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ABSTRACT 

In this paper, we show that the edge set of a cubic graph can always 
be partitioned into 10 subsets, each of which induces a matching in 
the graph. This result is a special case of a general conjecture made 
by Erdos and NeSetiil: For each d 2 3, the edge set of a graph of 
maximum degree d can always be partitioned into [5d2/4] subsets 
each of which induces a matching. 0 1993 John Wiley & Sons, Inc. 

1. INTRODUCTION 

Throughout this paper, we consider colorings of the edges of a graph 
with positive integers. Formally, a t-coloring of a graph G = ( V ,  E )  is a 
map $: - {1,2,. . . , t}. A t-coloring is proper if $(e)  = $(f) and e # f 
imply that the edges e and f have no common endpoints. Of course, the 
chromatic index of a graph G is the least t for which G has a proper t- 
coloring. Note that whenever qj  is a proper t-coloring of a graph G = ( V ,  E )  
and a E {1,2,. . . , t}, then the edges in 34 = {e  E E:$(e)  = a }  form a 
matching in G. 

An induced matching 34 in a graph G = ( V ,  E )  is a matching such that 
no two edges of 34 are joined by an edge of G. In other words, an induced 
matching is an induced subgraph in which every vertex has degree one. A 
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strong t-coloring of G is a proper t-coloring such that edges with the same 
color form an induced matching of G.  The strong chromatic index, sq(G), is 
the least t for which G has a strong t-coloring. For convenience, two edges 
of a graph G will be called neighbors in G if they do not form an induced 
matching, i.e., if either they are incident (share an end point), or they are 
joined by an edge. Also, we will use the abbreviation [t] for {1,2, . . . , t}. 

At a seminar in Prague at the end of 1985, Erdos and NeSetiil formulated 
the following Vising-type problem: Given an upper bound for sq(G) in terms 
of A(G), the maximum degree of G. They also conjectured (see [4]) that 

5 
sq(G) 5 -A2(G). 

4 ( E N )  

When A(G) is even, this conjecture, if true, is best possible. When A(C) 
is odd, it may be possible to improve it by some term that is linear 
in A(G). In any case, this conjecture appears to be quite difficult. It is 
easy to see that ( E N )  is true when A(G) 5 2. In [8] ,  it is shown that 
sq(G) I 23 for any graph G with A(G) = 4. The trivial upper bound 
sq(G) I 2A2(G) - 2A(G) + 1 follows from the observations that (1) the 
color of an edge of G is affected only by the color of its neighbors, and (2) the 
number of neighbors of any edge of G does not exceed 2A2(G) - 2A(G). 
But even to improve this inequality to sq(G) 5 (2 - c)A2(G), for some 
absolute constant E > 0, seems to be very hard. 

It is possible that these difficulties are connected with a result of K. 
Cameron who proved [2] that the problem of determining whether there 
is an induced matching of size at least k in G is NP-complete even when G 
is a bipartite graph. In [3], the authors solved a problem posed by J. Bond 
and independently by Erdos and NeSetiil: What is the maximum number of 
edges in a graph in which any two edges are neighbors? They showed that 
such a graph has at most :A2(G) edges, with a linear term improvement 
when A(G) is odd. It is reasonable to view this result as providing some 
evidence that conjecture ( E N )  is true. 

In this paper, we prove conjecture ( E N )  when A(G) I 3. In fact, we show 

Theorem. If G is a graph with A(G) 5 3, then sq(G) = 10. I 

This theorem answers a specific question posed to us by A. GyBrfas (see 
also [5] and [6], where many interesting results and problems on the strong 
chromatic index are stated). The inequality given in our theorem is best 
possible as there exist graphs with A(G) 5 3 and sq(G) = 10. Two such 
graphs are (1) an 8-gon with all four diagonals, and (2) a 5-gon in which 
two consecutive vertices have been multiplied by 2. However, it is not clear 
whether there are infinitely many cubic graphs with this property. 

