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ABSTRACT

J. Kahn and M. Saks proved that if P is a partially ordered set and is not
a chain, then there exists a pair x,y € P so that the number of linear extensions
of P with z less than y is at least 3/11 and at most 8/11 of the total number of
linear extensions. S. S. Kislitsyn and, independently M. Fredman and N. Linial
conjectured that this result is still true with 3/11 and 8/11 replaced by 1/3 and
2/3. In this manuscript, we produce some new inequalities for linear extensions
of partially ordered sets, and we give new proofs of some known inequalities.
We also conjecture a cross product inequality which we are able to verify for
width two posets. As a consequence of our approach to studying balanced pairs,
we are able to improve the Kahn/Saks result by a small positive constant.

1. Introduction

Given a finite partially ordered set (poset) P and a pair z, y of distinct
elements of P, let Prob(z > y) denote the number of linear extensions of P
in which z > y divided by the total number of linear extensions. If z < y
in P, Prob(z > y) = 0, while Prob(z > y) =1 if z > y in P. On the other
hand, if z and y are incomparable in P, then 0 < Prob(z > y) < 1. In 1969,
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S. S. Kislitsyn [9] made the following conjecture, which remains of the most
intriguing problems in the combinatorial theory of posets.

Conjecture 1.1. If P is a poset which is not a chain, then there exists an
incomparable pair z,y € P so that

1/3 < Prob(z > y) < 2/3. |

Conjecture 1.1 was also made independently by both M. Fredman and
N. Linial, and many papers on this subject attribute the conjecture to them.
It is now known as the 1/3—2/3 conjecture. Linial [11] showed that the
conjecture holds for width two posets, and P. Fishburn, W. G. Gehrlein and
W. T. Trotter [2] showed that it holds for height two posets.

Following [7], we let 0(P) denote the largest positive number for which
there exists a pair z,y € P with §(P) < Prob(z > y) <1 —4(P). Using
this terminology, we can state the principal result of [7] as follows.

Theorem 1.2. If P is not a chain, then 6(P) > 3/11. =

The original motivation for studying balancing pairs in posets was the
connection with sorting. The problem was to answer whether it is always
possible to determine an unknown linear extension with O(logt) rounds
(questions) where ¢ is the number of linear extensions. The answer would be
yes if one could prove that exists an absolute constant dy so that §(P) > d
for any P which is not a chain.

Although the Kahn/Saks bound given in Theorem 1.2 is the best known
bound valid for all finite posets, other proofs bounding J(P) away from zero
have been given. In [8], L. Khachiyan uses geometric techniques to show
§(P) > 1/e?. Kahn and Linial [6] provide a short and elegant argument
using the Brunn/Minkowski theorem to show that §(P) > 1/2e. In [4],
J. Friedman also applies geometric techniques to obtain even better con-
stants when the poset satisfies certain additional properties. Kahn and
Saks conjectured that 0(P) approaches 1/2 as the width of P tends to in-
finity. In [10], J. Komlds provides support for this conjecture by showing
that for every e > 0, there exists a function f.(n) = o(n) so that if |P| =n
and P has at least f.(n) minimal points, then 6(P) > 1/2 —e.

None of the arguments in [6], [7] and [8] yields an efficient algorithm for
the original sorting problem since they do not provide an efficient method
for determing how to locate the balancing pair. In [5], Kahn and J. Kim
have taken a totally different approach to the sorting problem. Using a
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concept of entropy for posets, they show the existence of a polynomial time
algorithm for sorting in O(logt) rounds. Their algorithm shows how to
efficiently locate pairs to use in queries so that, regardless of the responses,
the determination of the unknown linear extension is made in O(logt?)
rounds. However, at individual rounds, the pairs need not be balanced
in the sense that for a given pair (z,y) used in the algorithm, Prob(z > y)
may be arbitrarily close to zero.

