rangle|=q$, $|A|=|B|=2 s+5 q$, and $|\langle a\rangle|=|\langle b\rangle|=s+2 q$. Counting vertex neighborhoods confirms that each such graph is $4 s+10 q$-regular and has $8 s+21 q$ vertices.

For the degenerate case $H=4 K_{1}$, we have $s=0$ and $q=1$, and the resulting graph $f(H)$ is J of Example 4 . Suppose H is a Type $1 \mathbf{G}_{s}$-graph with critical triangle $a_{H} b_{H} c_{H}$; we have specified $\left|\left\langle c_{H}\right\rangle\right|=4 q$. Examination of Figure 4 shows that the requirement of Lemma 15.2 is satisfied by placing $A_{H} \cup S_{H}^{*} \cup S_{H}$ in $S, B_{H} \cup T_{H}^{*} \cup T_{H}$ in T, and splitting $\left\langle c_{H}\right\rangle$ equally between S and T. As another example, consider the graphs G_{k} of Example 1, which are Type $3 \mathbf{G}$-graphs except for G_{1}, the 5-cycle. If H is a $4 q$-fold expansion of G_{k}, place the images of $1, \ldots, 2 k$ in S, of $2 k+1, \ldots, 4 k$ in T, and split the images of 0 equally between S and T.

Note that f "preserves" both Conjecture 1 and Conjecture 2. For Conjecture 1, if $s /(4 q)$ is an even integer, then so is $(4 s+10 q) / q$. If the graph H used by f satisfies Conjecture 2 , then it is a $4 q$-fold expansion of a $\mathbf{G}_{s /(4 q)}$-graph on $2 s /(4 q)+1$ vertices. Let H^{\prime} be the (s / q)-regular 4-fold expansion of this graph. Since $s+2 q=q(s / q+2)$ and $2 s+5 q=q(2 s / q+5)$, any graph in $f(H)$ is the q-fold expansion of the corresponding graph in $f\left(H^{\prime}\right)$, which is $(4 s / q+10)$-regular and has $8 s / q+21$ vertices. Finally, note that any application of f yields a graph with $v / r \geq \frac{21}{10}$, with equality only when $s=0$ and $q=1$, which is the degenerate case yielding J.

The requirement of Lemma 15.2 is quite restrictive. We do not know whether $f(H)$ is nonempty when H is an arbitrary \mathbf{G}-graph of Type 2 or 3 . If $H=G_{k}^{4 q}$, then $f(H)$ contains only one graph. More generally, suppose H is a $4 q$-fold expansion of a \mathbf{G}_{t}-graph H^{\prime} on $2 t+1$ vertices, with $t=s / 4 q$ (i.e., suppose H satisfies Conjecture 2). Call the independent set expanded from each vertex of H^{\prime} a "clump". We claim that the set of clumps that are "split" by having vertices in both S and T in forming $f(H)$ form an independent set in H^{\prime} with identical neighborhoods (the only such sets in G_{k} are single vertices). If clumps corresponding to two adjacent vertices are split, then there are edges between them in S and in T. Hence these two clumps together have edges to members of all $2 t+1$ clumps, violating t-regularity. With the split clumps forming an independent set U, any edge from a clump in U to another clump X yields an edge in S or in T between U and X. This member of X must be adjacent to members of all clumps in U on the other side. Hence $X \leftrightarrow U$.

Without assuming Conjecture 2, we must leave $f(H)$ as described in Example 6. Nevertheless, like the previous constructions, the operation f characterizes a class of G-graphs.

Theorem 10. If abc is a c-critical Type 1 triangle, $S \cup T$ induces a regular subgraph H, and $S \| S^{\prime}$, then H is a G-graph and $G \in f(H)$, where $f(H)$ is defined as in Example 6.

Proof. By Theorem 7.7, $S \| S^{\prime}$ implies $l=2$. Since G is $2 K_{2}$-free, the subgraph H must also be $2 K_{2}$-free, and the adjacencies must be as described in Example 6. For $G \in f(H)$, we need only show that the set sizes must be as in Example 6. Suppose H is s-regular and has n vertices. Since $l=2$, we have $|\langle a\rangle|=|S|=n_{1}$ and $|\langle b\rangle|=|T|=n_{2}$. As usual, $\left|C_{1}\right|=\left|C_{2}\right|=|\langle c\rangle|=q$ and $|A|=|B|=r / 2$. Hence $d(u)-d(w)=|\langle a\rangle|-|\langle b\rangle|$ if $u \in S$ and $w \in T$, which implies $n_{1}=n_{2}=n / 2$. Futhermore, $d(u)=r=s+3 q+r / 2+n / 2$ and $d(c)=r=2 n+2 q$. Solving for n and r yields $n=2 s+4 q$ and $r=4 s+10 q$. Hence H is a G-graph and $G \in f(H)$.

We do not know a common generalization of J_{I} and L_{m}, nor can we strengthen Theorem 9 to characterize all Type $1 \mathbf{G}$-graphs with at least one of S, T independent. However, we have characterized all Type 1 G-graphs with large vertex/degree ratio. This yields a partial proof of Conjectures 1 and 2 for Type $1 \mathbf{G}$-graphs, since J_{l} and L_{m} have $q=1$.

Theorem 11. If G is a Type 1 G -graph and is not an expansion of any J_{l} or L_{m}, then $v / r<29 / 14$.

Proof. By Theorem 8, we may assume $w w^{\prime}$ is an edge in T. Now $S \leftrightarrow a \& w \leftrightarrow w^{\prime}$ force $S \subset N(w) \cup N\left(w^{\prime}\right)$. With Fig. $4(|A|=r / 2$ by Theorem 7.1), this yields $d(w)+$ $d\left(w^{\prime}\right) \geq|S|+2\left|S^{*}\right|+r+4 q$. By Theorem 9 , avoiding L_{m} requires an edge $u u^{\prime}$ from S to $S \cup S^{\prime}$. If $u, u^{\prime} \in S$, then as above we get $d(u)+d\left(u^{\prime}\right) \geq|T|+2\left|T^{*}\right|+r+4 q$. Summing these and using Theorem 7 yields $4 r \geq 7 r / 2+9 q$, meaning $v \leq(2+$ $1 / 18) r$. If $u \in S$ and $u^{\prime} \in S^{\prime}$, then $l>2$, and $T \leftrightarrow b \& u \leftrightarrow u^{\prime}$ force $T \subset N(u) \cup N\left(u^{\prime}\right)$. This time $d(u)+d\left(u^{\prime}\right)>2 q+r+2\left|T^{*}\right|+|T|$. Now the sum is $4 r>7 r / 2+7 q$, meaning $v<(2+1 / 14) r$.

8. Bounds and Partial Characterization for Type 3 G-Graphs

For Type 3 G-graphs with c-critical $a b c$, we conduct a similar analysis. As obtained in Section 6, we have mutual partitions A_{1}, \ldots, A_{k} and B_{1}, \ldots, B_{k} of $\{A, B\}$ and $S_{1}^{\prime}, \ldots, S_{l}^{\prime}$ and $T_{1}^{\prime}, \ldots, T_{l}^{\prime}$ of $\left\{S^{*}, T^{*}\right\}$. To have link edges for $\{A, C\}$ and $\{B, C\}$, we must have $k \geq 2$ (Lemma 7.4). The resulting block adjacency matrix replacing Fig. 4 appears in Fig. 5.

Fig. 5. Block adjacency matrix for Type 3 G-graphs

The additional flexibility resulting from $k>1$ makes Type 3 G-graphs considerably harder to characterize. In addition to the extra question marks in the matrix, it is no longer true that S and T must be nonempty. However, it is easy to characterize the Type 3 G-graphs with $S=\varnothing$ (which happens only if $T=\varnothing$ also).

Theorem 12. If abc is a c-critical Type 3 triangle with $S=\varnothing$ and the mutual partitions of $\{A, B\}$ have k parts, then G is the q-fold expansion of the $2 k$-regular $4 k+1$-vertex \mathbf{G}-graph H_{k} of Example 1.

