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Abstract. We prove that every height-2 finite poset with three or more points has an incomparable pair 
(.x, J) such that the proportion of all linear extensions of the poset in which s is less than y is between 
l/3 and 213. A related result of Koml6s says that the containment interval [l/3,2/3] shrinks to [l/2, l/2] 
in the limit as the width of height-2 posets becomes large. We conjecture that a poset denoted by V,’ 
maximizes the containment interval for height-2 posets of width m + 1. 
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1. Introduction 

Throughout this paper, a poset P is an ordered pair (X, <,,) in which < ,, is an 
irreflexive and transitive binary relation on a finite set X of cardinality n > 3. We 
write .Y - ~9 if X, y E X, x # J’, and neither s < ,, y nor ~1 < ,, x. P is linearly ordered 
if - is empty. A linear extension of P = (X, co) is a linearly ordered set (X, < .+) 
with <,c <.+, and when .Y -y we define p(x <y) by 

p(.u < J’) = 
number of linear extensions of P in which x < * y 

number of linear extensions of P 

P’s height is the number of points in a maximum-cardinality linearly ordered subset 
of P, and its width, w(P), is the number of points in a maximum-cardinality subset 
of X in which co is empty. 

For every poset P that is not linearly ordered, let 

6(P) = max min[p(.u < J), p( y < x)} 
.1c - I 
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so that 0 < S(P) < l/2. We prove the first of the following theorems about 6(P) for 
height-2 posets. 

THEOREM 1. C?(P) > l/3 for every height-2 poset. 

THEOREM 2. lim,,, min{G(P): P has height 2, w(P) = m} = l/2. 

The latter theorem was recently proved by Koml6s {S] as part of a more general 
result for the limit l/2. 

Theorem 1 is motivated by the conjecture [3,7] that 6(P) 2 l/3 for every 
nonlinear P: see Figure la. Kahn and Saks [4] prove 6(P) > 3/11 for every 
nonlinear P. Linial [6] proves 6(P) > l/3 for every width-2 P, and Brightwell [2] 
does likewise for every nonlinear semiorder. Aigner [l] proves that the only width-2 
P’s with b(P) = l/3 are ordinal sums (vertical stackings) of single points and the 
Figure la poset. He conjectures that 6(P) # l/3 for every P with w(P) b 3. Saks [7] 
reports that the smallest known d(P) for width-3 posets is 14/39: see Figure lb. A 
computer program of Gehrlein’s for generating all small-n posets shows that no P 
with w(P) > 3 and n < 9 has a 6(P) smaller than 14/39. 

Theorem 2 is motivated by the conjecture [4] for all posets that 
inf{S(P): w(P) = m} -+ l/2 as m --f co. Komlos’s proof of a specialization of this 
conjecture [5] is the first firm evidence for the general conjecture. 

We have further results on the smallest 6(P) for height-2 posets for fixed II or w. 
Let V,,, be the 2m-point poset with m minimal points I,, lZ, . . . , I,,,, m maximal 
points 24,) 24?, . . . , u,, and 1, <,, U, oj < i. Also let Vz equal V, plus an isolated 
point: see Figure 2. Let 

6, = min{G(P) : P is an n-point height-2 poset} 

d(m) = min(G(P) : w(P) = m, P has height 2). 

We have verified 

6(m + 1) = 6 2m =bn+I =J(VJ =&V,+) 

I 0 
d(P) = l/3 

(a) 
Fig 1. 

d(P) = 14/39 
(b) 
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\ J L J 

d(P) = 2/5 = 0.4 h(P) = 8119 = 0 421 

6(P) =504/l 145 =0.44017 

Fig. 2. S maximizers. 

for m = 2, 3,4, and conjecture that it holds for all m 2 2. Figure 2 shows the 
realizing posets. Further calculations give 

b( Vs) = 15940/35505 = 0.4495 . . . 

b(V,)=718050/1566813=0.4582.. . 

d(V,,) = 0.4748 . . . 

d(V,,) = 0.4836 . . . . 

The next section covers preliminaries that prepare for the proof of Theorem 1. 
The full proof appears in the final three sections. 