In this paper, we will concentrate entirely on the issue of balancing
pairs—setting aside for the time being the algorithmic questions. First, we
intend to develop some new combinatorial lemmas for linear extensions of
posets. One immediate benefit will be to provide simple proofs of lemmas
first developed in [7]. Second, we will obtain a modest improvement in
Theorem 1.2. Third, we will make a conjecture which, if true, would imply
an even stronger result, one which is best possible if we extend our study of
balancing pairs to countably infinite posets of width two.

2. Notation and terminology

As much as is possible, we will use the notation and terminology of [7], and
we will assume the reader is familiar with the concepts and proof techniques
of this paper. In particular, we consider the sample space of all linear
extensions of a poset P with all linear extensions being equally likely. For a
random linear extension L and a point x € P, hy(z) denotes the height of
z in L, i.e., if L orders the points in P as z1 < 22 < ... < x,, and £ = x;,
then hr(r) = i. We denote by h(z) the expected value of hr(z). When
(z,y) € P x P is a fixed ordered pair of incomparable points, then for each
positive integer i, we let a; denote the probability that hr(y) — hr(z) = 1,
and we let b; denote the probability that hr(z) — hr(y) = 7. We also set
b=b; and let B =), b; = Prob(z > y). Then we set € = b/B.

The following lemmas are proven in [7].
Lemma 2.1. a; =b; =b. n
Lemma 2.2. as+by <a;+b;. m
Lemma 2.3. Foreachi > 1, a;11 < a;+ ajq42 and bjy1 < b;+ bj12. W

Lemma 2.1 is trivial, but already Lemma 2.2 requires a clever little
argument. Lemma 2.3 is more substantial.
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The basic approach of [7] may now be summarized as follows. Since
P is not a chain, it follows that we may choose an ordered pair (z,y) with
0 < h(y)—h(z) < 1. Then Kahn and Saks show that 3/11 < B = Prob(z >
y) < 8/11. The argument cannot be made just on the basis of these lemmas.
Kahn and Saks also derive in [7] the following nonlinear inequality, which
is critical to their argument.

Theorem 2.4. The sequences {a; : @ > 1} and {b; : i > 1} are log-
concave, i.e., for each 1 > 1, %24-1 > a;a;49 and bz2+1 > bibjio. W

3. Obstacles and pitfalls

As Kahn and Saks point out in [7], the value of the constant in Theorem 1.2
could be improved if we could show that there exists a positive absolute
constant - so that if P is not a chain, then if is always possible to find
an ordered pair (z,y) with 0 < h(y) — h(z) < 1 — . However, nobody
has yet been able to settle whether such a « exists. If it does, then as
shown by Saks in [12], it must satisfy v < .133. Even this value would not
be enough to prove §(P) > 1/3. However, it is of interest to determine
the maximum value of |h(y) — h(z)| which allows one to conclude that
1/3 < Prob(z > y) < 2/3. It is relatively easy to modify the Kahn/Saks
proof technique to obtain the next result, which is clearly best possible.

Theorem 3.1. Let (z,y) be distinct points in a poset P, and suppose that
0 < h(y) —h(x) <2/3. Then 1/3 <Prob(z >y) <2/3. m

There is another more serious obstacle. If we extend the concept to
countably infinite posets, then the 1/3—2/3 conjecture is false. As was
discovered independently by G. Brightwell and Trotter, there is a countably
infinite width two semiorder P with §6(P) = (5 — v/5)/10 =~ .27639. This
example is constructed as follows. The poset P has as its point set X =
{z; : i € Z} with: z; < z; in P if and only if j > i+1 in Z. If we define the
finite poset P, to be the subset of P consisting of all points whose subscripts
in absolute value are at most n, then it is an easy exercise to show that

lim Prob(zo > 1) = (5 — V/5)/10.

n—0o0

This example is striking on two counts. First, as noted in Section 1, Linial
showed in [11] that §(P) > 1/3, for any finite width two poset. Second, this
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infinite poset is a semiorder, and Brightwell showed in [1] that §(P) > 1/3,
for any finite semiorder—regardless of its width.