Proof. With $S=\varnothing$, the requirements of regularity and the adjacencies recorded in Fig. 5 imply that A_{k}, \ldots, A_{1} is the S^{*}-partition of A and $S_{1}^{\prime}, \ldots, S_{1}^{\prime}$ is the A-partition of S^{*}. Since $A_{1} \| S^{*}$ and $\langle b\rangle=S_{1} \| A$, Lemma 14 yields $k=l$, with $A_{i} \| S_{j}^{\prime}$ when $i+j \leq k+1$ and $A_{i} \leftrightarrow S_{j}^{\prime}$ when $i+j>k+1$. By Theorem 6.5, $S=\varnothing$ if and only if $T=\varnothing$. Hence we similarly have B_{k}, \ldots, B_{1} and $T_{l}^{\prime}, \ldots, T_{1}^{\prime}$ as mutual partitions of B and T^{*}, with $k=l, B_{i} \| T_{j}^{\prime}$ when $i+j \leq k+1$, and $B_{i} \leftrightarrow T_{j}^{\prime}$ when $i+j>k+1$.

Under the cyclic ordering $S_{k}^{\prime}, \ldots, S_{1}^{\prime}, A_{1}, \ldots, A_{k},\langle c\rangle, B_{k}, \ldots, B_{1}, T_{1}^{\prime}, \ldots, T_{k}^{\prime}$ (see Fig. 3), G now has the same block adjacency matrix as G_{k} of Example 1. Regularity forces the blocks to be the same size; $|\langle c\rangle|=q$ implies $G=G_{k}^{q}$.

When S and T are nonempty, more complicated graphs are possible. The proofs and results here are analogous to but more complicated than those in Section 7. It is possible to combine some of this with the results of Section 7, but we feel that the exposition is much clearer when the simpler setting of Type $1 \mathbf{G}$-graphs is considered first. For Type $3 \mathbf{G}$-graphs, we have not shown that r is even, and the results about block sizes have an additional variable $p=\left|A_{1}\right|=\left|B_{1}\right|$. In Example 8 we will see Type 3 G-graphs with $|A| \neq|B|$, meaning that $|A|=r / 2$ cannot be proved. Note also the absence of the conclusion that S, T must be nonempty.

Theorem 13. If abc is a c-critical Type 3 triangle, then

1. $\left|A_{1}\right|=\left|B_{1}\right|=p$ and $|A|+|B|=r$. Also $|A|=\left|T^{*}\right|+|T|$ and $|B|=\left|S^{*}\right|+|S|$.
2. $|S|+|A|-p=\left|T^{*}\right|-q=\left|T^{\prime}\right|+1$ and $|T|+|B|-p=\left|S^{*}\right|-q=\left|S^{\prime}\right|+1$.
3. $|S|+|T|=p-q$ and $\left|S^{*}\right|+\left|T^{*}\right|=(r-p)+q$.
4. For $u \in S^{*},\left|N(u) \cap\left(S \cup T^{*} \cup A-A_{1}\right)\right|=\left|T^{*}\right|-q$. Similarly for $w \in T^{*}$.
5. For $u \in S_{j}^{\prime},\left|N(u) \cap\left(S \cup A-A_{1}\right)\right|=\sum_{i=1}^{j-1}\left|T_{l-i}^{\prime}\right|$. Similarly for $w \in T_{j}^{\prime}$.
6. $S^{\prime} \|(S \cup A)$ iff $l=2$ iff $T^{\prime} \|(T \cup B)$.
7. If S or T is nonempty, then $S \leftrightarrow\left(A-A_{1}\right)$ and $T \leftrightarrow\left(B-B_{1}\right)$ cannot both hold.

Proof. (1-6): Same neighborhood comparisons as for Theorem 7. (7): By Theorem 6.5 , we may assume both S and T are nonempty and choose a vertex in each of S, T, A_{k}, B_{k}. If the claim is false, then every vertex has at least two neighbors among these four (see Fig. 5), yielding the contradiction $4 r \geq 2 v$.

In light of Theorem 12, we may assume that S and T are nonempty. Our first such Type $3 \mathbf{G}$-graphs can be viewed as another generalization of the ubiquitous graph J of Example 4.
Example 7. In Fig. 5, let $l=2$; we define a graph M_{k} for any $k \geq 2$. Let S and T be independent sets with mutual partitions S_{1}, \ldots, S_{k} and T_{1}, \ldots, T_{k} satisfying $T_{k} \| S_{k}$, so that $S_{i} \leftrightarrow T_{j}$ when $i+j \leq k$ and $S_{i} \| T_{j}$ when $i+j>k$. For the remaining question marks in Fig. 5, put $A_{i} \leftrightarrow S_{j}$ and $B_{i} \leftrightarrow T_{j}$ if $i+j>k+1$, and put $A_{i} \| S_{j}$ and $B_{i} \| T_{j}$ if $i+j \leq k+1$. To define the set sizes, set $\left|C_{1}\right|=\left|C_{2}\right|=|\langle c\rangle|=1,|\langle a\rangle|=|\langle b\rangle|=$ $6 k-4,\left|A_{1}\right|=\left|B_{1}\right|=6 k-1$, and $\left|S_{k}\right|=\left|T_{k}\right|=2$, and let the remaining $4(k-1)$ unspecified sizes for $S_{i}, A_{i}, T_{i}, B_{i}$ be 3 .

Mutual partitions avoid $2 K_{2}$ in the subgraph induced by two independent sets. To verify Lemma 15.3 , suppose $u \in S_{i}, w \in T_{j}, x \in A_{s}, y \in B_{t}$ with $u \| w$ and $x \| y$. Then $i+j \geq k+1$ and $s+t>k+1$. This implies $i+s>k+1$ or $j+t>k+1$, which means $u \leftrightarrow x$ or $w \leftrightarrow y$, and $2 K_{2}$ is avoided. Finally, summing the set sizes for
neighbors of each block confirms that M_{k} is an $18 k-8$-regular G-graph with $36 k-15$ vertices. Setting $k=1$ collapses M_{k} to J ($a b c$ is no longer Type 3).

There is another family closely related to M_{k}, which we call M_{k}^{\prime}. Again set $l=2$, but this time let the S, T-partitions be S_{1}, \ldots, S_{k-2} and T_{1}, \ldots, T_{k-2} with $T_{k-2} \| S_{k-2}$. Put $A_{i} \leftrightarrow S_{j}$ and $B_{i} \leftrightarrow T_{j}$ if $i+j>k$, otherwise $A_{i} \| S_{j}$ and $B_{i} \| T_{j}$. In particular, note that $A_{2} \| S$. This is made to work by setting $\left|B_{k}\right|=\left|C_{2}\right|$ and $\left|A_{k}\right|=\left|C_{1}\right|$, all of which equal 1 along with $|\langle c\rangle|$. Also set $|\langle a\rangle|=|\langle b\rangle|=\left|A_{1}\right|=\left|B_{1}\right|=6 k-11$, and let the remaining $4(k-2)$ unspecified sizes for $S_{i}, A_{i}, T_{i}, B_{i}$ be 3 . The resulting graph M_{k}^{\prime} is an $18 k-32$-regular \mathbf{G}-graph with $36 k-63$ vertices. When $k=2, S$ and T vanish and M_{k}^{\prime} degenerates to the graph G_{2} of Example 1, with vertex/degree ratio $9 / 4$. For $k>2$, if we use the block ordering $C_{2}, S_{k-2}, \ldots, S_{1},\langle b\rangle, A_{1}, \ldots, A_{k},\langle c\rangle$, $B_{k}, \ldots, B_{1},\langle a\rangle, T_{1}, \ldots, T_{k-2}, C_{1}$, then the block adjacency matrix of M_{k}^{\prime} is the same as that of G_{k}, except for additional "block" adjacencies $C_{2} \leftrightarrow S \leftrightarrow C_{1} \leftrightarrow T \leftrightarrow C_{2}$.

Not surprisingly, these characterize the graphs satisfying appropriate conditions; the proof is similar to that of Theorem 8. When comparing neighborhoods, we henceforth adopt the stereotypic " U vs. W " in place of " $N(U)$ vs. $N(W)$ ".

Theorem 14. If abc is a c-critical Type 3 triangle, S, T are independent sets, and $S^{\prime} \|(S \cup A)\left(\right.$ or $T^{\prime} \|(T \cup B)$), then G is the q-fold expansion of M_{k} or M_{k}^{\prime}, for some $k \geq 2$.

