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Abstract

Schmerl, J.H. and W.T. Trotter, Critically indecomposable partially ordered sets, graphs,
tournaments and other binary relational structares, Discrete Mathematics 113 (1993) 191-205.

A finite, indecomposable partially ordered sect is said to be critically indecomposable if,
whenever an element is removed. the resulting induced partially ordered set is not
indecomposable. The same terminology can be applicd to graphs, tournaments, or any other
relational structure whose relations are binary and irreflexive. It will be shown in this paper
that critically indecomposable partially ordered sets are rather scarce; indeed, there are none of
odd order, there is exactly one of order 4, and for cach even k =6 there are exactly two of
order k. The same applics to graphs. For tournaments, there arc nonc have even order, there is
exactly one of order 3, and for cach odd k =5 there are precisely three of order k. In general,
for arbitrary irreflexive binary relational structures, we will sce that all critical indecomposables
fall into one of nine infinite classes. Four of these classes are even—they contain no structures
of odd order and for cven k = 6 they cach contain (up to a certain type of equivalence) exactly
one structure of order k. The five other classes arc odd—they contain no structures of even
order and for cach odd k =5 they cach contain exactly one structure of order k. From this
characterization of critically indecomposable structures, it will be evident that all indecom-
posable substructures of critically indecomposable structures are themselves critically indecom-
posable. Finally, it is proved that every indecomposable structure of order 71 +2 (n = 5) has an
indecomposable substructure of order #.
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1. Basic definitions

A binary relational structure o of type k consists of a non-~mpty underlying set
A together with binary relations Ry, R,, ..., Rxc AXA. We will write & as
(A;R,, R, ..., R,). The order of s is jA|, the number of eiements of A; in
particular o has a finite order (or, simply, & is finite) if A is finite. We will write
aRb instead of (a, b) € R. If each R, is irreflexive (that is, if aR;a for no a € A)
then & is irreflexive.

& KA SIS iRl YW U LalRinRsIis RS,

The nni\l structures that we will be encounterine are finite, irreflexive, binarv

relational structures, so we will henceforth use the word ‘structure’ to refer just to
these. Graphs, partially ordered seis {posets), tournaments, and oriented graphs
are examples of suructures of type 1. Specifically, if & = (A; R), then:

A is a graph iff aRb whenever bRa;

s is a poset iff aRc whenever aRb and bRc;

o is a tournament iff for distinct @, b € A, wither aRb or bRa, but not both;

s is a oriented graph iff for each a, b € A, not both aRb and bRa.

A structure B is a substructure of A if A=(A;R,,R,,...,R), B=
{(B;$.%.,...,%)., BcA, and S;=R,N(BXB) for each i. (In particuizr,
‘subgraph’ will always mean ‘induced subgraph’.) If @ is isomorphic v «
substructure of &, then B is embeddable in . We will frequently identify

substructures with their underlying sets. However, for emphasis we will write
o I B for the substructure of of ha\nno underlvine set R

22 AV R0 SUVSLI VRS <SS RAdY MRSy AR Sl 2.

Let A=(A;R,,R>, ..., R;)and .}3 (B; S, S, ..., S;) be structures of type
k. Their lexicographic product A *RB (sometimes called the wreath product) is
defined to be (AXB; T,, T, . . ., T;), where {a,, b,)T;{a-, b,) iff either a;R;a,
or else a, = a, and b,S;b,.

A stiucture A is ina'ecomposable if, whenever & is embcddable in B, * %,, then
A is embeddable in %, or %,. This definition of indecomposable is not the most
practicable, so we will give an equivalent and more useful one.

Let 4 =(A;R,, R;, ..., R;) be a structure, and let / = A be a subset. Then /
is an interval if whenever a, b € [ and ¢ € A\I, then for each i both aR;c iff bR;c,
and cR,a iff cR;b. The interval I is nontrivial if 2 <|I| <|A|. (Sometimes in the
literature intervals are referred to as autonomous or partitive sets.)

Proposition 1.1. & is indecomposable iff A contains no nontrivial intervals.

Proof. (=) Suppose [ < A is a nontrivial interval. Choose ael and let B=
(A\I)U{a}. Clearly, % is not embeddable in either & | B or & | I since |B|,
|I]<|A|. However, . I) by the function
@:A— B x| where

{(x,a) ifxel,

)= .
(a,x) ifxel

Itiseaw  ccked that @ is an embedding.
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(<) Suppose & contains no nontrivial intervals, and let ¢ : o/ — %, * %, be an
embedding, where @(x)= (@,(x), -(x)) for each x € A. If ¢, is one-to-one,
then @,:f— B, is an embedding. Therefore, we can assume @, is not
one-to-one, so there are distinct x,y € A such that ¢,(x)=¢@,(y). Let I=
{z € A: 9,(2) = @i(x)}. Clearly, Iis an interval and |/| = 2. Therefore, I = A since
I s trivial. But then @,: s/ — %, is an embedding. O

In a structure o =(A; R,, R,, ..., R;), we define the 4-ary relation = on A
such that for any x, y, z, we€ A, xy =zw iff x #y, z #w, and for each i both of
the following hold: xR;y iff zR;w, and yRx iff wR;z. If xy =zw does not hold,
then we write xy # zw. We will refer to (A, =) as the skeleton of . Notice that a

subset I — A is an interval iff whenever x. vel and z € A\/J. then ¥z =vz. Thus
SUOSCt 2 & /A4 15 all HCIva: i WACHOVCI &, Y © 1 anG 2 € AN, uiChi X2 y<. 21AS

we can refer unambiguously to intervals of the skeleton (A, =). Also we can
refer unambiguously to the indecomposability of the skeleton (A4, =).