Also, there is a six point poset (see [13], for example) containing an
incomparable pair z,y with h(y) — h(z) = 1 and Prob(z > y) = 3/11. This
example shows that the Kahn/Saks inequality in Theorem 1.2 is, in some
sense, best possible.

4. Some new inequalities

We begin this section with a generalization of Lemma 2.2.

Lemma 4.1. If x and y are incomparable, then for each i > 2, by + a; <
by +a1 +ax+---+aj-1.

Proof. For each integer k, let Ej denote the set of linear extensions of P
in which y appears exactly k£ positions above z. Now let ¢ > 2. We describe
an injection ¢ from E_o U F; to E_1 U E; U Ey + --- U E;_1 First consider
a linear extension L in F;. We distinguish two cases. In Case 1, there is at
least one point between x and y in L which is larger than « in P. In Case 2,
there is no such point. In Case 1, let {uy,us,...,u,} be the nonempty set
of points which are between x and y in L and are greater than z in P. We
assume the points have been labelled so that u; < uo < --- < u, in L. Set
z =wup and y = u,41. For each 4 =0,1,...,r, let S; denote the linear order
induced on the set of points which lie between u; and w;41 in L. Then let
U denote the linear order on the points below z in L and let H denote the
linear order on the points above y in L. With this notation, the linear order
L can be decribed as

L=U<z<S<u <S1<us< S < <u <85 <y<H.

We associate with L the linear extension ¢(L) in Ey U Ey +--- U E; 4
defined as follows.

PL)=U<Sy<zx<S<u <Sy<uy<8S3<-<u— <8 <
y <ur < H.

If Case 2 holds, we define U and H as before and set M to be the linear
order determined by the points between z and y in L. Now we take ¢(L)
in F_q as

pL)=U<M<y<z<H.
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IfLisin E_gwemaywriteL =U <y<u<x<H. Ifu<zinP then
PL)=U<u<y<z<HinE_q,otherwise §(L) =U <z <y<u<H
inEl.

It is straightforward to verify that the function ¢ is an injection. The
desired inequality is obtained by taking cardinalities and dividing by the
total number of linear extensions of P. ®

We next use the proof of the preceding lemma to provide a simple proof
of Lemma, 2.3.

Proof of Lemma 2.3. Let L be a linear extension of P in which y is exactly
i + 1 positions above z. We associate with L another linear extension ¢(L)
defined as follows. We consider three cases. Case 1 holds if x is incomparable
with the point v immediately above it in L. In this case we exchange u and
x to obtain ¢(L) in E;. Case 2 holds if these two points are comparable and
there is an element v immediately below and incomparable with x. In this
case we exchange v and z to obtain ¢(L) in E;y2. In Case 3, observe that
z < u if u is the point immediately over z in L. Also, either z is the least
element of L, or the element v immediately below z in L is comparable with
z. In this case we form ¢(L) as in Case 1 in the proof of Lemma 4.2. Since
So is empty in this case, we have ¢(L) in E;.

Given ¢(L) in E; we only have to inspect the comparability status of =
and the element immediately below z in ¢(L) to decide if the rule of Case 1
or Case 3 has been applied to obtain ¢(L). Hence ¢ is an injection. m

5. Our approach to balancing pairs

Without loss of generality, we may restrict our attention to posets in which
no point is comparable to all others. For such posets, note that if z < y
in P, then h(y) > 1 4 h(z). We then choose three points z, y and z with
h(z) < h(y) < h(z) <2+ h(z), and consider some cases depending on the
subposet of P formed by {z,y,z}. Taking advantage of duality, we need
only consider the following four situations (we write u||v when v and v are
incomparable).