Proof. By Theorem 13.6, $S^{\prime} \|(S \cup A)$ and $l=2$ and $T^{\prime} \|(T \cup B)$. Let S_{1}, \ldots, S_{h} and T_{1}, \ldots, T_{h} be the mutual partitions of S, T; note that $S_{h} \| T$ and $T_{h} \| S$ (Theorem 6.5). We need only determine the S, A and T, B adjacencies. This implies that S_{h}, \ldots, S_{1} is the A-partition of S and T_{h}, \ldots, T_{1} is the B-partition of T. The A, B adjacencies force A_{k}, \ldots, A_{2} to be the S-partition of $A-A_{1}$ and B_{k}, \ldots, B_{2} to be the T-partition of $B-B_{1}$. We have $A_{k} \leftrightarrow S$ or $S_{1} \| A$, and $B_{k} \leftrightarrow T$ or $T_{1} \| A$. Note that A_{k} vs. B_{k} implies $A_{k} \leftrightarrow S$ if and only if $B_{k} \leftrightarrow T$. Also, $A_{2}| | S$ if $\left|B_{k}\right|=\left|C_{2}\right|=q$, in which case the S-partition of A is $A_{k}, \ldots, A_{3},\left(A_{2} \cup A_{1}\right)$. Since this reduces h, we have $\left|B_{k}\right|=q$ if and only if $\left|A_{k}\right|=q$. Hence the completion of the block adjacency matrix depends on whether $A_{k} \leftrightarrow S$ and on whether $\left|B_{k}\right|=q$. If ε of these two things happens, then $h=k-\varepsilon$.

If $h=k$, then we have the block adjacency matrix of M_{k}. Now T_{k-i} vs. T_{k-i-1} and A_{i} vs. A_{i+1} successively yield $\left|S_{1}\right|=\left|B_{2}\right|=\left|S_{2}\right|=\cdots=\left|B_{k}\right|=\left|S_{k}\right|+q$, and $\langle a\rangle$ vs. T_{1} yields $\left|S_{k}\right|=2 q$. We similarly obtain the corresponding sizes for $\left\{T_{i}, A_{i}\right\}$. Also, C_{2} vs. $\langle b\rangle$ yields $|\langle a\rangle|=(6 k-4) q$, and similarly $|\langle b\rangle|=(6 k-4) q$. Now A_{k} vs. $\langle c\rangle$ yields $\left|B_{1}\right|=|\langle b\rangle|+\left|S_{1}\right|=(6 k-1) q$, and similarly $\left|A_{1}\right|=(6 k-1) q$. Hence G is the q-fold expansion of M_{k}.

If $h=k-2$, then $A_{k} \leftrightarrow S$ and $\left|B_{k}\right|=q$, and we have the block adjacency matrix of M_{k}^{\prime}. Now A_{i} vs. A_{i+1} and T_{k-2-i} vs. T_{k-3-i} successively yield $\left|B_{2}\right|=\left|S_{1}\right|=\left|B_{3}\right|=$ $\left|S_{2}\right|=\cdots=\left|B_{k-1}\right|=\left|S_{k-2}\right|=\left|B_{k}\right|+2 q=3 q$, and similarly for sizes in T, A because we also have $\left|A_{k}\right|=q$. Next C_{2} vs. $\langle b\rangle$ yields $|\langle a\rangle|=(6 k-11) q$, and similarly $|\langle b\rangle|=(6 k-11) q$. Finally A_{k} vs. $\langle c\rangle$ yields $\left|B_{1}\right|=|\langle b\rangle|$, and similarly $\left|A_{1}\right|=$ $|\langle a\rangle|$. Hence G is the q-fold expansion of M_{k}^{\prime}.

If $h=k-1$, we have two cases to consider. First suppose $A_{k} \leftrightarrow S$ and $\left|B_{k}\right|>q$.

Now T_{k-i-1} vs. T_{k-i} yields $\left|S_{i}\right|=\left|B_{i+1}\right|$ for $i=1, \ldots, k-2$, and B_{1} vs. T_{1} yields $\left|S_{k-1}\right|=\left|B_{k}\right|+2 q$. Hence $|S|=|B|-p+2 q$, which implies $\left|S^{*}\right|=p-2 q$ (Theorem 13.1). However, A_{k} vs. $\langle c\rangle$ implies $|\langle b\rangle|=p$ and hence $\left|S^{*}\right|=q+p$.

Finally, suppose $S_{1} \| A$ (and $T_{1} \| B$) but $\left|B_{k}\right|=\left|A_{k}\right|=q$. Now $\langle a\rangle$ vs. T_{1} yields $\left|S_{k-1}\right|=\left|C_{1}\right|+\left|C_{2}\right|=2 q$. Also, A_{i} vs. A_{i+1} and T_{k-1-i} vs. T_{k-2-i} successively yield $\left|B_{2}\right|=\left|S_{1}\right|=\left|B_{3}\right|=\left|S_{2}\right|=\cdots=\left|B_{k-1}\right|=\left|S_{k-2}\right|=\left|B_{k}\right|=q$. Hence $|S|=k q$ and $|B|=p+(k-1) q$. Furthermore, A_{k} vs. $\langle c\rangle$ implies $\left|S_{1}\right|+|\langle b\rangle|=p$, or $|\langle b\rangle|=$ $p-q$. This implies $\left|S^{*}\right|=p$, which contradicts Theorem 13.1.

Next we allow T to have edges but keep S independent. The examples that result are our first c-critical \mathbf{G}-graphs with $|A| \neq|B|$.

Example 8. In the structure of the adjacency matrix in Fig. 5, let $l=2$ and $k=2$. For the remaining question marks, put $S \| A_{2}$ but $T \leftrightarrow B_{2}$. Let S and T each consist of m blocks of vertices with identical neighborhoods, such that S is independent and $T_{i} \|\left(S_{i} \cup T_{i}\right)$, but $T_{j} \leftrightarrow\left(S_{i} \cup T_{i}\right)$ if $j \neq i$. To complete specification of the resulting graph P_{m}, put $|\langle c\rangle|=\left|B_{2}\right|=\left|C_{1}\right|=\left|C_{2}\right|=1, \quad\left|T_{i}\right|=2, \quad\left|S_{i}\right|=|\langle b\rangle|=\left|A_{2}\right|=$ $2 m+1$, and $\left|A_{1}\right|=\left|B_{1}\right|=|\langle a\rangle|=2 m^{2}+2 m+1$. By Lemma 15.3, P_{m} is $2 K_{2}$-free, and counting the neighborhoods in each class shows that it is $4 m^{2}+8 m+4-$ regular with $8 m^{2}+16 m+9$ vertices. Setting $m=0$ collapses this to the graph G_{2} of Example 1.

The proof of the corresponding characterization is similar to that of Theorem 9.
Theorem 15. If abc is a c-critical Type 3 triangle with $\left(S \cup S^{\prime}\right) \|(S \cup A)$), then G is the q-fold expansion of P_{m}, for some $m \geq 1$.

Proof. In the structure of Fig. 5, we have $l=2$ and $T^{\prime} \|(T \cup B)$ (Theorem 13.6). By Lemma 15.3, $S \| A$ implies $T \leftrightarrow\left(B-B_{1}\right)$. Now $B-B_{1}$ has constant neighborhood outside A, forcing $k=2$. Now consider the subgraph induced by $S \cup T$. Since $N(w) \cap\left(B \cup T^{*}\right)=B_{2} \cup C_{1}$ for all $w \in T$, the degree of w in $S \cup T$ is constant. By Lemma 16, we can partitioned S and T into equivalence classes S_{1}, \ldots, S_{m} and T_{1}, \ldots, T_{m} such that $\bar{N}\left(S_{i}\right) \cap T=T_{i}=\bar{N}\left(T_{i}\right) \cap T$.

Hence G has the block adjacency matrix of P_{m}, and it remains to determine the set sizes. With $S \|\left(S \cup S^{\prime} \cup A\right)$, Theorem 6.5 says $\left|T_{i}\right|=2 q$. Now A_{1} vs. A_{2} yields $\left|B_{2}\right|=\left|C_{2}\right|=q$ and B_{1} vs. B_{2} yields $\left|A_{2}\right|=\left|C_{1}\right|+|T|=(2 m+1) q$. Also $\langle a\rangle$ vs. C_{1} yields $|\langle b\rangle|=\left|B_{2}\right|+|T|=(2 m+1) q$ and C_{1} vs. T_{i} yields $\left|S_{i}\right|=|\langle b\rangle| .\langle b\rangle$ vs. C_{2} yields $|\langle a\rangle|=|S|+\left|A_{2}\right|=\left(2 m^{2}+3 m+1\right) q$. Finally, Theorem 13.1 yields $\left|A_{1}\right|=$ $\left|B_{1}\right|=\left(2 m^{2}+3 m+1\right) q$ and $r=\left(4 m^{2}+8 m+4\right) q$. This expresses G as the q-fold expansion of P_{m}.