2. Proof Preliminaries 

For a height-2 poset P = (X, co), let X0 be the set of nonmaximal minimal points, 
and let X, be the set of nonminimal maximal points. Take n, = IX,1 and n, = IX, I. 
This leaves n, = n - (n, + n,) isolated points bearing N to all others. If n2 > 1 then 
p(x < .Y) for X, y E X0 u X, is independent of the isolated points, so d(P) > d(P with 
the isolates removed). For Theorem 1 it therefore suffices to prove that 6(P) > l/3 
for every height-2 poset for which 12 = n, + n, 3 3. In view of duality (inversion) we 
assume also that 11, 2 n, and work henceforth with 

9 = [P: P has height 2, n = n, + n,, n, 2 no}. 

Let dp denote the set of linear extensions of P E 9. Taking the L E 2 as equally 
likely, p(E) for event E on lip is the probability that E obtains. By prior notation, 
p(x <u) is the probability that x is below p in Y. 

Given P E 8, for each x E X, let f(x) on .Y be the random quantity with value 
k at L E 9 when exactly k - I points in X are below x in L. The probability that 
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.Y is in the top position is 

f, =P(.f(-4 = HI. 

Because every point in X, is covered by at least one point in X, , C,k, t, = 1. Because 
every point in X, covers some point in X,,, p(,f(~) = 1) = 0. Moreover, 

I, =p(J‘(s) =n) >p(J‘(.r) =tz - 1) 3.. >P(,f’(.Y) =2) (1) 

since s E X, is maximal and can be interchanged with the point immediately above 
it in L to yield another L' E Y when it is not already on top. The preceding 
inequalities and the fact that C, p(f(.u) = k) = 1 imply 

t, 3 l/(n - 1) for every .Y E X, . 

For each .Y E X, let 

II(S) = i kp(f(.u) = k). [p(.f(.r) = I) = O] 
A=2 

the average “height” of s in 9. By ( 1). /Z(X) 3 2 + & (k - 2)/(n - 1) = 2+ 
(n - 2)/3. Also, by packing as much probability for f’ as possible near the top. 
we have h(s) 6 t,.[n + (n - 1) + . . . + (n - q + I)] + (1 - qr,.)(n - y), where q = 
Ll/r, J. This gives 

/z(s) dtz +Ll/r, JLl/t,.J, /2+ t,/2 - 1) <n ++- 1/(2r,). 

Therefore, for all s E X,, 

n/2 + 1 d h(X) 6 n + i - I/( 21,). (3 

These bounds provide information about Ih(~s) - /z(s)] that is used in the next two 
sections to verify l/3 <p(s <.I,) < 2/3 for all but the smallest (n,, II,,) pairs. 

3. Proof: Part 1 

This section proves that if P E 9 and (n,, tz,,) is tzot in 

N = ((8, 8), (7, 7), . . . , (2, 2)) u ((7, 6). (6, 5), . . . . (2, 1,) 

then l/3 < p(s < y) < 2/3 for some distinct s, y E X, . A tighter and more complex 
analysis in the next section shows that the same thing is true for the larger (PZ,, tz,)) 
in N. The remnant of smaller (tz,, tz,,) in N is analyzed in the final section. 

Given distinct s. ~3 E X,, let 

B = p(.~ < .I,) and h = p( f( J) -,f(.u) = 1) = p( ,f(.~) -f(y) = I), 

where the p equality follows from interchanges of adjacent s and j’ in 9’. We prove 
that 

h(x) - h(y) > ( 1 - 2B - B')/(2h), (3) 
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and will combine this with (2) shortly. 
Let 

uk = dffx) -f(v) = 4 and bn- = p(f(y) -f(x) = k) 

fork~l.SoB=p(x<J-‘)=Cbk,1-B=P(Y<x)=~ak,b=u,=6, and 

49 - 4.4 = c k(a, - b/J. k 
The final paragraph on p. 120 in Kahn and Saks [4] shows that, given fixed B and 
b = a, = b,, C k(a, - bk) is minimized by making the partial sums a, + u2, 
a, +u,+u,, . . , as large as possible and by making the partial sums 
b, + bzr b, + b,, . . , as small as possible. 