2. A basic theorem

In this section we state and prove a basic theorem concerning indecomposable
structures. We first state a2nother basic result, which was proved in [2] by a quite
circuitous method, and then sketch a much more direct proof which is essentially
the proof by Kelly (Lemma 3.5 of [1]) of the specialization of this theorem to
graphs.

Theorem 2.1. Suppose s{ =(A; R\, R,, . .., R,) is indecomposable and |A|=3.
Then there is an indecomposable B c A such that either |B| =3 or |B| =

Sketch of Proof. Assume that &f has no indecomposable substruciure of order 3
or 4. Then there are distinct a, b, c € A such that ab # ac = bc = ba. Partition

Y =A\{a, b} into the following five sets (not alt of which need be non-empty):
A={xeY:ax=ac ¥ bx},
B={xeY:ax # ac=bx},
C={xeY:ax=ac=bx},
D={xeY:ax +ac# bx and xy=ay for all y e C},
E={x<Y:ax # ac # bx and xy # ay for some y € C;.

Now a straightforward, but somewhat lengthy, check by cases shows that
{a, P} UA U BU D is an inierval, which is proper since it does not contain c. This
contradicts the indecomposability of /. O

The main result of this section is the following theorem.
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Theorem 2.2. Suppose i =(A;R,, R,, ..., R,) is indecomposable and B c A is
alsc indecomposable, where 3 < |B| < |A| —2. Then there is an indecomposable C
such that Bc Cc A and |C|=|B| + 2.

Proof. We begin the proof of the thecorem by proving a weaker form of it.

Claim. Suppose (A:R,.R,....,R,) is indecomposable and Bc .. is also
indecomposable, where 3<|B|<|A|—- 2. Then there are (possibly identical)
D, q € A\B such that B'U {p, q} is indecomposable.

Suppose the claim is false. Then for each x e A\B, BU {x} is not indecom-
posable. Therefore, each such B U {x} has a nontrivial interval /. Then IN B is
an interval of B, and it must be trivial since B is indecomposable. Hence, for each
x € A\B, one of the following two possibilities hold:

(2.2.1) B is an interval of BU {x};

(2.2.2) there is x’ € B such that {x, x'} is an interval of B U {x}.

It ecannrot happen that both possibilities (2.2.1) and (2.2.2) hold for the same
xeA\B, for then B\{x'} would be an interval of B, contradicting the
indecomposability of B. i cannot happen that possibility (2.2.1) holds for each
x € A\B, for then B would be an interval of A, contradicting the indecom-
posability of A.

If possibility (2.2.2) holds for x € A\ B, then the corresponding x’ is unique.
For, suppose x’, x" ¢
Bilfv\ Then {,‘:'

BU {x}. Then
it follows that x" = x".

Let X = {xe A\B-{x, x’} is an interval of BU {x} for some x' € B}. By the
preceding discussion X #6, so consider some d € X. Since A is indecomposable,
f2 4"} is not an interval of A. Thus, there is ¢ € A\{d, d'} such that cd # cd".
Because {d, d'} is an interval of B U {d}, it must be that ¢ € B.

In fact, c € X. To see this, suppose ¢ ¢ X so that by possibility (2.2.1), B is an
interval of B U {c}. Since, by hypothesis, B U {c, d} is not indecomposable, there
is an interval j of BU {c, d}. Clearly, J # {c. d}; for then, if y e B\{d'}, then
vd'=yd=yc=4d'c, so that B\{d'} would be an intervai of B. Also.J # B U {d}
since c¢d ¥ cd'; aniJ # B U {c}, for then B would be an interval of BU {d}. We
have just shown thet JAB#@ and J N B # B; but J N B is an interval of B and B
is indecomposable, so that {J N B|=1. Moreover, JNB={d'}. Forif JN B =
{y} with y #d’, then {d,y} would be an interval of B U {d} different from
{d, d'}, contradicing the uniguness of d' in (2.2.2}. Therefore, we have reduced J
to being one of {d.d'}, {c.d'} or {c,d,d’}. The first is impossible since
cd # ¢f’. For the second and third aiternatives, choose be B\{d’'}. Then
bd'=bc=dc’, so that B\{d'} is an interval of B, contradicting the indecom-
posability of B. This proves ¢ € X.