We do not have a common generalization of M_{k} and P_{m} nor a way to eliminate the extra independence hypotheses in these theorems. Nevertheless, we can prove there are no Type $3 \mathbf{G}$-graphs with $v / r>33 / 16$ besides G_{k}. The next theorem completes our partial proof of Conjectures 1 and 2 for Type 3 G-graphs. Although it is easy to show $v / r \leq 37 / 18$ when S, T each has an edge (count the neighborhoods of the four end-points and use Lemma 15.2 and Theorem 13), handling the cases where S or T is independent requires a more subtle argument that also covers the non-independent case.

Theorem 16. If abc is a c-critical Type 3 triangle for which S or T is nonempty, then $v \leq 33 / 16 r$, with equality only for P_{1}.

Proof. We take a weighted sum of eleven vertex neighborhoods. By Theorem 13.7 and symmetry, we may assume there exist $u \in S$ and $x \in\left(A-A_{1}\right)$ with $u \| x$. Theorem 6.5 guarantees a $w \in T$ with $u \| w$, and then $w \leftrightarrow B_{k}$ (Lemma 15.3). Use u, w, and one vertex from each of $C_{2},\langle b\rangle, A_{1}, A_{2},\langle c\rangle, B_{k}, B_{1},\langle a\rangle, C_{1}$ and weight their neighborhoods as indicated in Table 1. By Lemma 15.3, each vertex of T is adjacent to u or B_{k}. Now every vertex is counted at least 16 times in the 33 neighborhoods, so $33 r \geq 16 v$.

Table 1. Neighborhood counting for Type 3 G-graphs

Nbhd weight Vert locat	$u \in S$	1 3 C_{2} $\langle b\rangle$	6 $A_{1}$$A_{2}$	1 $\langle c\rangle$	1 B_{k}	B_{1}	6 $\langle a\rangle$	C_{1}	$w \in T$		
S	$?$	1	0	0	0	1	1	6	6	1	$?$
C_{2}	3	0	0	0	3	1	1	6	0	0	2
S^{\prime}	$?$	0	0	0	$?$	1	1	6	6	0	2
$\langle b\rangle$	0	0	0	0	0	1	1	6	6	0	2
A_{1}	0	0	0	0	0	0	1	6	6	1	2
$A-A_{1}$	$?$	1	0	0	0	0	0	6	6	1	2
$\langle c\rangle$	3	1	3	0	0	0	0	0	6	1	2
B_{k}	3	1	3	6	0	0	0	0	0	1	2
$B-B_{1}-B_{k}$	3	1	3	6	3	0	0	0	0	1	$?$
B_{1}	3	1	3	6	3	0	0	0	0	0	0
$\langle a\rangle$	3	0	3	6	3	1	0	0	0	0	0
T^{\prime}	3	0	3	6	3	1	$?$	$?$	0	0	$?$
C_{1}	3	0	0	6	3	1	1	0	0	0	2
T	$?$	1	3	6	3	1	$?$	0	0	1	$?$

The bound $33 / 16$ is achieved by P_{1}. If we require equality, each vertex must be counted exactly 16 times. Hence $B-B_{1}-B_{k}=\varnothing$ and $k=2$. To avoid exceeding 16 in other neighborhood counts, we have $T \leftrightarrow B_{k}$, and all remaining question marks must be 0 . This yields $S^{\prime} \|(S \cup A)$, so $l=2$ (Theorem 13.6). Finally, the weights must be proportional to the sizes of the corresponding sets, and we have the expansion of P_{1}.

9. Bounds and Partial Characterization for Type 2 G-Graphs

For the remainder of the paper, we consider G-graphs with a c-critical Type 2 triangle $a b c$; Theorem 4 implies that $\{A, B\}$ is linked. We may assume that $\{A, C\}$ is the unique non-linked pair, and that the mutual partitions of $\{A, B\}$ have k parts A_{1}, \ldots, A_{k} and B_{1}, \ldots, B_{k}, with $A_{i} \leftrightarrow B_{j}$ if $i+j \leq k+1$ and $A_{i} \| B_{j}$ if $i+j>k+1$. The Type 2 G-graphs H_{m} of Example 3 have $\{A, B\}$ totally linked and hence $k=1$ for each c-critical triangle. We have only one example of a Type $2 \mathbf{G}$-graph with
$k=2$ (and its expansions). It has other critical triangles, some of which are Type 2 with $k=1$, and others of which are Type 1 and show the graph isomorphic to our old friend J of Example 4! We have no examples of Type 2 G-graphs with $k>2$. As we shall see, the Type 2 G-graphs with large vertex/degree ratio must have $k=1$; we will describe all Type $2 \mathbf{G}$-graphs with $v / r \geq \frac{21}{10}$.

We drop our previous usage of $S, S^{\prime}, T, T^{\prime}$ and introduce a new partition. Let $S^{\prime}=A C \cap \bar{N}\left(B_{1}\right), S=A C-S^{\prime}, T^{\prime}=B C \cap \bar{N}\left(A_{1}\right), T=B C-T^{\prime}, R^{\prime}=A B C \cap$ $\bar{N}\left(B_{1}\right)$, and $R=A B C-R^{\prime}$. Also let $A^{\prime}=A-A_{1}$ and $B^{\prime}=B-B_{1}$. These definitions hold for the remainder of the paper.

Lemma 17 contains counterparts of earlier results for Type 1 and Type 3 graphs. For example, Lemma 17.1 says that $C_{1}=\varnothing$ and $C_{2}=C$ in the $x y$-partition of C; hence we no longer discuss the $x y$-partition. We also no longer have $A C \leftrightarrow B$ and $B C \leftrightarrow A$, but we can say something about which edges are present or missing.

Lemma 17. If abc is a c-critical Type 2 triangle in G, then

1. $A_{1} \| C$ and $B \leftrightarrow C \leftrightarrow A^{\prime}$ (in particular, $A \| C$ if and only if $k=1$).
2. $\left(R^{\prime} \cup S^{\prime}\right) \leftrightarrow(C \cup A)$ and $T^{\prime} \leftrightarrow B$
3. $S^{\prime} \leftrightarrow B^{\prime}$ and $T^{\prime} \leftrightarrow A^{\prime}$.
4. $\left(R \cup S \cup T^{\prime}\right) \| A_{1}$ and $\left(R^{\prime} \cup S^{\prime} \cup T\right) \| B_{1}$.
5. $(R \cup S) \leftrightarrow B$ and $T \leftrightarrow A$.
6. S^{\prime} and $T^{\prime} \cup C$ are independent sets of size at least q.
7. $\left(R^{\prime} \cup S^{\prime}\right) \leftrightarrow T^{\prime}$.

Proof. (1): If A has no vertex independent of C, then $z \| A$ for some $z \in C$, since $\{A, C\}$ is non-linked. This imples $A \leftrightarrow B$ (Lemma 6), so any A, B-edge is a link edge. Since $\{B, C\}$ is also linked by some $y z$, any edge between A and C forms a triangle with y, contradicting Lemma 7.4. Hence we may assume A has a vertex independent of C, and then $B \leftrightarrow C$ (Lemma 6). Now any A_{1}, C-edge violates Lemma 7.4. Finally, $A^{\prime} \leftrightarrow a \& B_{k} \leftrightarrow C$ force $A^{\prime} \leftrightarrow C$.
(2): Three applications of Lemma 7.1. (3): By $S^{\prime} \leftrightarrow A_{k} \& b \leftrightarrow B^{\prime}$; similarly for $T^{\prime} \leftrightarrow A^{\prime}$, (4): By Lemma 7.4, since every vertex of $R \cup S \cup T^{\prime}$ has a neighbor in B_{1}; similarly for $R^{\prime} \cup S^{\prime} \cup T$ and A_{1}. (5): $\mathrm{By}(R \cup S) \leftrightarrow c \& A_{1} \leftrightarrow B$; similarly for $T \leftrightarrow A$. (6): By Remark 1, since now $\bar{N}(b y)=S^{\prime}$ for any $y \in B_{1}$ and $\bar{N}(a x)=T^{\prime} \cup C$ for any $x \in A_{1} .(7): \mathrm{By}\left(R^{\prime} \cup S^{\prime}\right) \leftrightarrow a \& B_{1} \leftrightarrow T^{\prime}$.