Consider the ak. Suppose L E Y has f(x) -f(y) = k + 1, k 2 1. When y and the 
point immediately above it are interchanged, we get another linear extension for 
which Y(X) -f(y) = k. This operation is one-one, so b > u2 2 u3 2 . . . . Hence the 
partial a, sums, beginning with a,, can be no greater than b, 26, 36, . . . , until 1 - B 
is exhausted. Consider the bk. As shown in Kahn and Saks [4]. especially the proof 
of Lemma 2.6, the partial 6, sums can be no smaller than those of the geometric 
series b, b( 1 -b/B), b( 1 -b/B)*, . . . , where X;” b( 1 - b/B)‘- ’ = B. 

Let Y = L( 1 - B)/b_l. Then 

~ku&kb,>~$,kb+(r+l)(l-B-rb)- =f kb(l-b/B)k-‘. 
k=l 

Strict inequality holds if n, 3 3 because of the infeasible tail in the later sum. That 
sum equals B2/b. Let 

S= i kb+(r+l)(l-B-rb). 
k=l 

Observe that r d (1 - B)/b < 2( 1 - B)/b - 1, hence that 1 - B - b/2 - br/2 Z 0, 
and that -r 3 - ( 1 - B)/b. Therefore 

S=r(l-B-b/2-br/2)+(1-B) 

2 [( 1 - B)/b - l]( 1 - B - b/2 - br/2) + (1 -B) 

a[(l-B)/b-l][l-B-b/2-(1-8)/21+(1-B) 

= (1 - B)2/(2b) + b/2 

> (1 - B)2/(2b). 

Thus C k(uk - bk) > (1 - B)*/(2b) - B’/b = ( 1 - 2B - B2)/(2b), and this verifies 
(3). 

Since 1 - 2B - B2 decreases in B and equals 0 at B = $ - I, it follows 
immediately from (3) that if 0 > h(x) - h(y) then B > 3 - 1. Equivalently, for all 
-x, y E x, 7 

h(x) > h(y) =a p(x < y) < 2 - 4 < 2/3. (4) 
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Moreover, since (3) says that b[h(x) - h(y)] > (1 - 2B - B2)/2, and since 
(1 - 2B - B*)/2 = l/9 when B = l/3, 

h(x) 3 h(y) and b[h(x) -h(y)] < l/9 =-p(x < y) > l/3. (5) 

We use (2) to show that the hypotheses of (5) hold for some x, y E X, when 
(n, 9 no> $ N. 

For convenience henceforth let m = n,, so m b n/2. Also let X, = { 1,2, . . . , m} 
and without loss of generality suppose that 

l/(n - 1) < t, d t2 <. . . d t,. 

Fix k in (2, . . . , m}. By (2), h( 1) through h(k) all lie in [n/2 + 1, n + i - 1/(2t,)]. 
Therefore, regardless of the ordering of h( l), . . . , h(k) within this interval, there are 
distinct i, j < k such that 

h(i) L h(j) and h(i) - h(j) < (n - 1)/Z - 1/(2t,) 
k-l ’ 

Since p(f(i) -f(j) = 1) < t,, as seen by moving maximal i into the top position of 
L whenever f(i) -f(j) = 1, we have 

b 6 min{t,, t,}. (6) 

In particular, b < t,, so b[h(i) - h(j)] < [(n - l)tk - 1]/[2(k - l)]. 
It follows that there are x, y E X, such that 

h(x) > h(u) and b[h(x) - h(y)] 6 min 
(n - I)& - 1 

2ik<m 2(k- 1) ’ 

Let 2 = min{[(n - l)tk - 1]/[2(k - l)]}. When tl is fixed, it is easily seen that Z is 
maximized when the min arguments are equal, or when Z2(k - 1) = (n - l)tk - 1 
for k = 2, . . . , m. Summation yields Z(m - 1)m = (n - l)( 1 - t,) - (m - l), so Z is 
maximized globally at min t, = l/(n - 1). Hence Z < (n - 2)/[m(m - l)] - l/m. 

Therefore there are distinct x, y E X, such that 

h(x) > h(y) and b[h(x) - h( JI)] < 
n-m-l 
m(m - 1) ’ 

Given (7), p(x < y) > 2/3 by (4). By (5), l/3 < p(x < y) if 

n-m-l 1 
<--. 

m(m - 1) 9 

Given n = m + n, and m = IZ, > n,, it is routinely checked that this inequality holds 
except for (n,, n,) E N. 