Next we show that ¢’ =d’. To see this suppose to the contrary that ¢’ #d’. By

v"Y ic an interval of B ¢a that hy th
Yy S annierva: O O, s Wat 9y w

» -
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hypothesis, BU {c, d} is not indecomposable, so BU {c, d} has a nontrivial
interval Y. It is not the case that Y = {c, d}, for if that were so then for any
aeB\{c',d}, ad'=ad =ac =ac’, implying that {c’,d'} is an interval of B.
Thus Y N B #6, so either [YNB|=1 or Y N B = B. Consider first that YN B =
{y}. If c#Y, then by the uniqueness of d' it follows that y =d’; but cd # cd’
yields a contradication. If d ¢ Y, then by the uniqueness of c’, it follows that
y=c'; but then dc = dc'=d'c’ =d’c yield a contradiction. Thus {c,d} c Y, so
that {', d'} c Y, implying the contradiction that ¢’ = d'. Therefore, we have that
[YNB|#1, sothat B Y.

Now, it deY, then cd # cd' implies ceY, so Y is a trivial interval of
BuJU{c,d}. Thus d¢Y; but then dc=dc'=d'c'=d’'c gives a contradiction
unless c ¢ Y, so Y = B. However, Y = B implies that B\{c¢'} is an interval of B.
For consider arbitrary a € B\{c'}: then ac’ = ac = ¢'c. This again contradicts the
indecomposability of B, thus shown that ¢’ =d’.

For the final contradiction, just notice that {ze€ X'z'=d'} is a nontrivial
interval of A. This completes the proof of the claim. O

We now deduce Theorem 2.2 from the claim. Suppose that Thec.em 2.2 is
false and (A;R,, R,, ..., R;) and B form a countercxample in which |A] is
minimal. The claim then implies that |A|=|B|+3, and that BU{q} is
indecomposable for some geA\B. Let X ={xe A\(BU{q)):{x,x'} is an
interval of BU {x, q} for some x"' € BU {q}}. As in the proof of the claim, X #0
and for each x € X there is a unique x’' € BU {q}. Select some d € X. Since A is
indecomposable, {d, d'} is not an interval of A, so there exists c€ A\{d, d'}
such that cd 5 cd’. Clearly ¢ ¢ B U {q}, because {d, d'} is an interval of BU {q}.
Therefore {c} = A\(BU {d, q}).

Suppose ¢ € X. Then as in the proof of the claim, ¢’ =d’. Thus, {c, d, d'} is an
interval of A, contradicting its decomposability.

So suppose ¢ ¢ X. Then as in the proof of the claim, BU {q} is an interval of
BU{q, c}. If d’' #gq, then {d, d'} is an interval of BU {d}, and B is an interval
of BU{c}. It then follows, as in the proof of the claim, that BU {c, d} is
indecomposable.

Thus, we can suppose, in addition to ¢ ¢ X, that d' =q. Since B U {d, c} is not
indecomposable, it has a nontrivial interval Y. Now Y N B is an interval of B; but
B being indecomposable implies Y N B is a trivial interval of B. Thus, BcY,
Y={d,c}, Y={d,c,y}, Y={d,y} or Y={c, y} for some y € B. In any case a
contradiction will ensue:

if BcYanddg¢Y, then B is an interval of BU {¢q};

if BcYanddeY, then cd = cq, contradicting the definition of c;

if Y=1{d, c}, then {d, q, c} is an interval of A;

if Y={d, c, y}, then {d, q, c. ;} is an interval of A;

if Y={d, y}, then {d, y, q} is an interval of A;

if Y={c, y}, then cd =yd =yd' = cd’, contradicting c¢d # ¢d'. O
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Corollary 2.3. Suppose (A; Ry, R>., . .., R) is indecomposable and |A| = 3. Then
there is an indecomposable B c A such that |B| =|A| -1 or |B|=]A| - 2.

It will be shown later, in Theorem 5.9, that Corollary 2.3 can be improved in
case that |A] =7 so as to be able to conclude that always |B| = |A]| - 2.

3. Critical indecomposability

Corollasy 2.3 suggests a definition which will be central to the rest of this
paper. An indecomposable structure & =(A;R,, R, ..., R}) is critically inde-
composable if whenever a€ A. then A\{a} is not indecomposable. Notice that
we cz2n refer unambiguously to a skeleton (A, =) being critically indecomposable.

Theorems 2.1 and 2.2 imply that more is true of critically indecomposable
structures than is immediately apparent.

Corollary 3.1. Suppose that o is a critically indecomposable structure of order n
and that 3<m<n. Then s has an indecomposable substructure of order m iff
n—m is even.

Some examples of critically indecomposable structures are given in Section 4.
In Section 5 it is shown that this list of examples is complete, up to isomorphism
of skeletons.

4. Exauiples of critically indecomposable stractures

In this section we will give some examples of critically indecomposable graphs,
posets, tournaments and linear directed graphs, and also of some critically
indecomposabie structures of type 2.

First we consider graphs. For each r =2 we will define a graph ¢, = (V,; E,) of
order 2r. Let V,={a,,a-,...,a,, b,,b>,...,b,}, where {a,,a,,...,a,} and
{b\, b, ..., b,} are independent sets and a; and b, are adjacent iff i =/. Let
4, = (V,; E) be the complementary graph of %,. Note that =%, but ¢, + ¢
for r>2.