Lemma 17 makes no comment on adjacencies for $A B$. Here we can obtain $\langle c\rangle=A B \cup c$ as in Theorem 6.2 if $k=1$. Even when $k>1$, we know of no counterexample to this conclusion.

Lemma 18. If abc is a c-critical Type 2 triangle, then $A B-\langle c\rangle$ is the disjoint union of sets $A B_{1}$ and $A B_{2}$ such that $A_{1} \leftrightarrow A B_{1} \| B_{1}$ and $A_{1} \| A B_{2} \leftrightarrow B_{1}$. If $k=1$, these sets are empty, i.e. $\langle c\rangle=A B \cup c$ and $|C|=2 q+|A B C|$.

Proof. Choose $x \in A_{1}, y \in B_{1}, u \in A B$. If $u \leftrightarrow x$, then $u \| B_{1}$ (Lemma 7.4). Now $u \leftrightarrow A_{1}$, since $\langle c\rangle=\bar{N}\left(x^{\prime} y\right)$ for all $x^{\prime} \in A_{1}$ (Theorem 4.2). Similarly $A_{1} \| u \leftrightarrow B_{1}$ if $u \leftrightarrow y$. If $u \| x, y$, then $u \in \bar{N}(x y)=\langle c\rangle$. If $k=1$ and $u \in A B_{1}$, then $u \leftrightarrow A$. Since also $u \leftrightarrow x$ forces $N(c) \subseteq N(x) \cup N(u)$, and since $x \leftrightarrow B$, we conclude that $u a x$ is a domi-
nating triangle and $N(a \mid u x) \subseteq(A B \cup c)-u$, which contradicts the criticality of $a b c$. The symmetric argument yields a contradiction when $u \in A B_{2}$. Theorem 4.2 and Lemma 5.1 yield $|C|$.

These adjacency statements enable us to characterize large Type 2 G-graphs with $k>1$.

Theorem 17. If abc is a c-critical Type 2 triangle in $G, v / r \geq \frac{21}{10}$, and $k>1$, then G is the q-fold expansion of the graph J of Example 4.

Proof. Choose a, b, c and one vertex each from $A_{1}, A_{2}, B_{1}, B_{2}, C, S^{\prime}$, where sets are denoted as in Lemma 17. Counting the neighborhoods of these vertices with weights as indicated in Table 2 yields a total count as indicated there, where we have included $A B \leftrightarrow C$ (Lemma 8) and the results of Lemmas 17 and 18. By $T \leftrightarrow b \& S^{\prime} \leftrightarrow A \cup C$, we have $w \leftrightarrow S^{\prime}$ or $w \leftrightarrow A \cup C$ for any $w \in T$. Hence every vertex is counted at least 10 times, and $v \leq \frac{21}{10} r$. If equality holds, then every vertex must be counted exactly 10 times, so $A B C=A B-\langle c\rangle=T^{\prime}=\varnothing, T \leftrightarrow S^{\prime}$, and all other question marks become 0 . Because the vertices were chosen arbitrarily from the specified sets, setting a question mark to 0 forces complete independence. We can now restrict our attention to the block adjacency matrix on $\langle a\rangle,\langle b\rangle,\langle c\rangle, A_{1}$, $A_{2}, B_{1}, B_{2}, C, S_{1}$. To achieve $v / r \geq \frac{21}{10}$ and regularity, the sizes of these sets must be in proportion to the weights in Table 2, because the vertices of any set whose size is less than $v / 21$ times its weight will have more than $10 v / 21$ neighbors. With $|\langle c\rangle|=q$, this yields a $10 q$-regular graph with $21 q$ vertices. To transform this description into the q-fold expansion of J, relabel the sets listed above as T, A, C_{1}, $\langle b\rangle, C_{2}, B,\langle a\rangle, S,\langle c\rangle$, respectively, in the notation for J in Example 4.

Table 2. Neighborhood counting for Type 2 G-graphs with $k>1$

Nbhd weight	2	5	1	2	1	5	2	2	1	
Vert locat	a	b	c	A_{1}	A_{2}	B_{1}	B_{2}	C	S^{\prime}	Total
a	0	5	1	2	1	0	0	0	1	10
b	2	0	1	0	0	5	2	0	0	10
$\langle c\rangle$	2	5	0	0	0	0	0	2	1	10
A_{1}	2	0	0	0	0	5	2	0	1	10
A^{\prime}	2	0	0	0	0	5	$?$	2	1	10
B_{1}	0	5	0	2	1	0	0	2	0	10
B^{\prime}	0	5	0	2	$?$	0	0	2	1	10
C	0	0	1	0	1	5	2	0	1	10
S^{\prime}	2	0	1	2	1	0	2	2	0	10
S	2	0	1	0	$?$	5	2	$?$	$?$	10
T^{\prime}	0	5	1	0	1	5	2	0	1	15
T	0	5	1	2	1	0	$?$	$?$	$?$	9
$A B_{1}$	2	5	0	2	$?$	$?$	$?$	2	$?$	11
$A B_{2}$	2	5	0	$?$	$?$	5	$?$	2	$?$	14
R^{\prime}	2	5	1	2	1	0	$?$	2	$?$	13
R	2	5	1	0	$?$	5	2	$?$	$?$	15

In light of the somewhat unexpected appearance of J in Theorem 17, let us consider other alternate interpretations of J. In turns out that J has many critical triangles. In describing the corresponding structure, it is convenient to introduce $S^{\prime \prime}=S-\langle b\rangle$ and $T^{\prime \prime}=T-\langle a\rangle$.

Example 9. Given the description of J as in Theorem 17, choose $u \in S^{\prime}$ and $x \in A_{1}$. We have $u \leftrightarrow C \cup B^{\prime}, x \leftrightarrow B$, and $N(b) \subset N(u) \cup N(x)$. Hence $a u x$ is a dominating triangle. If $x \leftrightarrow B C$, then it is a critical triangle, with $N(u \mid a x)=C$. We also have $N(a \mid u x)=S_{2} \cap \bar{N}(u)$ and $N(x \mid a u)=B_{1} \cup N(b c \mid u)$. Then $B C \leftrightarrow x \& u \leftrightarrow C$ force $N(b c \mid u) \leftrightarrow C$. By Theorem 4, $\{N(a \mid u x), N(x \mid a u)\}$ is also linked, so this is another Type 2 triangle. However, $k=1$ for this u-critical triangle aux. This relabeling corresponds to the fourth row in Table 3. Each row of Table 3 designates triangles obtained by taking a vertex of each of the three sets in the first column, the third set being the critical one. The entries in the interior of the table are the set names under the alternate description.

Table 3. Alternate interpretations of J

Set size	2	5	1	2	1	5	2	2	1	
Set name Triangle	$\langle a\rangle$	$\langle b\rangle$	$\langle c\rangle$	A_{1} New name of set	A_{2}	B_{1}	B_{2}	C	S^{\prime}	
$\langle a\rangle\langle b\rangle\langle c\rangle$	$\langle a\rangle$	$\langle b\rangle$	$\langle c\rangle$	A_{1}	A_{2}	B_{1}	B_{2}	C	S^{\prime}	$\dagger \mathbf{1}$
$C B_{1} A_{2}$	C	B_{1}	A_{2}	B_{2}	$\langle c\rangle$	$\langle b\rangle$	A_{1}	$\langle a\rangle$	S^{\prime}	$\dagger 1$
$B_{2} A_{1} S^{\prime}$	$B C$	A	C	$\langle b\rangle$	C	B	$\langle a\rangle$	$A C$	$\langle c\rangle$	$\dagger 2$
$\langle a\rangle A_{1} S^{\prime}$	$\langle a\rangle$	A	S^{\prime}	$\langle b\rangle$	$S^{\prime \prime}$	B	$T^{\prime \prime}$	C	$\langle c\rangle$	$\dagger 3$
$C B_{2} S^{\prime}$	C	B	$S^{\prime \prime}$	$T^{\prime \prime}$	S^{\prime}	A	$\langle b\rangle$	$\langle a\rangle$	$\langle c\rangle$	$\dagger 3$
$A_{2}\langle a\rangle S^{\prime}$	$\langle b\rangle$	B	T^{\prime}	$T^{\prime \prime}$	$\langle a\rangle$	A	C	S^{\prime}	$\langle c\rangle$	$\dagger 4$
$\langle c\rangle C S^{\prime}$	S^{\prime}	A	$\langle a\rangle$	C	T^{\prime}	B	$T^{\prime \prime}$	$\langle b\rangle$	$\langle c\rangle$	$\dagger 4$

[^1]In the remainder of this paper, we study Type 2 G-graphs with $A \| C$; these are precisely those with $k=1$ (Lemma 17.1) and include all those with $v / r>\frac{21}{10}$ (Theorem 17). The sketch in Fig. 6 applies for the remainder of the paper; known non-adjacencies are not indicated, and for clarity the forced edges $A B C \leftrightarrow\{\langle a\rangle,\langle b\rangle,\langle c\rangle\}$ and $R^{\prime} \leftrightarrow T^{\prime}$ are also omitted.

