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Balancing Pairs in Partially Ordered SetsS. FELSNER1 and W. T. TROTTERDedicated to Paul Erd�os on his eightieth birthday.ABSTRACTJ. Kahn and M. Saks proved that if P is a partially ordered set and is nota chain, then there exists a pair x; y 2 P so that the number of linear extensionsof P with x less than y is at least 3=11 and at most 8=11 of the total number oflinear extensions. S. S. Kislitsyn and, independently M. Fredman and N. Linialconjectured that this result is still true with 3=11 and 8=11 replaced by 1=3 and2=3. In this manuscript, we produce some new inequalities for linear extensionsof partially ordered sets, and we give new proofs of some known inequalities.We also conjecture a cross product inequality which we are able to verify forwidth two posets. As a consequence of our approach to studying balanced pairs,we are able to improve the Kahn/Saks result by a small positive constant.1. IntroductionGiven a �nite partially ordered set (poset) P and a pair x, y of distinctelements of P , let Prob(x > y) denote the number of linear extensions of Pin which x > y divided by the total number of linear extensions. If x < yin P , Prob(x > y) = 0, while Prob(x > y) = 1 if x > y in P . On the otherhand, if x and y are incomparable in P , then 0 < Prob(x > y) < 1. In 1969,1 Research supported by DFG under grant FE-340/2-1.2 This is an extended abstract of a full length article which will appear elsewhere.



2 S. FELSNER, W. T. TROTTERS. S. Kislitsyn [9] made the following conjecture, which remains of the mostintriguing problems in the combinatorial theory of posets.Conjecture 1.1. If P is a poset which is not a chain, then there exists anincomparable pair x; y 2 P so that1=3 � Prob(x > y) � 2=3:Conjecture 1.1 was also made independently by both M. Fredman andN. Linial, and many papers on this subject attribute the conjecture to them.It is now known as the 1=3|2=3 conjecture. Linial [11] showed that theconjecture holds for width two posets, and P. Fishburn, W. G. Gehrlein andW. T. Trotter [2] showed that it holds for height two posets.Following [7], we let �(P ) denote the largest positive number for whichthere exists a pair x; y 2 P with �(P ) � Prob(x > y) � 1 � �(P ). Usingthis terminology, we can state the principal result of [7] as follows.Theorem 1.2. If P is not a chain, then �(P ) � 3=11.The original motivation for studying balancing pairs in posets was theconnection with sorting. The problem was to answer whether it is alwayspossible to determine an unknown linear extension with O(log t) rounds(questions) where t is the number of linear extensions. The answer would beyes if one could prove that exists an absolute constant �0 so that �(P ) � �0for any P which is not a chain.Although the Kahn/Saks bound given in Theorem 1.2 is the best knownbound valid for all �nite posets, other proofs bounding �(P ) away from zerohave been given. In [8], L. Khachiyan uses geometric techniques to show�(P ) � 1=e2. Kahn and Linial [6] provide a short and elegant argumentusing the Brunn/Minkowski theorem to show that �(P ) � 1=2e. In [4],J. Friedman also applies geometric techniques to obtain even better con-stants when the poset satis�es certain additional properties. Kahn andSaks conjectured that �(P ) approaches 1=2 as the width of P tends to in-�nity. In [10], J. Koml�os provides support for this conjecture by showingthat for every � > 0, there exists a function f�(n) = o(n) so that if jP j = nand P has at least f�(n) minimal points, then �(P ) > 1=2� �.None of the arguments in [6], [7] and [8] yields an e�cient algorithm forthe original sorting problem since they do not provide an e�cient methodfor determing how to locate the balancing pair. In [5], Kahn and J. Kimhave taken a totally di�erent approach to the sorting problem. Using a