Lemma 4.1. For each r =2 the graphs %, and 4, are indecomposable.

Proof. Clearly, 4, is critically indecomposable iff ¢, is. We will show that 4, is
indecomposable. This is done by induction or r. By inspection, %, is indeccom-
posable. Now suppose that / is a nontrivial interval of %..,. where r = 2. Since
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a,<b,,_,is an automorphism of %,.,, we can, without loss of generality assume
that @, ¢ [ for some i. Now, let i be the smallest such i Since V,, \{a,. b} is
isomorphic to ¥, and /\{b,} is an interval of V,.,\{a;, &}, it follows from the
inductive hypothesis that I\ {b;} is trivial, so that either I = {x, b;} for some
xeV,.. \{a, b}, 1=V, \a. b}, or =V, ;\{a;}. The first alternative is
impossible, for if x = b; #b;, then a;b; # a;b; since 1=i<j, and if x =¢,, then
j#i and bq; ¥ bb,, The second alternative is impossible, for if i<r then
b.a,., # bb;.,, and if i =r + 1 then a,,,a, #a,,,b,. Finally, the third alternative
is also impossible, for a;b, # a;a; where j#i. [

Each of the graphs ¥ and % is a comparability graph, as can be seen by
considering the posets #, = (V,; P,) and ?; = (V,; P,), where

xP,y & x=a,andy = b; for some i =,
and
xPly & (x,y)e{(a.b,), (a.q,), (b, b;)} for some i <j.

Clearly . =2, iff r =2.
For r=2, let 3, be the structure (V,; P, P,).

Proposition 4.2. For each r =2, B, is critically indecomposable.

Proof. The indecomposability of %, follows from the indecomposability of ¥,
shown in Lemma 4.1. To show that 3, is critically indecomposable, consider the
substructure V,\ {x}, for arbitrary x € V,. Depending upon the ci:cice of x, we can
find a nontrivial interval I of V,\{x}: if x =a,, then I=V,\{a., b, }; it x=b,,
then I =V, \{a,, b,}; if x =a; for i <r, then I = {b;, b;.,}; and if x = b, for 1 <i,
thenI={a;_,,q;}. O

Proposition 4.3. For each r =2 the graphs 4, and G, and the posets ¥, and 7, are
critically indecomposable.

Proof. The indecomposability of %, and %, follows from the indecomposability of
their comparability graphs ¢ and <, which was shown in Lemma 4.1. Then the
critical indecomposability of these structures follows from the critical indecom-
posability of %, which was shown in Proposition 4.2. [

There are still five more infinite families of critically indecomposable structures
which will be presented in this section. The proofs that these structures are
indeed critically indecomposable are quite easy and much like the previous
proofs. We will leave these proofs to the enterprising reader.

Three of these families consist of tournaments. For i =1, 2, 3 and r =2 wc will
define tournaments 7 of order 2r + 1, where 7 = (T, 2>).
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Let T == {cy. €. ... . €5}, and let ¢, SLLIN ¢;iff i + k =j (mod 2r + 1} for some
k=1.2,....r

Let T®={ay, ay,....a, by, by, ..., b} and let x>y iff one of the
following holds:

x=bh, y=bjandi<j;

x=b, y=aq and i<j;

x=a;, y=b,and i <j;

x=a,y=a andi<j.

Let 7Y ={b, a,, d>. . .., 4s,}. Let x 2 y iff one of the following holds:

x=ga,yv=a and [ <j:

x=b and y = q, for odd i;

x=a, and v = b for even L.

Notice that the tournaments 7", ' and J are pairwise non-isomorphic.
Each is seif-dual.

Proposition 4.4. For each r =2 the tournaments 7", T and T are critically
indecomposable. 1

Tournaments are special kinds of oriented graphs. We next present infinite
family of critically indecomposable oriented graphs. For r=2 let ¥, =(T*; F)
be the oriented graph whose underlying sct is the same as the underlying set of

T, and where xF,y iff x 25 y and {x, vy} " {b,, ba, .. .. b} #0.

Proposition 4.5. For each r =2, 7, is critically indecomposable.

Let 7, =(T* . F,, F)) be the structure of type 2, where xF|y iff x %15 y but
not xF, v.

Proposition 4.6. For each r =2, 4, is critically indecomposable.

5. The characterization of critically indecomposable skeletons

In Section 4 some cxamples of critically indecomposable structures were
presented. We show in this section that, up to isomorphism of skeletons, this list
is complete.

Thieorem 5.1. Suppose that (A, =) is «a critically indecomposable skeleton. Then
for some r=2, (A, =) is isomorphic to the skeleton of one of the following

77 i (2
structures: G, P, P, B, T, T T g gl
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We remark that no two structures in this list of critically indecomposable
structures have isomorphic skeletons (with one exception: %, = %;).

The proof of Theorem 5.1 will include a series of lemmas. Lemmas 5.2, 5.3.
and 5.5 are, in essence, trivial as they just verify Theorem 5.1 in case JA|<5.
Lemmas 5.4 and 5.6 are the keys to the proof of Theorem 5.1, giving the

structural properties needed in order to do an inductive argument.