For easy reference, we collect the current information for Type 2 triangles with $k=1$ in the block adjacency matrix of Fig. 7. Question marks denote unknown submatrices. If these are not constant, then these sets may break into smaller equivalence classes, but already every equivalence class is confined to one of these sets.

For the Type 2 graphs with $k=1$, we consider two cases: $T^{\prime} \neq \varnothing$ and $T^{\prime}=\varnothing$. In each case, we find that such a graph has at most $\frac{21}{10} r$ vertices, with equality only for expansions of J. The main techniques are comparison of rows in Fig. 7 and

Fig. 6. Canonical sets for Type $2 c$-critical $a b c$ with $A \| C$

	$\langle a\rangle\langle b\rangle\langle c\rangle$	$A B C$	$\begin{gathered} A C-\langle b\rangle \quad B C-\langle a\rangle \\ S^{\prime \prime} S^{\prime} T^{\prime \prime} T^{\prime \prime} \\ \hline \end{gathered}$	$\begin{aligned} & A B C \\ & R R^{\prime} \\ & \hline \end{aligned}$
$\overline{\langle a\rangle}$	011	100	1100	11
(b)	1001	$\begin{array}{llll}0 & 1 & 0\end{array}$	$\begin{array}{lllll}0 & 0 & 1 & 1\end{array}$	11
(c)	110	$\begin{array}{llll}0 & 0 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	11
A	100	0110	$\begin{array}{lllll}0 & 1 & 1 & 0\end{array}$	01
B	010	$\begin{array}{llll}1 & 0 & 1\end{array}$	1001	10
C	$0 \quad 01$	$\begin{array}{llll}0 & 1 & 0\end{array}$? 1 ? 0	? 1
$S^{\prime \prime}$	101	0 0 1 ?	? ? ? ?	? ?
S^{\prime}	101	101	? 0 ? 1	? ?
$T^{\prime \prime}$	011	10 ?	? ? ? ?	? ?
T^{\prime}	$\begin{array}{llll}0 & 1 & 1\end{array}$	0110	? 1 ? 0	? 1
R	1111	0 1 ?	? ? ? ?	? ?
R^{\prime}	111	101	? ? ? 1	? ?

Fig. 7. Block adjacency matrix for Type 2 G-graphs with $A \| C$

Remark 1. Since $|C|=2 q+|A B C|$, any pair of vertices in a triangle has at least $2 q+|A B C|$ common non-neighbors (by c-criticality), and the number of common non-neighbors is exactly q more than the number of common neighbors (Remark 1). When $T^{\prime \prime}$ and $\langle a\rangle$ are used together, we may use the alternate expression $T \cup a$; similarly for $S^{\prime \prime} \cup\langle b\rangle=S \cup b$. We say that $\{B, C\}$ generates a triangle if some edge between B and C belongs to a triangle.

Lemma 19. If abc is a c-critical Type 2 triangle with $A \| C$ and $T^{\prime} \neq \varnothing$, then

1. $|R|+\left|T^{\prime}\right|=\left|S^{\prime}\right|-q \geq q+|A B C|$, also $|T \cup a| \geq 2 q+|A B C|$ and $|S \cup a| \geq$ $q+\left|R^{\prime}\right|$.
2. If $\{B, C\}$ generates a triangle, then $v<\frac{21}{10} r$.
3. If $\{B, C\}$ generates no triangle, then $R \cup S^{\prime \prime} \| C \leftrightarrow T^{\prime \prime} \leftrightarrow S^{\prime \prime}$ and $S^{\prime} \leftrightarrow R$.
4. If $v / r \geq 29 / 14$ and $S^{\prime \prime} \leftrightarrow T^{\prime \prime}$, then $\left|R^{\prime}\right| \leq q$ and $S^{\prime \prime}$ is an independent set.
5. If $v / r \geq \frac{21}{10}$, then G is the q-fold expansion of J.

Proof. (1): If $y \in B$ and $w \in T^{\prime}$, then $b y w$ is a triangle. From Figure 7, we have $\bar{N}(b y)=S^{\prime}$ and $N(b y)=R \cup T^{\prime}$, also $\bar{N}(w y) \subseteq T \cup a$ and $N(w y) \subseteq R \cup S \cup b$.
(2): Suppose $y \in B$ and $z \in C$ form a triangle with w; note that $w \in N(y z) \subseteq$ $R \cup S^{\prime \prime}$. We have $\left|N(y z) \cap S^{\prime \prime}\right| \geq q+\left|R^{\prime}\right|$. By (1) we may select some $u \in S^{\prime}$; now $u \leftrightarrow z$ forces $N(b) \subseteq N(u) \cup N(z)$, which implies $\bar{N}(u z) \subseteq S^{\prime \prime} \cup\langle b\rangle$. Since $u z c$ is a triangle, we have $|\vec{N}(u z) \cap(S \cup b)| \geq 2 q+|R|+\left|R^{\prime}\right|$. Since $N(y z)$ and $\bar{N}(u z)$ are disjoint, together we have $|S \cup b| \geq 3 q+|R|+2\left|R^{\prime}\right|$. Now $r=d(c) \geq 10 q+4|R|+$ $6\left|R^{\prime}\right|$. This implies $v \leq \frac{21}{10} r$, with equality only if $A B C=\varnothing$ and $r=10 q$. In particular, $R=\varnothing$ and $w \in S^{\prime \prime}$. Equality also requires $\left|T^{\prime}\right|=q,|C|=\left|S^{\prime}\right|=|T \cup a|=2 q$, and $|S \cup b|=3 q$, which yield $|B|=6 q$ (Lemma 5.1). Since $d(y z) \geq q$, we conclude that z has $q, 6 q, q, 2 q$, neighbors in $\langle c\rangle, B, S^{\prime \prime}, S^{\prime}$, respectively, which implies $z \| T^{\prime \prime}$. Now $w \leftrightarrow z \& b \leftrightarrow B C$ force $w \leftrightarrow B C$, yielding the contradiction $N(b) \subseteq N(w)-z$.
(3): If $\{B, C\}$ generates no triangle, then $C \|\left(R \cup S^{\prime \prime}\right)$. Also $\bar{N}(y z)=\langle a\rangle$ for any $y \in B$ and $z \in C$ (Theorem 3), and hence $T^{\prime \prime} \leftrightarrow C$. Now $S^{\prime \prime} \leftrightarrow a \& C \leftrightarrow T^{\prime \prime}$ force $S^{\prime \prime} \leftrightarrow T^{\prime \prime}$, and $R \leftrightarrow b \& C \leftrightarrow S^{\prime}$ force $R \leftrightarrow S^{\prime}$.
(4): From (1), $r=d(c) \geq 8 q+4|R|+6\left|R^{\prime}\right|$. If $v / r \geq 29 / 14$, this implies $\left|R^{\prime}\right| \leq$ q. If $u u^{\prime}$ is an edge in $S^{\prime \prime}$, then $(N(b) \cup N(A)) \subseteq N(u) \cup N\left(u^{\prime}\right)$, which yields $S^{\prime} \cup T^{\prime} \cup A B C \subset N(u) \cup N\left(u^{\prime}\right)$. If we count $N(u), N\left(u^{\prime}\right)$, and twice $N(B)$ (using $S^{\prime \prime} \leftrightarrow T^{\prime \prime}$), we obtain $4 r \geq 2 v+2-\left|S^{\prime}\right|+\left|T^{\prime}\right|+|R|-\left|R^{\prime}\right|=2 v+2-q-\left|R^{\prime}\right|$, contradicting $\left|R^{\prime}\right| \leq q$.
(5): If $v / r \geq \frac{21}{10}$, then the hypotheses of (3) and (4) hold, so $S^{\prime \prime}$ is independent. If $u \in S^{\prime \prime}$, then $u \| S^{\prime}$ implies $N(u) \subseteq N(b)$. Hence Lemma 2 implies there exists $w \in S^{\prime}$ with $w \leftrightarrow S^{\prime \prime}$ (this also holds vacuously if $S^{\prime \prime}$ is empty). We again count vertex neighborhoods, using this vertex $w \in S^{\prime}$ and one vertex each from $\langle a\rangle,\langle b\rangle,\langle c\rangle, A$, $B, C, T^{\prime \prime}, T^{\prime}$, weighted as indicated in the columns of Table 4 . The count for vertices in each set appears in the rows. The 21 vertex neighborhoods count each vertex at least 10 times. Hence $v / r \leq \frac{21}{10}$. If equality holds, then each vertex must be counted exactly 10 times, which implies that $S^{\prime \prime}=R=R^{\prime}=\varnothing$ and each question mark in