BALANCING PAIRS IN POSETS 3concept of entropy for posets, they show the existence of a polynomial timealgorithm for sorting in O(log t) rounds. Their algorithm shows how toe�ciently locate pairs to use in queries so that, regardless of the responses,the determination of the unknown linear extension is made in O(log t)rounds. However, at individual rounds, the pairs need not be balancedin the sense that for a given pair (x; y) used in the algorithm, Prob(x > y)may be arbitrarily close to zero.In this paper, we will concentrate entirely on the issue of balancingpairs|setting aside for the time being the algorithmic questions. First, weintend to develop some new combinatorial lemmas for linear extensions ofposets. One immediate bene�t will be to provide simple proofs of lemmas�rst developed in [7]. Second, we will obtain a modest improvement inTheorem 1.2. Third, we will make a conjecture which, if true, would implyan even stronger result, one which is best possible if we extend our study ofbalancing pairs to countably in�nite posets of width two.2. Notation and terminologyAs much as is possible, we will use the notation and terminology of [7], andwe will assume the reader is familiar with the concepts and proof techniquesof this paper. In particular, we consider the sample space of all linearextensions of a poset P with all linear extensions being equally likely. For arandom linear extension L and a point x 2 P , hL(x) denotes the height ofx in L, i.e., if L orders the points in P as x1 < x2 < : : : < xn and x = xi,then hL(x) = i. We denote by h(x) the expected value of hL(x). When(x; y) 2 P � P is a �xed ordered pair of incomparable points, then for eachpositive integer i, we let ai denote the probability that hL(y) � hL(x) = i,and we let bi denote the probability that hL(x) � hL(y) = i. We also setb = b1 and let B =Pi bi = Prob(x > y). Then we set � = b=B.The following lemmas are proven in [7].Lemma 2.1. a1 = b1 = b.Lemma 2.2. a2 + b2 � a1 + b1.Lemma 2.3. For each i � 1, ai+1 � ai + ai+2 and bi+1 � bi + bi+2.Lemma 2.1 is trivial, but already Lemma 2.2 requires a clever littleargument. Lemma 2.3 is more substantial.



4 S. FELSNER, W. T. TROTTERThe basic approach of [7] may now be summarized as follows. SinceP is not a chain, it follows that we may choose an ordered pair (x; y) with0 � h(y)�h(x) < 1. Then Kahn and Saks show that 3=11 < B = Prob(x >y) < 8=11. The argument cannot be made just on the basis of these lemmas.Kahn and Saks also derive in [7] the following nonlinear inequality, whichis critical to their argument.Theorem 2.4. The sequences fai : i � 1g and fbi : i � 1g are log-concave, i.e., for each i � 1, a2i+1 � aiai+2 and b2i+1 � bibi+2.3. Obstacles and pitfallsAs Kahn and Saks point out in [7], the value of the constant in Theorem 1.2could be improved if we could show that there exists a positive absoluteconstant 
 so that if P is not a chain, then if is always possible to �ndan ordered pair (x; y) with 0 � h(y) � h(x) � 1 � 
. However, nobodyhas yet been able to settle whether such a 
 exists. If it does, then asshown by Saks in [12], it must satisfy 
 � :133. Even this value would notbe enough to prove �(P ) � 1=3. However, it is of interest to determinethe maximum value of jh(y) � h(x)j which allows one to conclude that1=3 � Prob(x > y) � 2=3. It is relatively easy to modify the Kahn/Saksproof technique to obtain the next result, which is clearly best possible.Theorem 3.1. Let (x; y) be distinct points in a poset P , and suppose that0 � h(y)� h(x) � 2=3. Then 1=3 � Prob(x > y) � 2=3.There is another more serious obstacle. If we extend the concept tocountably in�nite posets, then the 1=3|2=3 conjecture is false. As wasdiscovered independently by G. Brightwell and Trotter, there is a countablyin�nite width two semiorder P with �(P ) = (5 � p5)=10 � :27639. Thisexample is constructed as follows. The poset P has as its point set X =fxi : i 2 Zg with: xi < xj in P if and only if j > i+1 in Z. If we de�ne the�nite poset Pn to be the subset of P consisting of all points whose subscriptsin absolute value are at most n, then it is an easy exercise to show thatlimn!1Prob(x0 > x1) = (5�p5)=10:This example is striking on two counts. First, as noted in Section 1, Linialshowed in [11] that �(P ) � 1=3, for any �nite width two poset. Second, this