4. Proof: Part 2 

We modify the preceding proof after (6) to obtain the desired result for the larger 
(n,, n,) pairs in N. 
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Fix k E (2, . . , , m} as in the paragraph of (6). Suppose 

h(a,) < h(h) < . . . d h(a,), 

where o,, CJ~, . . . , ok is a rearrangement of 1,2, . . , k. Then, with b as in (6), 

b[h(a, + I > - No, )I d mini c,,, t,, + , IMa, + I ) - Ma, )I, 
for i=l,... ,k-1. Let s,=min{t,.t,+,} and d,=h(o,+,)-h(a,)>O for 
l<i<k-1. Then 

min b[h(o,+,)-h(a,)]<min{s,d,,...,s,p,d,-,} 
lir<k 

with C d, 6 (n - 1)/2 - 1/(2t,) by (2). Sequence s,, s2, . . . , sk-, has t, at least once, 
t, or t2 at least twice, . . . , so 

min b[h(o,+,)-h(a,)]~maXmin{t,d,,...,t,-,d,~,}, 
I<t<k (4 

(8) 

where (d) denotes the set of all nonnegative sequences d,, . . . , dkp , whose terms 
sum to (n - 1)/2 - l/(2&). Therefore maxCd, min{t,d, } is realized when t, d, = 
t2d2 =. . .=t,~-,dk-,. If k = 2, maxtd, min{t,d, > = [(n - 1)/2 - 1/(2t2)]t, = 
b - 1)/2 - 1/(2t2)1/(l/fl); if k 2 3, 

maX min{t,d,} =[(i2 - 1)/2- 1/(2tk)]/(l/t, + l/f?+“.+ l/tk-,). 
tdi 

Let Q, Q, . . . , V, be twice the maxCd, min values at k = 2, 3, . . . , m respectively, 
and let 

q, = l/t, for i = 1, 2, . . . , m. 

Then, by the preceding paragraph, 

q,c,+qz=n-1 

(4, + q2k3 + 93 = n - 1 

(q1+92+q3h+94=n - 1 (9) 

@I,+... +qm-,)Dm+qm =!I - 1. 

Moreover, by (8) there are x, y E X, such that 

h(x) b II(Y) and b[h(x) - h(v)] d min(u,, L’~, . . , U, }/2. 

If min(rt,, . . . , z’,,, )/2 < l/9 also, then l/3 <p(x <v) < 2/3 as in the analysis follow- 
ing (7). 

Let 

V = max min{zr,, . . . , u,, ), 
(4) 
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where (q) denotes the set of all sequences q,, q2, . . . , qm that satisfy (9) subject to 

(n-1)3q,3q,>...3qm>0 and f, l/q, = 1. (10) 

Because of the nonlinearity caused by X l/q, = 1, determination of V is more 
complex than the determination of max Z that precedes (7). 

An analysis of (9) subject to ( 10) shows that V obtains when one of the following 
three things holds: 

[A] v~>L~~=v~=~~~=v,,, with q,=q2; 

PI L,2=v3=“‘=v,; 
[C] q,=q2=“‘=qm. 

In particular, if neither [A] nor [B] holds, then either 

[D] zlk > v, for some j, k > 3, or 
[El v2 > v, = . . . = v, and q, > q2, or 
[F] v~<v~=~~~=v,, 

and in each a change in q that satisfies (9) and (10) will increase min{v,, . . . , v,}, 
except perhaps when [C] obtains. For example, min increases under [E] when q, 
and q2 are moved closer together: with l/q, + l/q, = c, q, + q2 = q1 + ql/(cql - 1); 
the derivative of the latter expression with respect to q1 is positive since cq, > 2 
given q, > q2; hence q, + q2 decreases when q1 decreases and, by (9), this forces each 
of L’~ through ~1, to increase. Similarly, if [F] holds, t’* will increase as we move q, 
and q2 farther apart: we cannot have q2 = q3 to begin with since this implies that 
z’? > L’~. But we might have q1 = n - I for [F], in which case a decrease in q, , or in 
both q, and q2 if q, = q2, and a compensating increase in qm will increase v2. 

