Posets with Large Dimension and Relatively Few Critical Pairs

PETER C. FISHBURN
AT\&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A.

and

WILLIAM T. TROTTER
Bell Communications Research, 445 South Street 2L-367, Morristown, NJ 07962, U.SA., and Department of Mathematics, Arizona State University, Tempe, AZ 85287, U.S.A.
E-mail: wit@bellcore.com

Communicated by D. Kelly
(Received: 20 December 1992; accepted: 10 September 1993)

Abstract

The dimension of a poset (partially ordered set) $\mathbf{P}=(X, P)$ is the minimum number of linear extensions of P whose intersection is P. It is also the minimum number of extensions of P needed to reverse all critical pairs. Since any critical pair is reversed by some extension, the dimension t never exceeds the number of critical pairs m. This paper analyzes the relationship between t and m, when $3 \leqslant t \leqslant m \leqslant t+2$, in terms of induced subposet containment. If $m \leqslant t+1$ then the poset must contain S_{t}, the standard example of a t-dimensional poset. The analysis for $m=t+2$ leads to dimension products and David Kelly's concept of a split. When $t=3$ and $m=5$, the poset must contain either S_{3}, or the 6 -point poset called a chevron, or the chevron's dual. When $t \geqslant 4$ and $m=t+2$, the poset must contain S_{t}, or the dimension product of the Kelly split of a chevron and S_{t-3}, or the dual of this product.

Mathematics Subject Classifications (1991). 06A07, 05C35.

Key words. Partially ordered set, poset, dimension, critical pair.

1. Introduction

A poset (partially ordered set) $\mathbf{P}=(X, P)$ consists of a finite set X and a reflexive, antisymmetric and transitive binary relation P on X. A nonempty family \mathcal{R} of linear extensions L of P is a realizer of P if $P=\bigcap_{\mathcal{R}} L$. When \mathcal{R} is a realizer of P and $|\mathcal{R}|=t, \mathcal{R}$ is a t-realizer of P. Dushnik and Miller [1] defines $\operatorname{dim}(\mathbf{P})$, the dimension of \mathbf{P}, as the least positive integer t for which P has a t-realizer.
In this paper we study another definition of $\operatorname{dim}(\mathbf{P})$ that is based on incomparable pairs. Given a poset $\mathbf{P}=(X, P), x \leqslant y$ in P means that $(x, y) \in P$, and $x \| y$ in P, the relation of incomparability for $x, y \in X$, means that neither (x, y) nor (y, x) is in P. We often omit 'in P ' when this is clear from the context. The symmetric set of
ordered incomparable pairs is

$$
\operatorname{inc}(\mathbf{P})=\{(x, y) \in X \times X: x \| y\}
$$

A member (x, y) of $\operatorname{inc}(\mathbf{P})$ is critical if
(1) for all $u \in X, u<x \Rightarrow u<y$,
(2) for all $v \in X, y<v \Rightarrow x<v$,
where $x<y$ when $x \leqslant y$ in P and $x \neq y$. The set of all critical ordered pairs in $\operatorname{inc}(\mathbf{P})$ is denoted by $\operatorname{crit}(\mathbf{P})$.

Critical pairs were introduced in Rabinovitch and Rival [8] which shows that a family \mathcal{R} of linear extensions of P is a realizer of P if, and only if, for every $(x, y) \in \operatorname{crit}(\mathbf{P})$, there is an $L \in \mathcal{R}$ with $y<x$ in L. This is an easy consequence of the following observation.

PROPOSITION 1.1. If $\mathbf{P}=(X, P)$ is a poset and $(a, b) \in \operatorname{inc}(\mathbf{P})$, then some $(x, y) \in$ $\operatorname{crit}(\mathbf{P})$ has $x \leqslant a$ in P and $b \leqslant y$ in P.

We say that a linear order L on X reverses a subset S of $\operatorname{inc}(\mathbf{P})$ if $y<x$ in L for every $(x, y) \in S$. Since every singleton subset of inc (\mathbf{P}) is reversed by some linear extension of P, we note the following. Here and later a poset is nonlinear if it is not a linear order.