BALANCING PAIRS IN POSETS 5in�nite poset is a semiorder, and Brightwell showed in [1] that �(P ) � 1=3,for any �nite semiorder|regardless of its width.Also, there is a six point poset (see [13], for example) containing anincomparable pair x; y with h(y)� h(x) = 1 and Prob(x > y) = 3=11. Thisexample shows that the Kahn/Saks inequality in Theorem 1.2 is, in somesense, best possible.4. Some new inequalitiesWe begin this section with a generalization of Lemma 2.2.Lemma 4.1. If x and y are incomparable, then for each i � 2, b2 + ai �b1 + a1 + a2 + � � �+ ai�1.Proof. For each integer k, let Ek denote the set of linear extensions of Pin which y appears exactly k positions above x. Now let i � 2. We describean injection � from E�2 [ Ei to E�1 [ E1 [E2 + � � � [ Ei�1 First considera linear extension L in Ei. We distinguish two cases. In Case 1, there is atleast one point between x and y in L which is larger than x in P . In Case 2,there is no such point. In Case 1, let fu1; u2; : : : ; urg be the nonempty setof points which are between x and y in L and are greater than x in P . Weassume the points have been labelled so that u1 < u2 < � � � < ur in L. Setx = u0 and y = ur+1. For each i = 0; 1; : : : ; r, let Si denote the linear orderinduced on the set of points which lie between ui and ui+1 in L. Then letU denote the linear order on the points below x in L and let H denote thelinear order on the points above y in L. With this notation, the linear orderL can be decribed asL = U < x < S0 < u1 < S1 < u2 < S2 < � � � < ur < Sr < y < H:We associate with L the linear extension �(L) in E1 [ E2 + � � � [ Ei�1de�ned as follows.�(L) = U < S0 < x < S1 < u1 < S2 < u2 < S3 < � � � < ur�1 < Sr <y < ur < H:If Case 2 holds, we de�ne U and H as before and set M to be the linearorder determined by the points between x and y in L. Now we take �(L)in E�1 as �(L) = U < M < y < x < H:



6 S. FELSNER, W. T. TROTTERIf L is in E�2 we may write L = U < y < u < x < H. If u < x in P then�(L) = U < u < y < x < H in E�1, otherwise �(L) = U < x < y < u < Hin E1.It is straightforward to verify that the function � is an injection. Thedesired inequality is obtained by taking cardinalities and dividing by thetotal number of linear extensions of P .We next use the proof of the preceding lemma to provide a simple proofof Lemma 2.3.Proof of Lemma 2.3. Let L be a linear extension of P in which y is exactlyi+ 1 positions above x. We associate with L another linear extension �(L)de�ned as follows. We consider three cases. Case 1 holds if x is incomparablewith the point u immediately above it in L. In this case we exchange u andx to obtain �(L) in Ei. Case 2 holds if these two points are comparable andthere is an element v immediately below and incomparable with x. In thiscase we exchange v and x to obtain �(L) in Ei+2. In Case 3, observe thatx < u if u is the point immediately over x in L. Also, either x is the leastelement of L, or the element v immediately below x in L is comparable withx. In this case we form �(L) as in Case 1 in the proof of Lemma 4.2. SinceS0 is empty in this case, we have �(L) in Ei.Given �(L) in Ei we only have to inspect the comparability status of xand the element immediately below x in �(L) to decide if the rule of Case 1or Case 3 has been applied to obtain �(L). Hence � is an injection.5. Our approach to balancing pairsWithout loss of generality, we may restrict our attention to posets in whichno point is comparable to all others. For such posets, note that if x < yin P , then h(y) > 1 + h(x). We then choose three points x, y and z withh(x) � h(y) � h(z) � 2 + h(x), and consider some cases depending on thesubposet of P formed by fx; y; zg. Taking advantage of duality, we needonly consider the following four situations (we write ukv when u and v areincomparable).Case A: x < z and y < z in P .Case B: y < z, xky and xkz in P .Case C: fx; y; zg is a 3{element antichain.Case D: x < z, xky and ykz in P .