Suppose [D] obtains. If q1 > q2 and vk > min for k 2 3, we increase every v, other 
than ~7~ by decreasing q, and increasing qk. This move is feasible unless qk- , = qk, 
in which case zjk-, > vk, and continuation with k - 1 in place of k leads to the 
conclusion that we increase min unless q, > q2 = . . = qk, which requires 
v2 > L’, > . . . > Vk, But then the move described for [E] increases min. On the other 
hand, if [D] obtains and q, = q2, we can increase min(v,, . . . , v,} unless perhaps 

41 =qz=” .=qm-l>qm. 

Further analysis shows that we can do no better here than to take qm ~, = q,,,, 
which gives [Cl: we omit the details. 

Suppose henceforth in this section that one of [A], [B] and [C] holds along with 
(9) and ( 10). As noted after (9), if V < 2/9 then l/3 < p(x < y) < 2/3 for some 
x, 4’ E X,. It turns out for the (m, n,) cases in N, that [A] yields I’. The 
max min{v,, . . . , v, > values under [B] are smaller than those under [A], and the 
values under [C] are smaller than those under [B]. We describe the analysis for [A] 
and [Cl. The analysis for [B] is similar to that for [A]. 
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Suppose [C] holds. Then q, = m for all i, and 

min(v,, . . . , rm} = u, = (n - 1 - m)/[m(m - l)]. 

It follows that ZJ, < 2/9 if and only if 9(n - 1) < 2m2 + 7m. Since n < 2m, i.e., 
n >n , , O, n,,, < 2/9 whenever m > 2. Therefore, given [Cl, all pairs in N have U, < 2/9. 

Suppose [A] holds. Let 

q = q, = q2, L’ = v3 = . . . = ~7, = min(o,}, /? = l/( 1 - 21). 

The equations of (9) yield 

n-l=q(l+v,), q,=n-I-2qr7, qk=q3(1-u)k-3 for k>4. 

By C ( l/q,) = 1 and ZJ = (/I - l)//?, we have 

,,2+ 
p-1 2 Y 

q (n-l-2oq)(~-l)=q+(n-l)~-2(j?-l)q’ 

where y = B(p”‘~ ’ - I)/(/? - 1). This gives a quadratic equation in q whose solu- 
tions are 

q = (n - 1)B + 4@’ - 1) -Y f [((n - 1)B + 4(8 - 1) -Y>’ - 16(n - l)B(/l - 1)1”* 
4(P - 1) 

Since q > q3 = IE - I - 2qv, we require q > (n - I)/( 1 + 221). Analysis then shows 
that, when m 2 6 and o is in the neighborhood of 219, we must use the + root of 
the quadratic solution. With that root, q 3 (n - l)/( 1 + 221) reduces to 

n _ 1 >W -2KP’+V -3) 
/ 

D(B - 1) 
(11) 

When m > 6 and v is in the neighborhood of 219, or larger, the right side of the 
preceding inequality increases in /?, or in v since v increases as /? increases. Thus, to 
avoid the conclusion that v B 219, hence that l/3 <p(x < y) < 213 for some 
x, y E X,, the preceding inequality must hold when /I = 917, i.e., when v = 219. To 
avoid the desired conclusion, calculations at /J = 9/7 show that if m = 6 then 
n - 1 3 12 and, in general, if m 3 6 then n > 2m. Since we require n ,< 2m, the 
desired result always hold if m 3 6. Similar results hold for case [B]. 

When these conclusions are combined with those in the preceding section, we see 
that l/3 < p(.~ < y) < 2/3 for some x, y E X1 except perhaps when (n, , n,) is in 

N* = ((5, 51, (5-4) (5, 3), (4,4), . . . , (2, l)}. 

5. Proof: Part 3 

The results for V,,, and V,+ in the penultimate paragraph of the introduction cover 
all pairs in N* except (5, 5). We conclude the proof of Theorem 1 by applying the 
following lemma to (5, 5). 
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(b) s <.I 

Fig. 3. p(u <y) > l/3. 

LEMMA 1. Suppose P E 9. If x, y E X, and p(x < y) < l/3 then x must cover at 
least two points in X,, not covered hv V. If I, y E X0 and p(x < y) 2 l/3, then y must . . 
be corered by at least two points in XI that do not cover x. 