Case A: z < zand y < zin P.
Case B: y < z, z||ly and z||z in P.
Case C: {z,y,z} is a 3—element antichain.

Case D: z < z, z||ly and y||z in P.



BALANCING PAIRS IN POSETS 7

We will show that there exists an absolute constant 7y so that if Cases
A, B or C hold, then one of the three pairs (z,y), (y,z) and (z,z) is an
incomparable pair witnessing 0(P) > 3/11 + . Case D will require a more
detailed analysis.

For integers 14, j, let p(i,j) denote the probability that h(y) — h(z) =i
and h(z) — h(y) = j. In arguments to follow, we will continue to use the
previous definitions for b, B, a;, b;, € for the pair (z,y). When y and z are
incomparable, the quantities which are analogous to b and B will be denoted
r and R, respectively.

6. Cases A, B and C, the easy cases

In this section, we show that Cases A, B and C lead to a stronger conclusion
than given in Theorem 1.2. In fact, in Cases A and B, we show that P
satisfies the 1/3—2/3 conjecture. Throughout this section, we assume that
x, y and z have been chosen so that h(z) < h(y) < h(z) < 2+ h(z). We
begin with Case A.

Theorem 6.1. If Case A holds, then

1/3 < Prob(z < y) < 2/3.
Proof. Prob(z > y) = B > b, and h(z) — h(z) < 2 require that 2 >
B+2b+3(1—B—b)sothat B>1/3. m
Theorem 6.2. If Case B holds, then

1/3 < Prob(z < y) < 2/3.

Proof. Obviously, h(z) — h(y) = 1+ 3, (7 — Up(i,j) > 1+p(-1,2) +
2 Zi23p(_1’i) + ZiZZP(lai)' Using 2121 p(1,i) = Zi22p(_17j) = b and
p(—1,2) = p(1,1) = p(—2,1) < by we obtain h(z) — h(y) > 1+ b + 2(b; —
by) + (b1 — by) = 1 + 3by — 2bs.

This leads to a correlation between the height of z and y and their
probability of being reversed and close to each other:

h(y) — h(z) <2 — (h(z) — h(y)) <1 —3b1 +2bs.

Now suppose that there are sequences {a;};>1 and {b;};>1 satisfying
the conditions of Lemmas 2.1, 2.2, 2.3 and Theorem 2.4, together with
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Zi>1(ai + bz) =1 and Zi>1i(ai - bz) < 1—3by 4+ 2by and Zi>1 b; < B.
Then the “packed” sequences a; = b(1+¢)? and b; = b(1 —¢€)* also satisfy all
these conditions. Therefore we can analyze the situation with the techniques
of [7]. It turns out that the worst case occurs in Case 2 with & = 3. For this
value of k, it may be verified that B > 0.335, which is a little more than
what is claimed in the statement of the theorem. m

Before presenting the result for Case C, we need the following technical
lemma which is also proved with the Kahn/Saks techniques. The basic idea
behind this lemma is that a pair of incomparable points which are relatively
close in expected height must be a balancing pair if they are unlikely to
appear consecutively in a random linear extension.

Lemma 6.3 For every pair 1, C of positive contants, there exists a positive
constant vy, so that if x and z are incomparable points in a poset P and
0 < h(z) — h(z) < C, then either 1/e —y; < Prob(z > 2) <1+ —1/e or
b =Prob(hr(z) —hr(z) =1) > v,.

Theorem 6.4. There exists an absolute constant v3 > 0 so that if Case C
holds, then 6(P) > vy3+3/11. m

Sketch of the proof. Apply Lemma 6.3 with vy = 0.1 and C = 2, and let
2 be the constant provided by the theorem. We may then assume that the
probability that z covers z is at least y2. It follows that either B —b > 7y, /2
or R—1r > /2. A straightforward calculation then shows that at least
one of Prob(z > y) and Prob(y > z) must be larger than 3/11 by a postive
constant expressible as a function of v,. m

We close this section with the following easy technical extension to
Theorems 6.1, 6.2 and 6.4. This result allows us to increase the difference
in expected heights between z and z to a quantity strictly larger than 2.