Table 4. Neighborhood counting for some Type 2 G-graphs with $k=1$

Neighbd weight Vertex location \rightarrow	$\begin{array}{r} 1 \\ \langle a\rangle \end{array}$	$\begin{gathered} 2 \\ \langle b\rangle \end{gathered}$	1	5	5	${ }^{2}$	$\stackrel{2}{w \in S}$	${ }^{2} T^{\prime \prime}$	1	Total
$\langle a\rangle$	0	2	1	5	0	0	2	0	0	10
<b)	1	0	1	0	5	0	0	2	1	10
(c)	1	2	0	0	0	2	2	2	1	10
A	1	0	0	0	5	0	2	2	0	10
B	0	2	0	5	0	2	0	0	1	10
C	0	0	1	0	5	0	2	2	0	10
S^{\prime}	1	0	1	5	0	2	0	?	1	10
$T^{\prime \prime}$	0	2	1	5	0	2	?	0	?	10
T^{\prime}	0	2	1	0	5	0	2	?	0	10
$S^{\prime \prime}$	1	0	1	0	5	0	2	2	$?$	11
R	1	2	1	0	5	0	2	?	$?$	11
R^{\prime}	1	2	1	5	0	2	?	?	1	12

the other rows must become 0 . Since $S^{\prime \prime}=\varnothing$, we can now let w denote an arbitrary vertex of S^{\prime}. The block adjacency matrix is now that of J, as described in the last two lines of Table 3. We obtain the q-fold expansion of J by letting the size of each set be q times its weight. Furthermore, this is the only way to achieve $v / r \geq \frac{21}{10}$ and regularity, because the vertices of any set whose size is less than $v / 21$ times its weight will have more than $10 v / 21$ neighbors.

The remaining case is $k=1$ and $T^{\prime}=\varnothing$. The adjacency information known at this point appears in Fig. 7.

Lemma 20. If abc is a c-critical Type 2 triangle with $A \| C$ and $T^{\prime}=\varnothing$, then

1. $R=\varnothing$ and $\{\langle b\rangle, B\}$ generates no triangle.
2. S^{\prime} is an equivalence class of size q.
3. If $S^{\prime} \leftrightarrow S^{\prime \prime}$, then $S^{\prime} \leftrightarrow\left(T^{\prime \prime} \cup R^{\prime} \cup S^{\prime \prime}\right)$.
4. If $S^{\prime} \leftrightarrow S^{\prime \prime} \| C$, then $|\langle a\rangle|=q,|A|=|\langle b\rangle|=|C|+\left|T^{\prime \prime}\right|$, and $|B|=2|C|+\left|T^{\prime \prime}\right|+$ $\left|S^{\prime \prime}\right|$.

Proof. (1): If $T^{\prime}=\varnothing$, then $N(b y)=R$ for all $y \in B$. If $R \neq \varnothing$, then $|R|=|\bar{N}(b y)|-$ $q \geq|C|-q=q+|A B C|>|R|$.
(2): Follows from (1), $\bar{N}(b y)=S^{\prime}$, and Theorem 3.
(3): By (2), we can pick $u \in S^{\prime}, x \in A$ arbitrarily. Then $a x u$ is u-critical, since $T^{\prime}=\varnothing$ implies $\bar{N}(a x)=C$ and $u \leftrightarrow C$. Let concatenations of A^{\prime}, X, U denote the sets in the vertex partition induced by $a x u$ as a dominating triangle, just as concatenations of A, B, C are used for the partition induced by $a b c$. We have $U=C, A^{\prime}=$ $\langle b\rangle \cup\left(S^{\prime \prime} \cap \bar{N}(u)\right), \quad X=B \cup\left(T^{\prime \prime} \cap \bar{N}(u)\right), \quad A^{\prime} X=S^{\prime} \cup\left(R^{\prime} \cap \bar{N}(u)\right)-u, \quad X U=\langle a\rangle \cup$ $\left(T^{\prime \prime} \cap N(u)\right)-a, A^{\prime} U=\langle c\rangle \cup\left(S^{\prime \prime} \cap N(u)\right)$, and $A^{\prime} X U=\left(R^{\prime} \cap N(u)\right)$. Since $b \| C$, $\left\{A^{\prime}, U\right\}$ is not linked. However, $b \leftrightarrow\left(B \cup T^{\prime \prime}\right)$ and $B \leftrightarrow\left(\langle b\rangle \cup S^{\prime \prime}\right)$, so $\left\{A^{\prime}, X\right\}$ is linked. Also $C \leftrightarrow u \& b \leftrightarrow\left(T^{\prime \prime} \cap \bar{N}(u)\right)$ force $C \leftrightarrow\left(T^{\prime \prime} \cap \bar{N}(u)\right)$, so $\{X, U\}$ is linked. Therefore, $a x u$ is a Type $2 u$-critical triangle with $\left\{A^{\prime}, U\right\}$ non-linked (i.e., a has the same role as before). By $u \leftrightarrow S^{\prime \prime}$, we have $A^{\prime} \| U$ and the value of " k " for $a x u$ is 1 . (Note: this is also implied by Theorem 17 if we assume $v / r \geq{ }_{10}^{21}$ and $G \neq J$.) This means that, in addition to $A^{\prime} X=\langle u\rangle$ (Lemma 18), both A^{\prime} and X are equivalence classes (as are A and B in Fig. 7). Hence there are none of the second type of vertex in the description of $A^{\prime}, X, A^{\prime} X$ and we have $u \leftrightarrow\left(T^{\prime \prime} \cup R^{\prime} \cup S^{\prime \prime}\right)$.
(4): If $S^{\prime \prime} \| C$, then $\{B, C\}$ generates no triangle. As in Lemma 19.3, Theorem 3 implies $\bar{N}(y z)=\langle a\rangle$ with size q, and hence $T^{\prime \prime} \leftrightarrow C$. We obtain $|A|$ from $\langle a\rangle$ vs. $\langle c\rangle$, $|\langle b\rangle|$ from B vs. S^{\prime}, and $|B|$ from (3) and b vs. S^{\prime}.

This structural information enables us to characterize a class of Type 2 Ggraphs. Although these seem like many assumptions, we shall see that they all hold when $v / r \geq \frac{21}{10}$ and $G \neq J$.

Theorem 18. Suppose $a b c$ is a c-critical Type 2 triangle with $A \| C, T^{\prime}=\varnothing$, $S^{\prime} \leftrightarrow S^{\prime \prime} \| C, T^{\prime \prime}=\varnothing$, and $S^{\prime \prime}$ independent. Then G is the q-fold expansion of the graph H_{m} of example 3 , for some $m \geq 2$.