When preparing this paper, we learned that L. Andersen [l] has also 
obtained the same theorem. Andersen’s proof uses different methods and 
emphasizes algorithmic aspects. 
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2. PROOF OF THE THEOREM 

The proof requires two lemmas. The arguments for these lemmas and for 
our theorem involve the construction of a strong 10-coloring $ of a graph 
G = ( V , E )  in an inductive manner. In most cases, $ will be an extension 
of a strong 10-coloring $o of a subgraph (or suitably modified subgraph) of 
G. Furthermore, we will take care to ensure that it never happens that two 
edges of G belong to the subgraph, are not neighbors in the subgraph, but 
are neighbors in G.  We will let F denote the edges of G not already assigned 
colors by $0. For each e E F ,  we let S ( e )  denote the set of colors that have 
not been assigned by $0 to edges that are neighbors of e in the graph G. 

can be constructed by appealing 
to Hall’s theorem [7].  Recall that if A = {S (e ) : e  E F }  is a family of sets, 
then a set {a , : e  E F }  is a system of distinct representatives (abbreviated 
SDR) for A provided 

In some situations, we will argue that 

(1) a, # af, for all e,f E F with e # f, and 
(2) a, E S(e), for all e E F .  

Hall’s theorem asserts that A has an SDR if and only if 
lU{S(E):e E F’}I 2 IF’I, for every F’ C F .  Whenever A has an SDR, 
the task of extending $o to a strong 10-coloring $ is easy. We just take 
$ ( e )  = a,, for every e E F .  

In other cases, for a graph G = ( V , E ) ,  we will define a family 
A ={S,:e E E }  and argue directly that there exists a strong 10-coloring 
i,h with $(e)  E S(e), for all e E E. Sometimes, this will be accomplished 
by describing a linear order on F so that the First Fit algorithm may be 
applied. This algorithm chooses $ ( e )  to be the least (first) integer in S(e) 
not previously assigned to a neighbor of e .  Still other cases will require 
some ad hoc reasoning. 

Lemma 1. 
a vertex v with 1 5 deg(v) 5 2, then sq(G) 5 10. 

If G = ( V ,  E )  is a connected graph with A(G) 5 3, and G has 

Proof. We proceed by induction on IEI, the number of edges in G. The 
result is trivially true when IE1 5 10. Now consider a graph G, and assume 
that the conclusion of the lemma holds for any graph with fewer edges. Each 
nontrivial component of G - u satisfies the inductive hypothesis, so we may 
choose a strong 10-coloring $0 of G - v .  Let F denote the set of edges in 
G that are incident with v .  Each e E F has at most 8 neighbors in G - v ,  
so IS(e)l 2 2. As IF1 = deg(v) 5 2, the family A = {S (e ) : e  E F }  has an 
SDR. It follows that t,b0 can be extended to a strong 10-coloring $ of G.  I 

For each n I 3, let T, be the tree (actually, a caterpillar) with vertex set 
{UO,  v1,. . . , v,}  U {ul, u2 , .  . . , u,} and edge set {ei  = ui - l v i  : 1 5 i 5 n }  U 
{fi = v i u i :  1 I i I n }  
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Lemma 2. 
assigned a set of colors S(e), so that 

(1) IS(e1)l 2 1 and IS(e2)l 2 3; 
(2) IS(ei)l 2 5,  for i = 3,4, .  . . , n ;  

(4) IS(fi)l4, for i = 2,3, .  . . , n  - 1; and either 

Let n 2 3 and suppose that every edge e of the tree T,, is 

(3) IS(fl)l 2 2; 

(54 IS(fn)l 2 4, or 
(5b) IS(fn>l 2 3 and I S ( d  u S(fi)l 2 3. 

Then there is such a strong coloring $ of T, so that +(e) E S(e), for every 
edge e in T,,. 

Proof. In case (5a) holds, the required strong coloring can be obtained 
by applying First Fit to color the edges of T,, in the following order: 

Note that each edge e in the tree T,, has at most at most IS(e)l - 1 neighbors 
preceding it in this list. 