PROPOSITION 1.2. If $\mathbf{P}=(X, P)$ is a nonlinear poset, then

$$
\operatorname{dim}(\mathbf{P}) \leqslant|\operatorname{crit}(\mathbf{P})| .
$$

Our primary goal in this paper is to solve the following extremal problem.
CHARACTERIZATION PROBLEM 1.3. For integers t and m with $3 \leqslant t \leqslant m \leqslant$ $t+2$, find the minimum set $\mathcal{P}(t, m)$ so that if $\mathbf{P}=(X, P)$ is a poset with $\operatorname{dim}(\mathbf{P})=t$ and $|\operatorname{crit}(\mathbf{P})|=m$, then \mathbf{P} contains a poset in $\mathcal{P}(t, m)$ as an induced subposet.

The main analysis of the problem is in Section 4. Prior to that we develop background for the factors that contribute to the solution. We complete this introduction with remarks on cycles in inc (\mathbf{P}) and related hypergraphs. Section 2 discusses the standard examples, and Section 3 introduces splits and dimension products. In Section 5, we give a brief discussion of the motivation for investigating our characterization problem. Throughout, the notation and terminology adhere to [9], which along with [10] offers general background on dimension theory and combinatorial problems for posets.

For poset $\mathbf{P}=(X, P)$ and $k \geqslant 2$, an alternating cycle (of length k) is a sequence $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k}, y_{k}\right)$ of pairs of inc($\left.\mathbf{P}\right)$ such that $y_{i} \leqslant x_{i+1}$ for $i=1,2, \ldots, k$ $\left(x_{k+1}=x_{1}\right)$. The alternating cycle is strict if for all i and $j, y_{i} \leqslant x_{j} \Longleftrightarrow j=i+1$.

The dual S^{d} of $S \subseteq X \times X$ is defined by $S^{d}=\{(y, x):(x, y) \in S\}$. The dual of poset $\mathbf{P}=(X, P)$ is $\mathbf{P}^{d}=\left(X, P^{d}\right)$. Clearly, $\operatorname{dim}(\mathbf{P})=\operatorname{dim}\left(\mathbf{P}^{d}\right)$. The following is noted in [1].

LEMMA 1.4. Suppose $\mathbf{P}=(X, P)$ is a poset and $\varnothing \neq S \subseteq \operatorname{inc}(\mathbf{P})$. Then (1), (2) and (3) are equivalent:
(1) some linear extension of P reverses S;
(2) no sequence of pairs from S^{d} is an alternating cycle;
(3) no sequence of pairs from S^{d} is a strict alternating cycle.

The approach to dimension by reversing critical pairs suggests a reformation in terms of hypergraph coloring. Recall that the chromatic number $\chi(\mathcal{H})$ of a hypergraph \mathcal{H} is the least positive integer t for which the vertex set can be partitioned into t subsets, called color classes, such that no edge of \mathcal{H} is contained in one color class.
For any poset $\mathbf{P}=(X, P)$, we define $\mathcal{K}_{\mathbf{P}}$, the hypergraph of critical pairs, as follows. The vertex set of $\mathcal{K}_{\mathbf{P}}$ is $\operatorname{crit}(\mathbf{P})$, and $S \subseteq \operatorname{crit}(\mathbf{P})$ is an edge of $\mathcal{K}_{\mathbf{P}}$ if S^{d} contains an alternating cycle whose terms exhaust S^{d}. The strict hypergraph of critical pairs $\mathcal{K}_{\mathbf{P}}^{s}$ is defined similarly with $S \subseteq \operatorname{crit}(\mathbf{P})$ an edge if S^{d} contains a strict alternating cycle whose terms exhaust S^{d}.
For any hypergraph $\mathcal{H}=(\mathcal{X}, \mathcal{E})$ let $\operatorname{graph}(\mathcal{H})=(\mathcal{X},\{E \in \mathcal{E}:|E|=2\})$. Note that $\operatorname{graph}\left(\mathcal{K}_{\mathbf{P}}\right)=\operatorname{graph}\left(\mathcal{K}_{\mathbf{P}}^{\mathbf{s}}\right)$ for poset \mathbf{P}. A restatement of preceding observations gives the following result.

PROPOSITION 1.5. If $\mathbf{P}=(X, P)$ is a nonlinear poset, then

$$
\operatorname{dim}(\mathbf{P})=\chi\left(\mathcal{K}_{\mathbf{P}}\right)=\chi\left(\mathcal{K}_{\mathbf{P}}^{s}\right) \geqslant \chi\left(\operatorname{graph}\left(\mathcal{K}_{\mathbf{P}}\right)\right) .
$$

Although $\operatorname{dim}(\mathbf{P})>\chi\left(\operatorname{graph}\left(\mathcal{K}_{\mathbf{P}}\right)\right)$ is possible, the following exception (which is implicit in the work of Ghoulà-Houri [2]) is noteworthy.