BALANCING PAIRS IN POSETS 7We will show that there exists an absolute constant 
0 so that if CasesA, B or C hold, then one of the three pairs (x; y), (y; z) and (x; z) is anincomparable pair witnessing �(P ) � 3=11+ 
0. Case D will require a moredetailed analysis.For integers i; j, let p(i; j) denote the probability that h(y) � h(x) = iand h(z) � h(y) = j. In arguments to follow, we will continue to use theprevious de�nitions for b;B; ai; bi; � for the pair (x; y). When y and z areincomparable, the quantities which are analogous to b and B will be denotedr and R, respectively.6. Cases A, B and C, the easy casesIn this section, we show that Cases A, B and C lead to a stronger conclusionthan given in Theorem 1.2. In fact, in Cases A and B, we show that Psatis�es the 1=3|2=3 conjecture. Throughout this section, we assume thatx, y and z have been chosen so that h(x) � h(y) � h(z) � 2 + h(x). Webegin with Case A.Theorem 6.1. If Case A holds, then1=3 � Prob(x < y) � 2=3:Proof. Prob(x > y) = B � b, and h(z) � h(x) � 2 require that 2 �B + 2b+ 3(1 �B � b) so that B � 1=3.Theorem 6.2. If Case B holds, then1=3 � Prob(x < y) � 2=3:Proof. Obviously, h(z) � h(y) = 1 +Pi;j(j � 1)p(i; j) � 1 + p(�1; 2) +2Pi�3 p(�1; i)+Pi�2 p(1; i). UsingPi�1 p(1; i) =Pi�2 p(�1; j) = b1 andp(�1; 2) = p(1; 1) = p(�2; 1) � b2 we obtain h(z) � h(y) � 1 + b2 + 2(b1 �b2) + (b1 � b2) = 1 + 3b1 � 2b2.This leads to a correlation between the height of x and y and theirprobability of being reversed and close to each other:h(y)� h(x) � 2� (h(z) � h(y)) � 1� 3b1 + 2b2:Now suppose that there are sequences faigi�1 and fbigi�1 satisfyingthe conditions of Lemmas 2.1, 2.2, 2.3 and Theorem 2.4, together with



8 S. FELSNER, W. T. TROTTERPi�1(ai + bi) = 1 and Pi�1 i(ai � bi) � 1 � 3b1 + 2b2 and Pi�1 bi � B.Then the \packed" sequences ai = b(1+ �)i and bi = b(1� �)i also satisfy allthese conditions. Therefore we can analyze the situation with the techniquesof [7]. It turns out that the worst case occurs in Case 2 with k = 3. For thisvalue of k, it may be veri�ed that B � 0:335, which is a little more thanwhat is claimed in the statement of the theorem.Before presenting the result for Case C, we need the following technicallemma which is also proved with the Kahn/Saks techniques. The basic ideabehind this lemma is that a pair of incomparable points which are relativelyclose in expected height must be a balancing pair if they are unlikely toappear consecutively in a random linear extension.Lemma 6.3 For every pair 
1; C of positive contants, there exists a positiveconstant 
2 so that if x and z are incomparable points in a poset P and0 � h(z)� h(x) � C, then either 1=e� 
1 � Prob(x > z) � 1 + 
1 � 1=e orb = Prob(hL(z)� hL(x) = 1) � 
2.Theorem 6.4. There exists an absolute constant 
3 > 0 so that if Case Cholds, then �(P ) > 
3 + 3=11.Sketch of the proof. Apply Lemma 6.3 with 
1 = 0:1 and C = 2, and let
2 be the constant provided by the theorem. We may then assume that theprobability that z covers x is at least 
2. It follows that either B� b � 
2=2or R � r � 
2=2. A straightforward calculation then shows that at leastone of Prob(x > y) and Prob(y > z) must be larger than 3=11 by a postiveconstant expressible as a function of 
2.We close this section with the following easy technical extension toTheorems 6.1, 6.2 and 6.4. This result allows us to increase the di�erencein expected heights between x and z to a quantity strictly larger than 2.Theorem 6.5. For all (su�ciently small) 
4; 
5 > 0, there exists a 
6 > 0so that if x and y satisfy h(x) � h(y) � 1 + 
4 + h(x) and B � b � 
5, then�(P ) > 3=11 + 
6.7. An application of linear programmingIn this section, we begin to analyze Case D. Recall that B = Prob(x > y)and R = Prob(y > z). We state the following result using the notationintroduced in Section 5.