Theorem 6.5. For all (sufficiently small) -y4,v5 > 0, there exists a v > 0
so that if x and y satisty h(z) < h(y) < 1+4+ h(z) and B —b > s, then
I(P)>3/11+v. m

7. An application of linear programming

In this section, we begin to analyze Case D. Recall that B = Prob(z > y)
and R = Prob(y > z). We state the following result using the notation
introduced in Section 5.
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Theorem 7.1. B+ R > 6/11 so that 6(P) > 3/11.

Sketch of proof. We outline the steps necessary to prove this inequality.
The detailed computations are straightforward. First, produce a lower

bound on h(z) — h(z) by assuming that
(1.) h(z) — h(xz) = 1 whenever hr(z) — hr(y) > 2.
(2.) h(z) — h(x) = 1 whenever hr(y) — hr(z) > 2.
(3.) h(z) — h(z) = 6 whenever hr(y) — hr(z) > 2, hr(z) — hr(y) > 2

and hL( ) hL( ) = 6.
Use this lower bound and the inequality 2 > h(z) — h(z) to obtain the
following inequality:

5(B+R)+4p(1,1)+2p(1,2)+2p(2,1)+2p(2,2)+p(2,3)+p(3,2) > 4. (7.1)
Note that
p(1,1) +p(1,2) = p(~1,2) +p(~1,3) < B (7.2)

and
p(1,1) +p(2,1) =p(2,—1) +p(3,—1) < R. (7.3)

Also note that

szj <Zp1] +p(3,5) <1-B =Y p(2,)) (7.4)

J

so that

> p(2,§) <1/2 - B/2. (7.5)
J
Using a symmetric inequality, we obtain

> p(2,5) +p(,2) <1—(B+R)/2. (7.6)
J

Next, since 2p(1,1) = p(2,—1) + p(—1,2), observe that
2p(1,1) +p(1,2) + p(2,1) +2p(2,2) <> p(2,4) +p(j,2) <1—(B+R)/2.
J

(7.7)
The desired result follows by applying inequalities (7.2), (7.3) and (7.7)
to the left hand side of (7.1). m
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As will be clear from the results which follow, Theorem 7.1 does some-
thing more than just prove a special case of Theorem 1.2. Since we are
combining a series of inequalities, it is clear that we get an improvement
whenever any of the individual inequalities used in the argument are not
tight.

8. The cross product conjecture

We made some effort to construct a poset which would show that the
inequality obtained in Theorem 7.1 is best possible, but were not successful.
We then turned our attention to the infinite width two semiorder which
violates the 1/3-2/3 conjecture. In this poset, the following identity holds.

p(l,l)p(2,2) :p(1a2)p(2a1) (8'1)

Consideration of several examples leads us to make the following “cross
product” conjecture.

Conjecture 8.1. Let z, y and z be distinct points in a poset P and let
p(i,7) denote the probability that x is i positions below y and y is j positions
below z. Then

p(1,1)p(2,2) < p(1,2)p(2,1). u

We can provide some additional motivation for this conjecture with the
following result.

Theorem 8.2. Ifz, y and z are three distinct points of a poset P, h(x) <
h(y) < h(z) <24 h(z), z < z in P, and the cross product Conjecture 8.1
is true, then 6(P) > (5 — /5)/10.