THEOREM 1.6. A nonlinear poset \mathbf{P} has $\operatorname{dim}(\mathbf{P})=2$ if and only if

$$
\chi\left(\operatorname{graph}\left(\mathcal{K}_{\mathbf{P}}^{\mathbf{s}}\right)\right)=2 .
$$

The proof of Theorem 1.6 actually yields the following slightly stronger result that will be used later.

COROLLARY 1.7. Let $\mathbf{P}=(X, P)$ be a poset, and let S be a nonempty subset of $\operatorname{crit}(\mathbf{P})$. Then there is a partition $\left\{S_{1}, S_{2}\right\}$ of S such that for each S_{i} some linear extension of P reverses S_{i} if, and only if, the subgraph of graph $\left(\mathcal{K}_{\mathbf{P}}\right)$ induced by S is bipartite.

2. The Standard Examples

A poset $\mathbf{P}=(X, P)$ is t-irreducible for $t \geqslant 2$ if $\operatorname{dim}(\mathbf{P})=t$ and the removal of any point in X leaves a poset having dimension less than t. We say that P is irreducible if it is t-irreducible for some $t \geqslant 2$. The only 2 -irreducible poset is obviously a 2 -element antichain. All 3-irreducible posets are identified in Kelly [4] and, independently, in Trotter and Moore [11].

For each $n \geqslant 2$ let S_{n} denote the bipartite poset on $2 n$ points with n minimal elements a_{1}, \ldots, a_{n}, n maximal elements b_{1}, \ldots, b_{n}, and $a_{i}<b_{j}$ in S_{n} for all i and j if and only if $i \neq j$. Evidently, $\operatorname{crit}\left(\mathbf{S}_{n}\right)=\left\{\left(a_{i}, b_{i}\right): i=1, \ldots, n\right\}$, so $\operatorname{dim}\left(\mathbf{S}_{n}\right) \leqslant n$. It is also clear that no linear extension reverses more than one critical pair; in fact, S_{n} 's hypergraph of critical pairs is an ordinary graph, namely the complete graph K_{n}. Therefore $\operatorname{dim}\left(\mathbf{S}_{n}\right)=n$. We call \mathbf{S}_{n} the standard example of an n-dimensional poset. For $n \geqslant 3, S_{n}$ is n-irreducible.

The standard examples, introduced in [1], have played a key role in many combinatorial problems in dimension theory. An example is Hiraguchi's inequality [3] which says that $\operatorname{dim}(\mathbf{P}) \leqslant|X| / 2$ if poset $\mathbf{P}=(X, P)$ has $|X| \geqslant 4$. And if $\operatorname{dim}(\mathbf{P}) \geqslant n \geqslant 4$ and $|X| \leqslant 2 n+1$ then P contains S_{n} as a subposet ([6], [8, p. 94]). The standard examples also belong to more general classes of posets studied in [6], [9].

There are exactly three 3-irreducible posets on six points. They are \mathbf{S}_{3}, the chevron \mathbf{C} of Figure 1, and \mathbf{C}^{d}. Note that $\mathcal{K}_{\mathbf{C}}^{s}$ is an ordinary graph cycle on five vertices.

diagram of \mathbf{C}

$\operatorname{graph}\left(\mathcal{K}_{\mathrm{C}}^{s}\right)=\left(\mathcal{K}_{\mathrm{C}}^{s}\right)$

diagram of split of \mathbf{C}

Fig. 1.