BALANCING PAIRS IN POSETS 9Theorem 7.1. B +R � 6=11 so that �(P ) � 3=11.Sketch of proof. We outline the steps necessary to prove this inequality.The detailed computations are straightforward. First, produce a lowerbound on h(z)� h(x) by assuming that(1.) h(z) � h(x) = 1 whenever hL(x)� hL(y) � 2.(2.) h(z) � h(x) = 1 whenever hL(y)� hL(z) � 2.(3.) h(z) � h(x) = 6 whenever hL(y)� hL(x) � 2, hL(z)� hL(y) � 2and hL(z)� hL(x) � 6.Use this lower bound and the inequality 2 � h(z) � h(x) to obtain thefollowing inequality:5(B+R)+4p(1; 1)+2p(1; 2)+2p(2; 1)+2p(2; 2)+p(2; 3)+p(3; 2) � 4: (7:1)Note that p(1; 1) + p(1; 2) = p(�1; 2) + p(�1; 3) � B (7:2)and p(1; 1) + p(2; 1) = p(2;�1) + p(3;�1) � R: (7:3)Also note thatXj p(2; j) �Xj p(1; j) + p(3; j) � 1�B �Xj p(2; j) (7:4)so that Xj p(2; j) � 1=2�B=2: (7:5)Using a symmetric inequality, we obtainXj p(2; j) + p(j; 2) � 1� (B +R)=2: (7:6)Next, since 2p(1; 1) = p(2;�1) + p(�1; 2), observe that2p(1; 1) + p(1; 2) + p(2; 1) + 2p(2; 2) �Xj p(2; j) + p(j; 2) � 1� (B +R)=2:(7:7)The desired result follows by applying inequalities (7.2), (7.3) and (7.7)to the left hand side of (7.1).



10 S. FELSNER, W. T. TROTTERAs will be clear from the results which follow, Theorem 7.1 does some-thing more than just prove a special case of Theorem 1.2. Since we arecombining a series of inequalities, it is clear that we get an improvementwhenever any of the individual inequalities used in the argument are nottight.8. The cross product conjectureWe made some e�ort to construct a poset which would show that theinequality obtained in Theorem 7.1 is best possible, but were not successful.We then turned our attention to the in�nite width two semiorder whichviolates the 1=3{2=3 conjecture. In this poset, the following identity holds.p(1; 1)p(2; 2) = p(1; 2)p(2; 1) (8:1)Consideration of several examples leads us to make the following \crossproduct" conjecture.Conjecture 8.1. Let x, y and z be distinct points in a poset P and letp(i; j) denote the probability that x is i positions below y and y is j positionsbelow z. Then p(1; 1)p(2; 2) � p(1; 2)p(2; 1):We can provide some additional motivation for this conjecture with thefollowing result.Theorem 8.2. If x, y and z are three distinct points of a poset P , h(x) �h(y) � h(z) � 2 + h(x), x < z in P , and the cross product Conjecture 8.1is true, then �(P ) � (5�p5)=10.Sketch of proof. Clearly, we may assume that x is incomparable to y andy is incomparable to z. To simplify the computational e�orts, we let X =B+R, x1 = p(1; 1), x2 = p(1; 2)+p(2; 1), x3 = p(2; 2), x4 = p(1; 3)+p(3; 1),x5 = p(2; 3) + p(3; 2) and x6 = p(1; 4) + p(4; 1). Then inequality (7.1)becomes 5X + 4x1 + 2x2 + 2x3 + x5 � 4: (8:2)We can add p(1; 3) and p(3; 1) to the left sides of (7.2) and (7.3) respectively.Then add the resulting inequalities to obtainX � 2x1 + x2 + x4: (8:3)