Proof. We prove only the first part since the other proof is similar. Suppose 
.Y, y E X, . It is easily seen that p(x < y) 3 l/2 if x covers no point not covered by y. 
Suppose that .y covers exactly one point z E X,, that is not covered by y: see Figure 
3a, where X, = {x, y> u A, X,, = {z 3 u B, u B?u B, and B, u B2 # 8. Dashed lines 
indicate possible covers. 

The modified diagrams for .Y <y and y < x are shown in the lower part of the 
figure. Let b, , L’~ and c2 denote the number of linear extensions of (b), of (c) when 
z < y, and of (c) when y < z < x, respectively. We claim that c2 < c, < 6, , from 
which it follows that 

p(s <1’) = b1 2’ 
6, + c, +cz 3’ 

Consequently, p(x < JJ) 6 l/3 forces .Y to cover at least two points in X0 not covered 
by ~1. We now prove the claim. 

Suppose z < y in (c). If B2 = 0 then c, = b, since (b) and (c) with z < y are 
identical up to the x, y labels. If B, # 0 then c, < 6, since c, = 6; when b; is the 
number of extensions for (b) that have B, < x. Hence c, < b, . 

Suppose (c) obtains. If B, = 0 then c? < c, since a proper subset of the set of 
linear extensions for c, is isomorphic by restrictions of the diagram for c, to the set 
of linear extensions for c2. If B, # 0, let c3 be the number of linear extensions with 
B, < z < y. Then cj < cI since there are extensions with z below points in B,, and 
c7 d cj by subset isomorphism. Threrfore c2 < c, . n 
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We now analyze (n, , no) = (5, 5)for P E 9. We suppose that l/3 < p(x < v) < 2/3 
never occurs and proceed to a contradiction. 

Given this suppostion for (5, 5) let X, = (1,2, . . . ,5> and X,, = (x,, -u,, . . . , x5}. 
For i,j E X, , let i > ,jmean that icovers at least two points in X0 not covered byj. For 
X, )’ E X,,, let x <I y mean that y is covered by at least two points in X, that do not 
cover X. By our supposition, if a, 6, c E X, or a, b, c E X,, then [p(a < b) d 
l/3, p(b < c) < l/3] * ~(a < c) > 2/3 *p(a < c) < l/3. Therefore, by Lemma 1, we 
assume without loss of generality that i > 2 j whenever 1 d i <j < 5. Similarly, there is 
a linear arrangement of the points in X0 such that .Y < 2 y whenever x precedes y in the 
arrangement. 

Since 5 E X, covers something in X0, suppose for definiteness that x, <,, 5. By 
4 > ? 5,4 covers two points in X,, that differ from X, : call them x2 and -‘c3. Assume 
x2 < 2 .xg for definiteness. Then x3 is covered by two points in X, , say a and b, that don’t 
cover x2. Since 5 doesn’t cover .x3. and 4 covers both X? and xX, {u, 6) n (4, 5} - 0. 
Assume a > 2 b for definiteness. One of the points in X,, covered by a and not b must 
differ from X, , s? and X~ : call it .x4. The other X,, point for a > 2 b can also be new (x~) 
or it can be x, . However, because b covers two points in X0 not covered by 4, this forces 
a sixth point in X0. Since this contradicts IX,, 1 = 5, the proof for (5, 5) is complete. 

6. Discussion 

We have shown that every height-2 poset with n 2 4 has an incomparable pair for 
which l/3 < p(.x < J) < 2/3. The smallest known d(P) for such posets is 2/5, which 
obtains for Vz and V+ . It is almost certainly true that every height-2 P with n 2 6 has 
an incomparable pair for which 215 < p(x < y) < 315, but our approach only verifies 
this for large n and for very small n. In comparison with Theorem 2, which implies that 
d(P) is arbitrarily close to l/2 when n is suitably large, our methods show only that 6(P) 
is at least as large asfi - 1 - E when n is large. 

Two fundamental open questions about 6 for height-2 posets concern its minimum 
value 6(m) for width-m posets, and the actual forms of the posets that attain this 
minimum. 

Ql . Is 6(m) nondecreasing in m? 
Q2. Does 6(m + 1) = 6( Vz ) and, if so, is V,’ the unique realizer of 6(m + l)? 

A positive answer to the first part of Q2 would answer Ql in the affirmative. 
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