In case (5b) holds, First Fit works until the very end, but might possibly 
fail when coloring fn. Apparently, the three edges en-l, f n - l ,  and en 
could be assigned three (necessarily distinct) colors from S (  f n )  leaving no 
satisfactory choice for fn. So to complete the proof, we argue by induction 
on n.  Suppose first that n = 3. 

Consider any distinct pair a ,  p with a E S(e1) and p E S(fl). Then con- 
sider the remaining four sets S’(e2) = S(e2) - {a ,P} ,  S’(f2) = S(f2) - 
{a ,P} ,  S’(e3) = S(e3)  - {a ,p }  and S’(f3) = S ( f 3 ) .  These four sets have 
an SDR unless S(f3) = S’(e3). We may therefore assume that IS(e3)I = 5 ,  
a,p  E S(e3) ,  and a,p fZ S (  f 3 ) .  That S(el)  U S(fl) contains at least 
three elements allows us to repeat this argument for three distinct pairs 
{(ai, pi) : i = 1,2,3} and conclude that each of the (at least three) elements 
in the union of these pairs belongs to S(e3) - S ( f 3 ) .  But this requires 
IS(e3)l I 6. The contradiction completes the proof of the case n = 3. 

For larger values of n,  note that the condition IS(e1) U S(fl)l 2 3 allows 
us to choose a = $(el) E S(el) and p = $(fl) E S(fl)  so that (5b) holds 
for the remaining edges when a and p are removed from S(e,), S (  f2), and 
S(e3). Since the remaining edges form a copy of the tree TnPl, the proof 
is complete. I 

With the two lemmas in hand, we are now ready to present the central 
part of the proof of the theorem. We proceed by induction on the number 
of vertices in the graph. Consider a graph G = ( V , E )  with A(G) 5 3 and 
assume that the theorem holds for any graph having fewer vertices than 
G. We show that sq(G) I 10. In view of Lemma 1, we may assume G is 
connected and 3-regular. Now let n denote the girth of G ,  i.e., the minimum 
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number of vertices in a cycle in G. Choose a minimum length cycle C in 
G and label the vertices of C as u l ,  u2, .  . . , u, so that ei = ui- lui  E E ,  
for each i = 2,3, .  . . , n, and el = U , U I  E E.  In what follows, we interpret 
subscripts cyclically, so that u,+~ = ul, etc. 

For each i = 1,2, .  . . , n, let ui be the unique vertex of V - C adjacent 
to ui .  Also, let U = (u1,u2,. . .,u,}. Then let H = (C U U ,  F )  be the 
subgraph of G induced by C U U. Note that the vertices on the cycle C are 
distinct, but this may not be the case for the vertices in U .  We may have ui = 
ui when i # j .  In any case, the edges in {el, e2,. . . , e n }  U { f l , f 2 , .  . . ,fn} 
are distinct. 

According to Lemma 1, there exists a strong 10-coloring $0 of G - H .  
For each edge e E F ,  let S ( e )  = {a E [lo]: there is no neighbor of e in 
G so that e is an edge of G - H mapped by 90 to a}. Observe that for 
each i = 1,2, .  . . , n, the edge ei E F has at most 4 neighbors in G - H ,  
the edges incident with ui-l  and ui. Similarly, for each i = 1,2,. . . , n,  
the edge fi E F has at most 6 neighbors in G - H .  Thus, IS(ei)l 2 6 
and I S ( f i ) l  2 4, for i = 1,2, .  . . , n .  Note that IS(ei) n S ( f i ) l  2 2 and 
IS(ei) fl S(fi-111 2 2, for each i = 1,2, .  . . ,n. 

It is easy to see that two edges of G - H are neighbors in G - H if and 
only if they are neighbors in G. However, the subgraph H does not have 
this property in general. The remainder of the argument is divided into 5 
cases according to the relative size of the girth of G .  The basic idea is that 
we will extend the strong 10-coloring to a strong 10-coioring tl/ rfio of G. 

Case 1. n = 3. 

As IS(ei)l 2 6 and I S ( f i ) l  2 4, for each i = 1,2,3, the family 
A = { S ( e )  : e E F }  has an SDR, which we may label as {$ (e )  : e E F}.  
The map $ is then extended to all of E by setting $ ( e )  = $o(e) when 
e E E - F .  