Lemma 5.2. Suppose (A, =) is a skeleton of order 3, where A ={a, b, c}. Then

{fAl, =) is indecomposable i ifj ff ab # ac = bc # ba.

Proof. Obvious. O

Lemina 5.3. Suppose (A, =) is a critically indecomposable skeleton of order 4.
Then (A, =) is isomorphic to the skeleton of %, P> or %-.

Proof. Suppose (A, =) is critically indecomposable with 4 elements q, b, ¢, d.
Since each subskeleton of order 3 is not indecomposable, we can apply Lemma
5.2 to it, and we will do so many times without specific reference. Considering
{a, b, c}, we can without loss of generality assume ba =bc. Now consider the
subskeleton {b, ¢, d}. Notice that bc # bd, as otherwise {a, ¢, d} would be an
interval. Hence, it must be that either ch =cd or db =dc.

First suppose ¢b = cd. Now consider the subskeleton {a, b, d}. If ab =ad, then
{b, d} is an interval of (A, =); if ba =bd, then {a, c, d} is an interval of (A4, =);
therefore, it follows that da=db. Similarly, by considering the subskeleton
{d, c, a}, we get that ac = ad. Thus,

ab=cb=cd
and

bd =ad =ac.
Also, ab # bd (as otherwise {b, ¢, d} would be an interval of {A, =)) and ab £db
(as otherwise {a, ¢, d} wouid be an intervai of (A, =)). This ieaves as unsettied
only whether or not ab = ba and whether or not bd =db. If ab # ba and bd #db,
then (A, =) is isomorphic to the skeleton of %,; if ab=ba and bd #db (or

5 # ba and bd =db), then (A, =) is isomorphic to the skeleton of %,; and if
ab = ba and bd = db, then (A, =) is isomorphic to the skeleton of %,.

Next, suppose db = dc rather than cb = cd. Consider the subskeleton {a, b, d}.
If ba = bd, then {a, c, d} is an interval of (4, =); if da =db, then {a, b, c} is an
interval of (A, =); therefore, it follows that ab =ad. But then, with relabelling
the points, we are in the situation of the previous paragraph. O

Lemma 5.4. Suppose (A, =) is a critically indecomposable skeleton. Then there
exist distinct a, b, a', b' € A such that (1), (2) and (3) hold.

(1) Ay=A\{a’, b'} is indecomposable.

(2) {a, a’'} is an interval of A\{b'}.

(3) {b, b'} is an interval of A\{a'}.
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Proof. By Corollary 2.3 there are distinct x,y €A such that A\{x,y} is
indecomposable. Since (A, =) is critically indecomposable, A\{x} and A\{y}
are not indecomposable, so they have nontrivial intervals I and J respectively.
Then I\{y} and J\{x} are intervals of A\{x, y}, so they must be trivial. If
INN{y}=J\{x} =A\{x, y}, then A\{x,y} is a nontrivial interval of (A4, =).
Withoui loss of generality, |[/\{y}|=1, solet I={y, y'}.

Suppose now that J = {x, x’}. If x"=y’, then {x, y, x'} is a nontrivial interval
of (A, =), contradicting the indecomposability of (A, =). If x'#y’, then let
a=x', b=y, a'=xand b’ =y.

Suppose next that J =A\{x, y}. Now A\{y’} is not indecomposable, so it
must contain an interval J'. Furthermore, since A\{x, y'} is isomorphic to
A\{x, y}, it is indecomposable, so that J' N (A\{x, y’'}) must be a trivial interval
of A\{x, y}. Thus, either J' = A\{x, y'} or else J' ={x, x"} for some x" e A\
{x,y’}. The first alternative implies that A\{x} is an interval of (A, =).
Therefore, J' = {x, x"}. Now x" # y as otherwise {x, y, y'} would be an interval of
A. Thus, x", y, x, y" are distinct, so let a =x", b=y, a’=x and b’ =y’'. Clea-ly,
(1). (2) and (3) hold. O

Lemma 5.5. Suppose (A, =) is a critically indecomposable skeleton of order 5.
Then (A, =) is isomorphic to the skeleton of 7Y’ (i =1, 2, 3), 9> or D5.

Proof. According to Lemma 5.4, we can get A ={a, b, ¢, a’, b'} where {a, b, ¢}
is indecomposable and

(5.5.1) a’b=ab=ab’, a'c=ac, b'c=bc.
Since {a, b, c} is indecomposable, we have from Lemma 5.2 that

(5.5.2) ab#ac #bc#ba

Consider {b,c,a’, b’'}, which, not being indecomposable, must contain a
nontrivial interval. There are six 2-element subsets and four 3-element subsets for
a total of ten possible nontrivial intervals. Seven of these can be immediately
excluded, for if any of them were an interval, then we obtain a contradiction to
(5.5.2) as follows: If one of the intervals of {b, c,a’, b'} is:

{b, c}, thenac=a’'c=a’'b=ab;

{b,a’}, then cb =ca’ =ca;

{c,a’}, then bc = ba’ = ba;

{a’,b'}, then cb =cb' =ca’ =ca;

{c,a’, b'}, then bc = ba’ = ba;

{b,b,b'}, thenac=a'c=a’'b=ab;

{b,a’, b'}, then ca=ca’ =cb’ =cb.