Sketch of proof. Clearly, we may assume that x is incomparable to y and
y is incomparable to z. To simplify the computational efforts, we let X =
B+R,z = p(la 1)7 T2 = p(]-a 2) +p(27 1)7 I3 = p(27 2)7 Ty = p(]-a 3) +p(37 1)7
z5s = p(2,3) + p(3,2) and zg = p(1,4) + p(4,1). Then inequality (7.1)
becomes

5X +4x1 + 229 + 2x3 + x5 > 4. (82)

We can add p(1,3) and p(3,1) to the left sides of (7.2) and (7.3) respectively.
Then add the resulting inequalities to obtain

X > 2z + 9 + 14 (8.3)
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We then observe that

p(2,3) <p(1,3) +p(1,4) (8.4)
and
p(3,2) <p(3,1) +p(4,1) (8.5)
so that
r5 < T4 + Te. (8.6)

Since the sum of all probability is one, we have
X+zi+zo+ax3+ag+z5+ 26 < 1. (8.7)
The cross product inequality implies
zi113 < (23)/4. (8.8)

With some calculations, one can show that subject to the inequalities (8.2),
(8.3), (8.6), (8.7), and (8.8), the minimum value of X is (5 —+/5)/5. =

We believe that a more general form of the cross product conjecture is
valid.

Conjecture 8.3. Let z, y and z be distinct points in a poset P and let
p(i,7) denote the probability that x is i positions below y and y is j positions
below z. If i and j are positive, then

p(6,J)p(t + 1,7 +1) <p(i, 5+ 1)p(j + 1,9). u

Although we have not been able to verify the cross product inequality
in general, we have been able to verify Conjecture 8.3 for width two posets.

9. Improving the Kahn/Saks bound

In this section, we outline the proof of the following theorem; the critical
part of the argument involves a more detailed analysis of Case D.

Theorem 9.1. There exists an absolute constant vy > 0 so that if P is a
poset and is not a chain, then §(P) > 3/11 4+ . m

Sketch of proof. Let |P| = n; without loss of generality, we may assume
n > 6. Choose a set U = {u,ug,...,us} of six points from P so that

h(u1) < h(ug) < -+ < h(ug) <5+ h(uy).
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Using the results of Section 6, we may assume that
(1.) willuj+1 in P, for i =1,2,3,4,5.
(2.) u; <wujin P, whenever j > i+ 2.

Also, we may assume that h(u;11) is almost exactly 1 + h(u;). For the
remainder of this outline, we assume h(u;;1) is exactly 1 4+ h(u;). The
steps necessary to handle the approximations are routine. Now we re-
turn to the linear programming argument in Section 7. It follows that
we may apply the arguments in this section to each triple (z,y,z) €
{(u1,ug,us, ), (uz,us, uq), (ug, uq,us), (uqg, us, ug) }. It is easy to see that the
inequality B + R > 6/11 is tight only when

(3.) p(1,1) =p(-1,2) =p(2,-1) = 2/11, and
(4.) p(1,2) =p(2,1) = p(=1,3) = p(3,—1) = p(2,2) = 1/11.

Let M be a linear extension of U. Consider the probability ¢gjs that a
random linear extension of P has the points of U appearing consecutively in
the same order as M. It is straightforward to use properties (3.) and (4.) to
show that if the inequality 6(P) > 3/11 is tight, then g5y = 1/11. However,
this is impossible since there are 13 linear extensions of U. The contradiction
is enough to show that J(P) exceeds 3/11 by some absolute constant. m

10. Concluding remarks

We consider the research techniques behind the results outlined in this pa-
per as perhaps of greater importance than the results themselves. First, we
have done considerable experimentation with computers and several com-
mercially available optimization packages. A linear programming package
first discovered the proof in section 3. This result and the fact that the solu-
tion is unique is key to making any improvement in the Kahn/Saks bound.
Similarly, a non-linear solver first discovered that the cross product inequal-
ity is sufficient to show d(P) > (5 — +/5)/10 in Case D. We also found the
computer of great value in analyzing the proof of Theorem 6.2. Numerical
evidence suggests that in the case of a 3—element antichain, we can actually
conclude that §(P) > 0.3. If this is true, then the proof of the cross product
conjecture would imply that §(P) > (5 — v/5)/10 for any poset P which is
not a chain.
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