Case 2. n = 4. 

Note that the edges f l  and f 3  are neighbors in G if and only if uIu3 E E 
or u1 = u3. An analogous statement holds for f 2  and f4. All the other pairs 
of edges of H are neighbors in H and have to be colored by distinct colors. 
To obtain the desired extension $, we observe that 

(a) If f i  and fi+2 are neighbors in G, then IS(ei+t) U S(ei+2)1 2 7; 
(b) If f l  and f3 are neighbors, and f2 and f4 are neighbors in G, then 

(c) If fi and f i + 2  are not neighbors, then either S ( f i )  n S(f1+2) # 0, 

If A = { S ( e )  : e E F }  has an SDR, then we are done, so we may suppose 
that it does not. It follows easily that for each i = 1,2, fi and f i+2  are not 

IU%lS(ei) l  2 8; and 

or I S ( f i )  U S(fi+dl 2 8. 
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neighbors and that S ( f i )  fl S(fi+z) # 0. Choose a E S(f1) fl S ( f 3 ) .  If 
(S(f2) n S(f4)) - {a}  = 0, then A’ = 
has an SDR. So we may assume that there exists ,8 # cy with ,8 E 
S(f2) fl S ( f 4 ) .  Then A” = { S ( e i )  - {a ,p } :  i = 1,2,3,4} has an SDR. 

- { a } : e  E F - {f~,fd) 

Case 3. n = 5. 

In this case, we know that the set U = {u l ,  UZ,. . . , u,} is a collection of 
IZ distinct vertices. Otherwise, the girth of G would be less than 5. Also, for 
each i = 1,2, .  . . , 5 ,  the edges f i  and ei+2 are not neighbors in G .  

Consider the family Z? = ( B I ,  Bz,. . . , Bs}, where Bi = S ( f i )  n S(ei+z), 
for i = 1,2, .  . . ,5. If Z? has an SDR, we obtain the desired strong coloring 
of H .  If not, choose a maximum size subset J 5 [5] for which the subfamily 
3’ = { B j  : j  E J }  has an SDR. Let IJI = w ,  and let W = {a j  : j E .I}@ 
be an SDR of 3’. Now let I = [5] - J ,  F’ = U{{fj,e,+z} : j E J } ,  
F” = F - F‘ and 3’‘ = { S ( e )  - W : e  E F“}. Again, if Z?“ has an SDR, 
we get the desired strong 10-coloring of H .  

Suppose therefore that 3’’ does not have an SDR. Observe that B” has a 
total of 10 - 2w sets. Of these, there are 5 - w sets of the form S ( f i )  - W. 
Each of these sets contains at least 4 - w elements. Similarly, Z?“ contains 
5 - w sets of the form S(e i+2)  - W, and each of these sets contains at 
least 6 - w elements. From the maximality of J ,  Bi - W = 0, for every 
i E I ,  and therefore 

Thus, the fact that B” does not have an SDR forces I U {Sc f i )  - W :  
i E I}I = 111 - 1 = 4 - w .  This implies 

(1 )  IS(fj)l = 4, for each i E I, 
(2) S(fi,) - W = S ( f i , )  - W, for all i l , iz E I ,  and 
(3) W C_ S ( f i ) ,  for each i E I .  

Furthermore, for each i = 1,2,. . . ,5,  the edges f i  and f i + 2  are neighbors 
in G if and only if uiui+2 E E. But uiui+z E E implies that f i  has at most 
5 neighbors in G - H ,  which contradicts (1). Hence, for each i E I ,  f i  

and f i + 2  are not neighbors in G .  Similarly, for each i E I ,  f i  and f i -2  are 
not neighbors in G .  