Also {b, b'} cannot be an interval of {b,c, a’, b'}, for then it would be an
interval of {a, b,c,a’, b'}.

The only possibilities for nontrivial intervals of {b, ¢, a’, b’} are {c, b’} and
{b,c,a’}. Similarly, the only possibilites for nontrivial intervals of {a, c, a’, b'}



Critically indecomposable sets 201

are {c,a'} and {a, ¢’, b'}. Taking into account symmetry, there are only three
cases to consider.

Case 1: {c, b'} is an interval of {b,c,a’,b'}, and {c,a’'} is an interval of
{a,c,a', b'}.

This yields

a'c=a'b'=cb'=cb=b'b=ac=aua’.
From (5.5.1) and (5.5.2) we also have
a'b=ab=ab' #cbh.

If ba' #£a'c, then {a, a’, b, b’} would be indecomposable, so ba’ =a’c. Thus we
get a skeleton isomorphic to the skeleton of 74", the isomorphism being
{a, b, b', c,a’)—{cy, €y, Ca, €3, Cy).

Case 2: {c, b’} is an iaterval of {b,c,a', b'} and {a, c, b'} is an interval of
{a,c,a’', b'}.

This yields

ca=ca'=aa’'=b'a’, ab=a'b=ab’, bc=b'c=bb'.
One can check that in order that {4, a’, b, b’} not be indecomposable, either
ab=a'a, ab=b'b, or ab=aa'.
If ab=a'a, then ab=ac, which contradicts (5.5.2). If ab=b'b, then
ab =b'b = cb, which also is a contradiction. Therefore ab =aa’, so that
ca=ca'=aa'=b'a’=ab=a'b=ab’".
There are now three possibilities;
bc =ab, bc=cbh, cb # bc # ab.

The first gives a skeleton isomorphic to the skeleton of 75, the second to %,,
and the third to 9.

Case 3: {b, c,a'} is an interval of {b, c,a’, b'}, and {a, c, b’} is an interval of
{a,c,a', b'}.

This yields

b'ysib'c=b'a’'=aa’'=ca’'=ca=bc and a'b=ab=ab’.

One can check that ia order that {a, b, a’, b’} no. be indecomposable, either
e¢b=aa' or ab=a'a. But ab =a’a implies ab = ac, contradicting (5.5.2), so that
ab=aa' and ab #a'a. This results in a skeleton which is isomorphic to the
skeleton of 7, the isomorphism being {(c, a, b', b) — (b, a\, a,, ax, a;). O

Lemma 5.6. Suppose (A, =) and a, b,a’, b' € A are as in Lemma 5.4, and that
|A|= 6. Then (3') holds and either (1') or (2') holds.

(1') There is p € Ay\{a, b} such that {a’, ;°} is an interval of A\{bj.

(2') A\{a’', b} is an interval of A\{b}.

(3') There is g € Ay\{a, b} such that {b’, q} is an interval of A\{a}.
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Proof. Let a. b,a’.b' € A be as in Lemma 5.4. Since A\{a} is not indecom-
posable, there exists a nontrivial interval /cA\{a}’ similarly, there is a
nontrivial interval J < A\{b}. Each of I\{b'} and J\{a'} is an interval of
A\{a, b’} and A\{b, a’} respectively, and there intervals are trivial since both
A\{a, b’} and A\{b, a'} are indecomposable, as they are isomorphic to A,. If
I=A\{a,b'} J=A\{b,a'}, then INJ=A\{a, b,a’, b’} would be a nontrivial
interval of A, (since jA|>5). Therefore, without loss of generality, we can
assume [={q. b’} for some qeA\{a, b’'}. Moreover, q#a' as otherwise
I={a’, b’} would be nontrivial interval of A,; and also g #b as otherwise
I={b, b’} would be a nontrivial interval of A. Therefore, q € Ay\{a, b} and (3’)
holds.

Similacly, we see that either (2') J=A\{a’, b} or (1') J={a’, p} for some
p€AN{a. b}. O

We now make some ad hoc definitions. Let (A,, =) be a critically indecom-
posable skeleton. Then (a, b) is a building pair if a, b € A, are distinct and, of
the following three conditions, (3) holds and either (1) or (2) holds:

(1) There is p € A,\{a, b} such that {a, p} is an interval of A,\{b}.

(2) Ay\{a, b} is an interval of A \{b}.

(3) There is g € A,\{a, b} such that {b, ¢} is an interval of A,\{a}.
The building pair {a, b) is of the first or second kind according to whether
condition (1) or (2) holds. If {a, b) is a building pair and q is as in (3), then we
sav that g is a mate for b; in addition. if {a, b) is of the first kind, then we also
say that p is a mate for a.