BALANCING PAIRS IN POSETS 11We then observe that p(2; 3) � p(1; 3) + p(1; 4) (8:4)and p(3; 2) � p(3; 1) + p(4; 1) (8:5)so that x5 � x4 + x6: (8:6)Since the sum of all probability is one, we haveX + x1 + x2 + x3 + x4 + x5 + x6 � 1: (8:7)The cross product inequality impliesx1x3 � (x22)=4: (8:8)With some calculations, one can show that subject to the inequalities (8.2),(8.3), (8.6), (8.7), and (8.8), the minimum value of X is (5�p5)=5.We believe that a more general form of the cross product conjecture isvalid.Conjecture 8.3. Let x, y and z be distinct points in a poset P and letp(i; j) denote the probability that x is i positions below y and y is j positionsbelow z. If i and j are positive, thenp(i; j)p(i + 1; j + 1) � p(i; j + 1)p(j + 1; i):Although we have not been able to verify the cross product inequalityin general, we have been able to verify Conjecture 8.3 for width two posets.9. Improving the Kahn/Saks boundIn this section, we outline the proof of the following theorem; the criticalpart of the argument involves a more detailed analysis of Case D.Theorem 9.1. There exists an absolute constant 
0 > 0 so that if P is aposet and is not a chain, then �(P ) > 3=11 + 
0.Sketch of proof. Let jP j = n; without loss of generality, we may assumen � 6. Choose a set U = fu1; u2; : : : ; u6g of six points from P so thath(u1) � h(u2) � � � � � h(u6) � 5 + h(u1):



12 S. FELSNER, W. T. TROTTERUsing the results of Section 6, we may assume that(1.) uikui+1 in P , for i = 1; 2; 3; 4; 5.(2.) ui < uj in P , whenever j � i+ 2.Also, we may assume that h(ui+1) is almost exactly 1 + h(ui). For theremainder of this outline, we assume h(ui+1) is exactly 1 + h(ui). Thesteps necessary to handle the approximations are routine. Now we re-turn to the linear programming argument in Section 7. It follows thatwe may apply the arguments in this section to each triple (x; y; z) 2f(u1; u2; u3; ); (u2; u3; u4); (u3; u4; u5); (u4; u5; u6)g. It is easy to see that theinequality B +R � 6=11 is tight only when(3.) p(1; 1) = p(�1; 2) = p(2;�1) = 2=11, and(4.) p(1; 2) = p(2; 1) = p(�1; 3) = p(3;�1) = p(2; 2) = 1=11.Let M be a linear extension of U . Consider the probability qM that arandom linear extension of P has the points of U appearing consecutively inthe same order asM . It is straightforward to use properties (3.) and (4.) toshow that if the inequality �(P ) � 3=11 is tight, then qM = 1=11. However,this is impossible since there are 13 linear extensions of U . The contradictionis enough to show that �(P ) exceeds 3=11 by some absolute constant.10. Concluding remarksWe consider the research techniques behind the results outlined in this pa-per as perhaps of greater importance than the results themselves. First, wehave done considerable experimentation with computers and several com-mercially available optimization packages. A linear programming package�rst discovered the proof in section 3. This result and the fact that the solu-tion is unique is key to making any improvement in the Kahn/Saks bound.Similarly, a non-linear solver �rst discovered that the cross product inequal-ity is su�cient to show �(P ) � (5 �p5)=10 in Case D. We also found thecomputer of great value in analyzing the proof of Theorem 6.2. Numericalevidence suggests that in the case of a 3{element antichain, we can actuallyconclude that �(P ) � 0:3. If this is true, then the proof of the cross productconjecture would imply that �(P ) � (5 �p5)=10 for any poset P which isnot a chain.
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