Note that w > 0, for w = 0 requires S ( f j )  fl S(e i+2)  = 0, for each 
i = 1,2, .  . . , 5 .  Clearly, this would imply that A = { S ( e ) : e  E F }  has 
an SDR. Since w < 5, we may assume without loss of generality that 
1 E J and 3 E I. For j E J - {l}, set $ ( f j )  = $(ej+2) = a j .  Noting 
that the edges f l  and f3 are not neighbors, we set $(f l )  = $(f3) = a1 
and F“‘ = (F” - {f3}> U {e3}. The family 3’’’ = { S ( e )  - W : e E F’”} 
has cardinality 10 - 2s with 4 - s sets of cardinality at least 4 - s and 
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6 - s sets of cardinality at least 6 - s. It is easy to see that 3‘” has an 
SDR, and the existence of $ follows. 

Case 4. n 2 7. 

In this case, H is an induced subgraph of G. This means two edges 
of H are neighbors in H if and only if they are neighbors in G. Thus, 
gl = ~ 1 ~ 3  E E and g2 = ~ 2 ~ 4  4 E. We now start with a strong 10- 
coloring $A of the graph G‘ formed by adding the edges gl and g2 to 
G - H. Note that the strong 10-coloring $6 exists by Lemma 1. Let 
F’ denote the set of those edges of G not assigned colors by $6, and 
for each e E F’, let S’(e) denote the set of colors which have not been 
assigned by $A to edges of G that are neighbors of e in G. For each 
i = 1,2  ,..., n, we denote by ai and p i  the colors of edges of G - H 
incident with ui. Thus, for example, S‘(e2) = [lo] - {a l ,  PI, a 2 ,  P2}. Note 
that ai ,  pi 4 S’( fi), for each i = 1,2, .  . . , n .  Also note that the presence 
of the edges gl and g2 in G‘ imply {ai,  pi} fl {ai+2, Pi+2} = €3 for i = 
1,2. Furthermore, S’(fi) r l  S ’ ( f i + 2 )  # 0 for i = 1,2, because (at least) 
$A(gi) E S’(fi) n S ’ ( f i + 2 ) .  

Now we show how to obtain a strong 10-coloring $ of G. We consider 
three subcase depending on the value of t = I{al, PI) n {az ,  p2)l. 

Subcase 4a. t = 2. Set $(fl) = $(f3) = a = &(g1). For each edge 
e E F’ - {fl,f3}, set S”(e) = S’(e) ,  if e is not a neighbor of either f l  or 
f3; otherwise, set S”(e) = S’(e)  - {a}. Observe that 

IS”(f2)I 3; IS”(f4)I 2 3; 
IS”(fi)l 2 4 for i = 5 , 6 , .  . . , n - 1; 

IS”(ei)l 2 5 ;  for i = 1,3,4,5,n;  and 
IS”(ei)l 2 6 for i = 6,7 , .  . . , n  - 1. 

Then we remove all elements of S(f2) from S’’(e4). The edges in 
{e4, e5,.  . . , e n ,  f4 ,  fs, . . . , f n }  form a copy of Tn-3 satisfying the hypothesis 
of Lemma 2, case (5b). Thus, there is a strong 10-coloring $0 of this copy 
of Tn-3. To define our strong 10-coloring I), we will set I)(e) = $A(e) if 
e is an edge of G assigned a color by $A, and we will set $(e)  = $de) 
if e is an edge in the copy of Tn-3 colored by t,b0. It remains only to color 

For each e E F = {el, e2,e3,f2}, let S(e)  be the set of colors not 
already assigned to a neighbor of e .  Since { a ~ ,  PI} = { a 2 ,  P2}, we know 
that IS”(e2)l 2 8. So, IS(e2)l 2 4. Similarly, IS(e2)l 2 2 and IS(e,)l 2 1. 
Finally, IS(f2)l L 3, because f l  and f3 have been assigned the same 
color, and the color assigned to e4 does not belong to S(f4). Therefore, 
A = {S(e)  : e E F }  has an SDR, and the map $ exists. 