Remark 5.7. Suppose a, b, A,, A are as in Lemma 5.6. If |4A,| =4, then A, is
critically indecomposable by Theorem 2.2. It is easily see that (a, b) is a building
pair for A, and that the element g in (3°) is a mate for b. In addition, if (2') holds,
then {a, b) is of the second kind. and if (1’) holds then (a, b) is of the first kind
and the element p in (1') is a mate for a.

It is quite easy tc ¢+ nine by inspection all the buildings pairs in each of the
standard examw:. . . ritically indecomposable structures that were presented in
Section 4. In «i' cuses, no building pair is both of the first and second kind. Also
in all ca< .. .l mates are unique, so we will refer to ‘the” mate. If (a, b) is a
buil "y, 1. of the first kind, then we will not distinguish between the building
pairs {(a, b) and (b, a).

The only building pairs of the first kind for 4 (r=2) are (a; b,,,) for
i=1,2,...,r—1land {(a,b,) fori=2,3,...,r— 1. In the first case a,,, and b,
are the mates of 4, and b, ,, respectively; in the second case ¢;_, and b, are the
mates of a, and b, respectively. The only building pairs of the second for 4, (r = 3)
are {(a,, b,) and {b,.a,), in which the mate of b, and b, and the mate of a, is
a,_,. The only building pairs cf *iie second kind for % are (a, b,), (b,, a,),
{(as, a,) and (b,. b,), with mates i.,, a,, b, and a, respectively.
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The building pairs for 9, 2, and 9, (for r =2), their kinds and the mates
involved are identical to those of .

All the building pairs of :7¢" (r = 2) are of the first kind, and they are {c;, c;,,)
fori=0,1,...,2r, where i + r is taken modulo 2r + 1. The mates of ¢; and c,,,
are ¢, and ¢;,,,, respectively.

The only building pairs of the first kind for 2 are (a;, b;) for i=
1,2,...,r—1and {a, b,,,) fori=1,2,...,r —1. In the first case the mates of
a; and b; are ¢,_, and b, , respectively; and in the second case the mates of ¢, and
b;., are a;,, and b, respectively. The only building pairs of the second kind for
I are (b,, a,) and {(b,, a,), in which the mate of a, is a,_, and the mate of a,, is
a,.

The building pairs for %, and 9, (r =2), their kinds and mates involved are
identical to those of I

The only building pairs of the first kind for 7 (r=2) are (a,, a,,,) for
i=2,3,...,2r—2; the mate for q; is a;,, and the mate for a;,, is a;_,. The only
building pairs of the second kind for 7 are (a,, a,) and (a,,_,, a,,), in which
the mates are a; and a,,_, respectively.

It now becomes an easy matter to complete the proof of Theorem 5.1 by
induction on the order of the critically indecomposable skeletons. Suppose (A4, =)
is a critically indecomposable skeleton of order k, where kK >5. Leta, b,a’, b’ €
A be as in Lemma 5.6, letting A,=A\{a’, b'}. Then (A,, =) is indecomposable,
so by Theorem 2.2, (A,, =) is critically indecomposable, so it is isomorphic to the
skeleton of some 4, 2., 2., B,, TV, T3, FP g or D], and by Remark 5.7
(a, b) is a building pair of (4,, =). We have seen exactly which are the building
pairs of each of these structures, their kinds and the mates involved. If {a, b)is
of the first kind, then the mates of a and b are the elements p and g from 5.6(1")
and 5.6(3'). It is easily seen that ea’ =ap, a’'b’ = pb and bb' = bq. Then checking
each of the various cases (a task left to the reader) we see that (A. =) is
isomorphic to the skeleton of 4.\, Z..1, Pri1, Brirs T8, T, T Dy o1
9, ., respectively. If (a, b) is of the second kind, then g still is the mate of b,
and, as is easily seen, bb’' = bq and a’a =aq =a'b’. Again, in each of the various
cases we get that (A, =) is isomorphic to the skeleton of 4,..,, Z..1, Pr1, Brsss
g, ga g g . or D, respectively. (There is one small excepticn to the
previous discussion: if (4,, =) is isomorphic to the skeleton of %, then (4, =) is
isomorphic to the skeleton of either %; or #3.)

This completes the proof of Theorem 5.1. [

Corollary 5.8. (1) % is a critically indecomposable graph iff § is isomorphic to
either , or G, for r=2.

(2) @ is a critically indecomposable poset iff P is isomorphic to either P, or P,
forr=2.

(3) 9 is a critically indecomposable tournament iff J is isomorphic to I )
T2, TV forr=2.
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(4) & is a critically indecomposable oriented graph iff & is isomorphic to #,.
PLTO T TV or G, for r=2.

Theorem 5.9. Let (A, =) be indecomposable of order =1. Then there are distinct
¢, d € A such that A\{c, d} is indecomposable.