3. Splits and Dimension Products

In this section we introduce splits and dimension products as defined in Kelly [5] (see [9], Chapter 2, for a more extensive discussion). Let $\mathbf{P}=(X, P)$ be a nonlinear poset. Let

$$
\begin{aligned}
& A(\mathbf{P})=\{x \in X:(x, y) \in \operatorname{crit}(\mathbf{P}) \text { for some } y \in X\} \\
& B(\mathbf{P})=\{y \in X:(x, y) \in \operatorname{crit}(\mathbf{P}) \text { for some } x \in X\}
\end{aligned}
$$

We define the split of \mathbf{P} as the poset $\mathbf{Q}=(Y, Q)$ with

$$
Y=(A(\mathbf{P}) \times\{0\}) \cup(B(\mathbf{P}) \times\{1\})
$$

and with order Q defined in three parts as follows:
(1) for all $a, a^{\prime} \in A(\mathbf{P}),(a, 0) \leqslant\left(a^{\prime}, 0\right)$ in Q if $a \leqslant a^{\prime}$ in P;
(2) for all $b, b^{\prime} \in B(\mathbf{P}),(b, 1) \leqslant\left(b^{\prime}, 1\right)$ in Q if $b \leqslant b^{\prime}$ in P;
(3) for all $(a, b) \in A(\mathbf{P}) \times B(\mathbf{P}),(a, 0)<(b, 1)$ in Q if $a \leqslant b$ in P.

See Figure 1 for the split of \mathbf{C}.
The dimension product $\mathbf{P}_{1} \otimes \mathbf{P}_{2}$ of nonlinear posets $\mathbf{P}_{1}=\left(X_{1}, P_{1}\right)$ and $\mathbf{P}_{2}=\left(X_{2}, P_{2}\right)$ is the poset $\mathbf{Q}=(Y, Q)$ which consists of the disjoint union of the splits of \mathbf{P}_{1} and \mathbf{P}_{2} plus the following additional comparabilities on $Y=\left[\left(A\left(\mathbf{P}_{1}\right) \times\{0\}\right) \cup\left(B\left(\mathbf{P}_{1}\right) \times\right.\right.$ $\{1\})] \cup\left[\left(A\left(\mathbf{P}_{2}\right) \times\{0\}\right) \cup\left(B\left(\mathbf{P}_{2}\right) \times\{1\}\right)\right]:$
(4) for all $(a, b) \in A\left(\mathbf{P}_{1}\right) \times B\left(\mathbf{P}_{2}\right),(a, 0)<(b, 1)$ in Q;
(5) for all $(a, b) \in A\left(\mathbf{P}_{2}\right) \times B\left(\mathbf{P}_{1}\right),(a, 0)<(b, 1)$ in Q.

Kelly [5] proves the following result for dimension products.
THEOREM 3.1. Let \mathbf{P}_{1} and \mathbf{P}_{2} be nonlinear posets. Then

$$
\operatorname{dim}\left(\mathbf{P}_{1} \otimes \mathbf{P}_{2}\right)=\operatorname{dim}\left(\mathbf{P}_{1}\right)+\operatorname{dim}\left(\mathbf{P}_{2}\right)
$$

We find it useful to extend the definition of \mathbf{S}_{n} for $n \geqslant 2$ by defining $\mathbf{S}_{1}=$ ($\left\{a_{1}, b_{1}\right\},\left\{\left(a_{1}, a_{1}\right),\left(b_{1}, b_{1}\right)\right\}$), the 2 -point antichain. When $n \geqslant 2$, note that the split of \mathbf{S}_{n} is isomorphic to \mathbf{S}_{n}. This is not true for \mathbf{S}_{1}. However, when \mathbf{P} is a nonlinear poset, we define $S_{1} \otimes \mathbf{P}$ so that it is consistent with the definition of $\mathbf{S}_{n} \otimes \mathbf{P}$ for $n \geqslant 2$. Accordingly, for all $n \geqslant 1$, we take $\mathbf{S}_{n} \otimes \mathbf{P}$ as the union of disjoint copies of \mathbf{S}_{n} and the split of \mathbf{P} with the additional comparabilities
$\left(4^{\prime}\right) a_{i}<(b, 1)$ in $\mathbf{S}_{n} \otimes \mathbf{P}$ for all $i \in\{1, \ldots, n\}$ and all $b \in B(\mathbf{P})$,
$\left(5^{\prime}\right)(a, 0)<b_{i}$ in $\mathbf{S}_{n} \otimes \mathbf{P}$ for all $i \in\{1, \ldots, n\}$ and all $a \in A(\mathbf{P})$.
With C the chevron of Figure 1, note that for all $t \geqslant 4$, the dimension product $\mathrm{S}_{t-3} \otimes \mathrm{C}$ is a t-dimensional poset (see Theorem 3.1) with exactly $t+2$ critical pairs.