el, e2, e37 and f2. 
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Subcase 4b. t = 1. Let a1 = a2. Because the edges g l  and g2 belong 
to G’, we know a1 @ {ai, P i }  for i = 3,4. So, we set +(e4) = a1. Further- 
more, we set $ ( f 2 )  = +(f4) = &(g2) # a l .  As in the preceding case, we 
let S”(e) denote the set of colors available to color an edge e not already 
colored. If E S”(e5), we remove it. There are at least three other colors 
in S”(e5). Hence the copy of Tn-3 formed by {e5, e6r.. . , el,fs,f6, .  . . , f l }  

admits a strong 10-coloring +o by Lemma 2, case (Sb). It remains only 
to color the edges in F = {e2,e3,f3}. Now, for each e E F ,  we let S ( e )  
denote the set of available colors. Note that IS(e2)l 2 2, IS(e3)I 1 2  and 
IS(f3)I 2 1.  It follows that the family A = { S ( e ) :  e E F }  has an SDR, and 
the definition of I) can be completed, unless S(e2) and S(e3) are identical 
2-element sets. 

If a = P I ,  then S(e2) 2 3 .  So we may assume that a # P1. Then, since 
t = 1, it follows that PI E S(e3) - S(e2). In either situation, the map + 
can be defined. 

Subcase 4c. t = 0. By duality, we also assume that {a3,P3} fl 
b 4 , P 4 1 =  0. 

(i) Suppose that { a ] ,  P d  n S ( f 2 )  # 01, say a1 E S ( f 2 ) .  Set + ( f 2 )  = 
a1 and $(e3) = P1. Note that this choice of color for e3 is per- 
missible, since t = 0. Also, set +(fl) = $ ( f 3 )  = a = & ( g l ) ,  and 
note that a CZ { a l , P 1 } .  Now use Lemma 2 to color the copy of 
Tfl-3 formed by the edges (e4, e5,. . . , enrf4,f5,. . . , f n } .  It remains 
only to color the edges in F = {el ,e2}.  However, IS(el)l L 1 and 
IS(e2)l 2 2, so this can be done. It follows that we may assume that 

(ii) Suppose next that {a1,/31} fl S ( f 3 )  # 0, say a1 E S ( f 3 ) .  Set 
$ ( f 3 )  = a1 and $(e3) = PI.  Use Lemma 2, case (5b) to color 
the copy of the tree Tn-2 formed by the edges {e4, e 5 , .  . . , el,f4,f5, 
. . . ,fl}. It remains to color the edges in the set F = {e2,f2} .  
Observe that fS”(e2)J 2 1 and IS/’( f2)1 2 2, since al, 4 SN( f 2 ) .  
It follows that the definition of + can be completed. So, we may now 
assume that {al,P1} fl { S ( f 3 ) }  = 0. 

a and remove all elements of {a}  U S”(f2)  from S”(e4). Apply 
Lemma 2, case (5b) to color the copy of the tree TnW3 formed by the 
edges (e4, e5,. . . , en, f4 ,  fs, . . . , f n } .  Now it remains to color the edges 
in F = {e1,ezle3,f2).  Observe that IS(el)l 2 1 and IS(e2)l 2 2, 
IS(e3)l 2 4 and IS(f2)I  2 3.  It follows that the definition of + can 
be completed. Therefore, we may assume that {a2, P 2 }  # {a3, P3}. 
In what follows, we label these elements so that a2 4 {a3, P3}. 

(iv) Suppose that { a l , P J  fl { a d , P 4 }  # 0, say P1 = P4. Set +(e3) = 
P1 and +(e4) = az. Note that the choice of the color for e4 

makes use of the convention given at the end of the preced- 
ing paragraph. Now choose + ( f 3 )  = a E S”(f3)  - {a2,/31} and 

{a,,P11 n {S(f*)} = 0. 

(iii) Suppose that b 2 ,  P 2 1  = { a 3 9  P3). Set +(fJ = w - 3 )  = +&l) = 
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@(f4)  = p E S”(f4) - {a,a2,p1}. Note that there are still three 
colors available for e5, because p1 = p4 $Z S”(e5). It follows that 
we may color the edges in the copy of Tn-2 formed by the edges 
in { e ~ ,  e6,. . . , e2,fs,f6, t ,  . . . ,f2). When this is done, all edges in G 
have been colored, and the definition of @ may be completed. We 
may therefore assume that {a1,/31} n {a4,p4) = 0. 