Proof. If (A, =) is critically indecomposable, then it follows from Corollary 2.3
that there are distinct ¢, d € A such that A\ {c, d} is indecomposable. If (4, =) is
indecomposable, then it follows from Corollary 2.3 that A\ {x} is indecomposable
for some x € A. Then, as long as A\{x} is not critically indecomposable, there is
¥y € A\{x} such that A\{x, y} is indecomposable. Therefore, we can assume that
A=BU{x}, where x ¢ B and (B, =) is critically indecomposable. It will be
proved that there are distinct ¢, d € B such that A\{c, d} is indecomposable. To
derive a corntradiction, suppose that this is not the case.

Case 1: (B, =) is the skeleton of 4,, ., P, or B,, where r =3.

Let I be a nontrivial interval of A\{a,, b,}, and let J be a nontrivial interval of
A\{a,, b,}. Since B\{a,, b,} and B\ {a,, b,} are indecomposable, it follows that
IN{x} and J\{x} are trivial intervals of B\{a,, b,} and B\{a,, b,} respectively.

First, suppose I = B\{a,, b,}. If J = B\{a,, b,}, then B is a nontrivial interval
of A, so A would not be indecomposable. Thus, we can assume that J = {x, y}
for some y e B\{a,, b,}. Then we see that the only possibilities for y are that
y=a,andr=4, ory € {a,, a,, b»} and r = 3. In any case a contradiction ensures:

If y=a,, then {a,, x} is an interval of A.

If y=b, and r =3, then A\{a,, b,} is indecomposable.

If y =a, and r =3, then A\{b,, a;} is indecomposable.

Therefore, we can assume / = {x, y} and J = {x, z}, where y € B\{a,, b,} and
zeB\{a,, b,}. Then, whenever we B\{a,, b,, a,, b,, y, z}, then wy = wx = wz.
Hence, either y =z orelse r =3 and {y, z} = {a,, b,}. Butif y =z, then {x, y} is
an interval of A. So assume r=3 and {y, z} ={a,, b-}. Then, if y=a, and
z=b,, then A\{a,, b} is indecomposable; and if y=b, and z =a,; then
A\{a,, b,} is indecomposable.

Case 2: (B, =) is the skeleton of TV, where r =3.

Consider some i = 2r. Then there are nontrivial intervals I < A\{a;, a;.,} and
JcAMa,.\, a;,11}. As both B\{a,, a,,,} and B\{a,,,, a;,,.,} are isomorphic
to skeletons of 71", it follows that /\{x} and J\{x} are trivial intervals of
B\{a; a,.,} and B\{a,,,. a,,,.,} respectively.

We will show that /= {x,y} for some ye B\{a;, a;,,}. If not, then [=
B\{a,, a,.,}. Then, if /] = B\{a,,,, 4,,,.,}. then B would be a nontrivial interval
of A, so that J = {x, a} for some z € B\{a,,,, a;,,,,}. But then we easily get
p.gqeB\a,.a,, a,, 4a,,,,,z} such that pz#qz, which contradicts that
PZ=Epx =qx =qz.

We have shown that for each i <2r there is y € B\{a,, 4;,,} such that {x, y} is
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an interval of A\{ag;, a,.,}. Thus there is at most one i<2r such that
a,x #aga, #xa;. If there is such an i, then clearly {x, a;,} is an interval of A.
Therefore, we conclude that (A, =) is the skeleton of a tournament, so let us
suppose that (A, —) is that tournament, and that (B, —) is 7.

Now, since (A, —) is indecomposable, there are i, j<2r such that a,—>x,
X—>a;,,, x—a; and a;,,—>x, where i+r+#j and j+r+#i Without loss of
generality, assume j =i + k, where kK <r. Then, if k > 1, then we easily see that
A\{@a;1y, @;4,+1} is indecomposable; and if k=1, we easily see that A\
{@j.+2, Gj4,4,} is indecomposable.

Case 3: (B, =) is the skeleton of T, @, or D., where r =3.

Let I be a nontrivial interval of A\ {ay, b,}, and let J be a nontrivial interval of
A\la b,}. Then, as in Case we see that there is ve R\ {a.. b} such t

\ 14, O,5. 10EN , as I 1, hat Inere 18 y € &\ 4, 255 suchh

I={x,y}, and there is z € B\ {a,, b,} such that J = {x, z}, and y # z as otherwise
I would be an interval of A. There is we B\{ay, b,, a,, b,,y, z} such that
wy # wz. But then wy = wx =wz, a contradiction.

Case 4: (B, =) is the skeleton of T, where r =3.

Let / be a nontrivial interval of A\{a,, a,}, and let J be a nontrivial interval of
AN{ay_y, a5 }. If I = B\{a,, a,}, then it is easily checked that J = {a,, x}, which
implies that {a,, x} is an interval of A. Consequently, I = {x, y} for some
y € B\{a,, a,}, and J = {x, z} for some z € B\{a,,_,, a5}, and y # z as other-
wise / would be an interval of A. There is w € B\{u,, a,, a>,_,, a2,, ¥, 2} such
that wy # wz. But then wy = wx = wz, a contradiction. [

at
aal

™ .1
I

e following is an immediate coroliary to the previous theorem.

Corollary 5.10. Suppose A is an indecomposable structure of order n which is not
critically indecomposable, and suppose 5< m < n. Then s has an indecomposable
substructure of order m.
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