4. Characterization Theorems

This section establishes a complete characterization of posets for which the number of critical pairs exceeds the dimension by at most two. We assume throughout that

$$
\begin{aligned}
& \operatorname{dim}(\mathbf{P})=t \geqslant 3 \\
& |\operatorname{crit}(\mathbf{P})|=m \leqslant t+2 .
\end{aligned}
$$

The m critical pairs are labelled so that

$$
\operatorname{crit}(\mathbf{P})=\left\{\left(x_{i}, y_{i}\right): i=1, \ldots, m\right\}
$$

and we often identify $\left(x_{i}, y_{i}\right)$ simply by i. Thus $\{1,2, \ldots, m\}$ identifies the vertex set of hypergraphs $\mathcal{K}_{\mathbf{P}}$ and $\mathcal{K}_{\mathbf{P}}^{s}$. For brevity, we denote graph $\left(\mathcal{K}_{\mathbf{P}}\right)$ by \mathbf{G} and speak of i in the vertex set of \mathbf{G} as the critical pair (i.e. $\left(x_{i}, y_{i}\right)$) thus identified. We say also that poset $\mathbf{P}=(X, P)$ contains $\mathbf{Q}=(Y, Q)$ when \mathbf{P} contains an induced subposet isomorphic to \mathbf{Q}.

We begin the characterization process with the following elementary result.
LEMMA 4.1. If \mathbf{G} contains K_{t} then \mathbf{P} contains \mathbf{S}_{t}.
Proof. Suppose the subgraph of \mathbf{G} induced by $\{1,2, \ldots, t\}$ is a complete graph K_{t}. For all distinct $i, j \in\{1,2, \ldots, t\}$ we know that $x_{i} \leqslant y_{j}$ and $x_{j} \leqslant y_{i}$ in P. The conclusion of the lemma follows if $x_{i} \neq y_{j}$ for all distinct $i, j \in\{1,2, \ldots, t\}$.

To the contrary, suppose for definiteness that $x_{1}=y_{2}$. Since $t \geqslant 3$, we conclude that $x_{3} \leqslant y_{2}=x_{1} \leqslant y_{3}$. Then $x_{3} \leqslant y_{3}$, thus contradicting $\left(x_{3}, y_{3}\right) \in \operatorname{crit}(\mathbf{P})$.

Note that the conclusion of Lemma 4.1 fails if \mathbf{G} contains K_{2}.

THEOREM 4.2. If $m \leqslant t+1$, then \mathbf{P} contains \mathbf{S}_{t}.

Proof. If G contains a K_{t}, the desired result follows from Lemma 4.1. Assume henceforth without loss of generality that $\{1,2\}$ is not an edge of G. Then a single linear extension reverses critical pairs 1 and 2 . Hence $\operatorname{dim}(\mathbf{P}) \leqslant m-1$, so $m=t+1$. Moreover, \mathbf{G} is complete on the $t-1$ vertices in $\{3,4, \ldots, t+1\}$, else $\operatorname{dim}(\mathbf{P}) \leqslant t-1$.

For $i \in\{1,2\}$ let

$$
N_{i}=\{j: 3 \leqslant j \leqslant t+1 \text { and }\{i, j\} \text { is not an edge of } \mathbf{G}\} .
$$

If either N_{i} is empty, Lemma 4.1 shows that \mathbf{P} contains \mathbf{S}_{t}. Assume henceforth that $N_{1} \neq \varnothing \neq N_{2}$.

Suppose $j \in N_{1}, k \in N_{2}$, and $j \neq k$. Then some one linear extension of \mathbf{P} reverses 1 and j, and another reverses 2 and k. To avoid the resulting contradiction that $\operatorname{dim}(\mathbf{P})<t$, assume henceforth without loss of generality that $N_{1}=N_{2}=\{3\}$.

Then $\{1,2,3\}$ is an edge of \mathcal{K}_{P}, since otherwise a single linear extension reverses all three critical pairs in violation of $\operatorname{dim}(\mathbf{P})=t$. Suppose for definiteness that the alternating cycle for $\{1,2,3\}$ is $\left(y_{1}, x_{1}\right),\left(y_{2}, x_{2}\right),\left(y_{3}, x_{3}\right)$. Then $x_{1} \leqslant y_{2}, x_{2} \leqslant y_{3}$ and $x_{3} \leqslant y_{1}$, and it follows that $\left\{x_{1}, x_{3}, x_{4}, \ldots, x_{t+1}\right\} \cup\left\{y_{1}, y_{2}, y_{4}, \ldots, y_{t+1}\right\}$ yields a copy of \mathbf{S}_{t}.