P11 n {a4,P41 = 0. Set +(f2)  = @(f4)  = +&a) = a ,  @(e3) = 

(v)  ina all^, suppose that {al,pl) n s(f2) = {al,pl} n s(f3) = {al, 

a1 and @(e4) = PI. We then color the edges in the copy of Tn-3 
formed by {es, e6,. . . , el,f5, f 6 , .  . . , fl} using Lemma 2, case (5b). It 
remains to color the edges in F = {e2, e3). Observe that IS(e2)l 2 1 
and IS(f3)I 2 2, so the definition of @ can be completed. 

Case 5. n = 6.  

First, observe that whenever uiui+3 E E ,  the edges f i  and f i + 3  are 
neighbors and have to be colored by distinct colors. But, when this happens, 
fi and f i + 3  have at most 5 neighbors in G, and thus I S ( f i ) l  1 5 and 

When uiui+3 @ E ,  for i = 1,2,3, H is an induced subgraph of G. 
Furthermore, the proof for the case n 1 7 applies to this case as well. Note 
that in the construction of the copies of trees, the smallest tree considered 
is TnP3. Since n = 6, Lemma 2 can still be applied. 

Now suppose that {uiui+3 : i E [3]} fl E # 0 and consider the individual 
steps in the proof of the case n 2 7. Except for the subcase t = 0, for each 
i = 1,2,3, the edges fi and f i + 3  are not colored at the same stage of the 
definition of +. For example, in the subcase t = 2, at the first stage, we 
color f l  and f3; at the second, we color Tn-3; and at the third stage, we 
color el, e2, e3, and f2. So, when uiui+3 E E and fi is colored before f i + 3 ,  

we remove the color assigned to f i  from S( f i + 3 ) .  The slack provided by 
the inequality IS(fi+3)l 2 5 makes this possible. 

Finally, in the subcase t = 0, we observe that there is a unique value 
of i for which fi and f i+2  belong to the copy of Tn-2 that is colored 
by appeal to Lemma 2. After relabeling, we may assume that the edges 
in this copy belong to F = {el, e2, e3, e4,fl, f2,f3,f4}. If the edge u1u4 4 
E ,  the original argument works. If u1u4 E E ,  then we observe that the 
following inequalities hold: IS(e1)l z 3, IS(e2)I 1 4,1S(e3)1 2 6, IS(e4)I 2 
5, IS(fl)l 2 3, IS(f2)1 1 4, IS(f3)1 2 4, and IS(f4)I L 4. It is an easy 
exercise to show that we can define the strong 10-coloring $ with @(e) E 
S(e), for each e E F ,  given these inequalities. The proof of our theorem 
is now complete. I 

IS(fi+~)l 2 5.  

ACKNOWLEDGMENT 

The research of the third author is supported in part by NSF under DMS 
89-02481. 



160 JOURNAL OF GRAPH THEORY 

References 

[ 11 L. D. Andersen, The strong chromatic index of a cubic graph is at most 

[2] K. Cameron, Induced matchings. Discrete Appl. Math. 24 (1989) 

[3] F. R. K. Chung, A. GyBrfBs, W. T. Trotter, and Z. Tuza, The maximum 
number of edges in 2Kz-free graphs of bounded degree. Discrete Math. 

[4] P. Erdos, Problems and results in combinatorial analysis and graph 

[5] R. T. Faudree, A. GyBrfBs, R. M. Schelp, and Z. Tuza, Induced match- 

[6] R.T. Faudree, A. GyBrfBs, R.H. Schelp, and Z. Tuza, The strong 

[7] P. Hall, On representatives of subsets. J.  London Math. SOC. 10 (1935) 

[8] P. HorBk, The strong chromatic index of graphs with maximum degree 

10. Ann. Discrete Math. To appear. 

97-102. 

81 (1990) 129-135. 

theory. Discrete Math. 72 (1988) 81-92. 

ings in bipartite graphs. Discrete Math. 78 (1989) 83-87. 

chromatic index of graphs. Submitted. 

26-30. 

four. Submitted. 