Proof. All the conclusions of Lemma 20 hold. Note that the relabeling of J in Example 9 that has $T^{\prime}=\varnothing$ is forbidden by $S^{\prime \prime} \| C$. In Fig. 8 we collect the current

Size	q	t	q	$t 2 t+\left\|S^{\prime \prime}\right\| t$	$\left\|S^{\prime \prime}\right\| c\|c\| c\|c\|$	$t-2 q$			
Class	$\langle a\rangle$	$\langle b\rangle$	$\langle c\rangle$	A	B	C	$S^{\prime \prime}$	S^{\prime}	R^{\prime}
$\langle a\rangle$	0	1	1	1	0	0	1	1	1
$\langle b\rangle$	1	0	1	0	1	0	0	0	1
$\langle c\rangle$	1	1	0	0	0	1	1	1	1
A	1	0	0	0	1	0	0	1	1
B	0	1	0	1	0	1	1	0	0
C	0	0	1	0	1	0	0	1	1
$S^{\prime \prime}$	1	0	1	0	1	0	0	1	$?$
S^{\prime}	1	0	1	1	0	1	1	0	1
R^{\prime}	1	1	1	1	0	1	$?$	1	$?$

Fig. 8. Block adjacency matrix for certain Type 2 G-graphs
status of our block adjacency matrix, together with the known set sizes, using $t=|C|=2 q+\left|R^{\prime}\right|$.

The only unknown adjacencies are in $S^{\prime \prime} \cup R^{\prime}$. Since $S^{\prime \prime} \leftrightarrow B \| R^{\prime}$, we can apply Lemma 16 to $S^{\prime \prime}$ and R^{\prime}. We obtain partitions of $S^{\prime \prime}$ and R^{\prime} into equivalence classes S_{1}, \ldots, S_{h} and R_{1}, \ldots, R_{h} such that $\bar{N}\left(S_{i}\right) \cap R^{\prime}=R_{i}=\bar{N}\left(R_{i}\right) \cap R^{\prime}$. Furthermore, the equivalence classes in $S^{\prime \prime}$ and in R^{\prime} have the same size.

If $h=0$, then $S^{\prime \prime}=R^{\prime}=\varnothing$ and $t=2 q$, and G is $6 q$-regular on $13 q$ vertices. As a degenerate instance of the encoding described below, we can express G as H_{2}. Hence assume $h>0$. Now $u y$ for $y \in B, u \in S_{i}$ is an edge not on a triangle, so $q=|\bar{N}(u y)|=\left|R_{i}\right|$ (Theorem 3). Any vertex outside R^{\prime} now has $3 t+\left|S^{\prime \prime}\right|$ neighbors, and $w \in R_{i}$ has $4 t+\left|S^{\prime \prime}\right|-\left|S_{i}\right|$ neighbors, so $\left|S_{i}\right|=t$. We also have $t-2 q=\left|R^{\prime}\right|=$ $h q$, so $t=(h+2) q$ and $\left|S^{\prime \prime}\right|=t(t-2)$. Now G is the q-fold expansion of a graph that is isomorphic to H_{t} by setting $Q_{1}=\langle b\rangle, Q_{2}=B, Q_{3}-U_{1}-U_{2}=S^{\prime \prime}, Q_{4}=S^{\prime}$, $u_{1}=a, u_{2}=c, Q_{5}-u_{1}-u_{2}=R^{\prime}$, corresponding to the c-critical triangle presented in Example 3.

Finally, we conclude that we have found all the large G-graphs.
Theorem 19. If G is a \mathbf{G}-graph with $v / r \geq \frac{21}{10}$, then G is one of H_{2}, J, or G_{k} for $1 \leq k \leq 5$.

Proof. By Lemma 21.5 and Theorems 11, 12, 16, 17, 18, it remains only to prove that if $G \neq J$ and G has a Type $2 c$-critical triangle $a b c$ with $T^{\prime}=\varnothing, A \| C$, and $v / r \geq \frac{21}{10}$, then G satisfies the hypotheses of Theorem 18. We noted in the proof of Lemma 20.3 that Theorem 17 implies $S^{\prime} \leftrightarrow S^{\prime \prime}$ when we assume $v / r \geq \frac{21}{10}$ and $G \neq J$. If $S^{\prime \prime} \| C$ fails, then $\{B, C\}$ generates a dominating triangle $u y z$ with $u \in S^{\prime \prime}, y \in B$, $z \in C$ (Lemma 4). The sets $\bar{N}(y z) \subseteq T^{\prime \prime} \cup\langle a\rangle$ and $\bar{N}(u y) \subseteq T^{\prime \prime} \cup R^{\prime}$ are disjoint and together have at least $4 q+2\left|R^{\prime}\right|$ vertices (Theorem 4.3). By Lemma 5.1, $|A| \geq$ $5 q+2\left|R^{\prime}\right|$. By Lemma 20.3, any vertex of S^{\prime} has at least $12 q+5\left|R^{\prime}\right|$ neighbors, which requires $v \leq \frac{25}{12} r$.

If $u u^{\prime}$ is an edge in $S^{\prime \prime}$, then $N\left(u u^{\prime}\right) \supseteq\langle a\rangle \cup\langle c\rangle \cup B \cup S^{\prime}$ and $\bar{N}\left(u u^{\prime}\right) \subseteq\langle b\rangle \cup$ $A \cup C \cup S^{\prime \prime}$. Substituting in the known set sizes from Lemma 20.4 and applying Remark 1 yields $6 q+3\left|R^{\prime}\right|+2\left|T^{\prime \prime}\right|\left|S^{\prime \prime}\right| \geq 4 q+|B|=8 q+2\left|R^{\prime}\right|+\left|T^{\prime \prime}\right|+\left|S^{\prime \prime}\right|$.

The resulting $\left|R^{\prime}\right|+\left|T^{\prime \prime}\right| \geq 2 q$ yields $r=d(b) \geq 10 q+\left|R^{\prime}\right|+\left|S^{\prime \prime}\right|$, which requires $v / r<\frac{21}{10}$. Hence $S^{\prime \prime}$ is independent.

Finally, suppose there exists $w \in T^{\prime \prime}$. If $w \leftrightarrow S^{\prime \prime}$ (including $S^{\prime \prime}=\varnothing$), then $N(y) \subseteq$ $N(w)-c$ for any $y \in B$. Hence there exists $u \in S^{\prime \prime}$ with $u \| w$. Now $w \in \bar{N}(u y)=$ $\bar{N}(u) \cap\left(T^{\prime \prime} \cup R^{\prime}\right)$ is an equivalence class of size q, since $u y$ belongs to no triangle. Hence $\left|T^{\prime \prime}\right| \geq q$. From c vs. w we have $|A|=\left|\left(S^{\prime \prime} \cup T^{\prime \prime} \cup R^{\prime}\right)-N(w)\right|$. Since $|A|=2 q+\left|R^{\prime}\right|+\left|T^{\prime \prime}\right|$ (Lemma 20.4), we have $\left|S^{\prime \prime}\right| \geq 2 q$, with equality only if $w \| S^{\prime \prime} \cup T^{\prime \prime} \cup R^{\prime}$. Collecting the contributions to $d(c)$ from Lemma 20.4, we have $r \geq 6 q+\left|S^{\prime \prime}\right|+2\left|T^{\prime \prime}\right|+3\left|R^{\prime}\right| \geq 10 q$, i.e. $v / r \leq \frac{21}{10}$. Equality requires $R^{\prime}=\varnothing$ and $w \| S^{\prime \prime}$, but then $a \leftrightarrow S^{\prime \prime} \& T^{\prime \prime} \leftrightarrow C$ force $a \leftrightarrow C$, which is a contradiction.

References

1. Bermond, J.-C., Bond, J., Paoli, M. and Peyrat, C.: Graphs and interconnection networks: Diameter and vulnerability. Surveys in Combinatorics, Lond. Math. Soc. Lect. Notes (1983) 1-29
2. Bermond, J.-C., Bond, J. and Peyrat, C.: Bus interconnection networks with each station on two buses. Proc. Coll. Int. Algor. et Arch. Paralleles (Marseilles) (North-Holland 1986), 155167
3. Chung, F.R.K., Gyárfás, A., Tuza, Z. and Trotter, W.T.: The maximum number of edges in a $2 K_{2}$-free graph, Discrete Math. Discrete Math. 81(1990), 129-135
4. Chung, M.-S., and West, D.B.: Large P_{4}-free graphs with bounded degree (submitted)

[^0]: * Research supported in part by the National Science Foundation under ISP 80110451.
 ** Research supported in part by the National Science Foundation under DMS-8401281.
 *** Research supported in part by the National Science Foundation under DMS-8504322, and by the Office of Naval Research under N00014-85K0570.

[^1]: $\dagger 1$ Type 2, $k=2$, description in Theorem 17
 $\dagger 2$ Type 1, graph J of Example 4!
 \dagger Type 2, $k=1$, Lemma 20, Theorem 18
 ${ }^{+}$type $2, k=1$, Lemma 19