Throughout the rest of this section, $[n]=\{1,2, \ldots, n\}$.

THEOREM 4.3. If $m \leqslant 5$, then \mathbf{P} contains $\mathbf{S}_{3}, \mathbf{C}$, or \mathbf{C}^{d}.
THEOREM 4.4. If $t \geqslant 4$, then \mathbf{P} contains $\mathbf{S}_{t}, \mathbf{S}_{t-3} \otimes \mathbf{C}$, or $\mathbf{S}_{t-3} \otimes \mathbf{C}^{d}$.

The proofs consume the rest of the section.
Proof of Theorem 4.3. We argue by contradiction. Assume that $(t, m)=(3,5)$, since otherwise the conclusion of Theorem 4.3 follows from Theorem 4.2. We know also that the chromatic number of \mathbf{G} is 3 . If \mathbf{G} contains a triangle then \mathbf{P} contains \mathbf{S}_{3}. Assume that \mathbf{P} doesn't contain \mathbf{S}_{3}. Then \mathbf{G} is a cycle on five vertices: see Corollary 1.7. Relabelling if necessary, assume for each $i \leqslant 5$ that $x_{i} \leqslant y_{i+1}$ and $x_{i} \leqslant y_{i-1}\left(y_{6}=y_{1}, y_{0}=y_{5}\right)$. We proceed by cases through a series of claims. Indices are interpreted cyclically in all cases.

CLAIM 1. For all $i \leqslant 5$, either $x_{i} \| y_{i+2}$ or $x_{i}<y_{i+2}$, and either $x_{i} \| y_{i-2}$ or $x_{i}<y_{i-2}$.

Proof. If $y_{i+2} \leqslant x_{i}$, then $x_{i+1} \leqslant y_{i+2} \leqslant x_{i} \leqslant y_{i+1}$, so $x_{i+1} \leqslant y_{i+1}$, a contradiction to $\left(x_{i+1}, y_{i+1}\right) \in \operatorname{crit}(\mathbf{P})$. Hence either $x_{i} \| y_{i+2}$ or $x_{i}<y_{i+2}$. A symmetric proof applies to x_{i} and y_{i-2}.

CLAIM 2. For all $i \leqslant 5$, either $x_{i} \| y_{i+2}$ or $x_{i+2} \| y_{i}$.
Proof. Else, by Claim 1, $x_{i}<y_{i+2}$ and $x_{i+2}<y_{i}$, so $\left\{x_{i}, x_{i+1}, x_{i+2}, y_{i}, y_{i+1}, y_{i+2}\right\}$ is a copy of \boldsymbol{S}_{3}.

CLAIM 3. For all $i \leqslant 5, x_{i} \| x_{i+1}$ and $y_{i} \| y_{i+1}$.
Proof. Otherwise our labelling scheme for \mathbf{G} gives $x_{i} \leqslant y_{i}$.
CLAIM 4. For all $i \leqslant 5$,

$$
\left(x_{i} \| y_{i+2}\right) \Longrightarrow\left(x_{i+2} \leqslant x_{i} \text { or } y_{i+2} \leqslant y_{i}\right)
$$

and

$$
\left(x_{i+2} \| y_{i}\right) \Longrightarrow\left(x_{i} \leqslant x_{i+2} \text { or } y_{i} \leqslant y_{i+2}\right)
$$

Proof. Suppose $x_{i} \| y_{i+2}$. By Proposition 1.1, let $\left(x_{j}, y_{j}\right)$ in $\operatorname{crit}(\mathbf{P})$ have $x_{j} \leqslant x_{i}$ and $y_{i+2} \leqslant y_{j}$. If $j=i+1$ then $x_{i+1} \leqslant x_{i} \leqslant y_{i+1}$, so $x_{i+1} \leqslant y_{i+1}$. This contradiction shows that $j \neq i+1$. If $j=i-1$, a similar contradiction obtains, so $j \neq i-1$. If $j=i-2$, then $x_{i+3} \leqslant y_{i+2} \leqslant y_{i-2}=y_{i+3}$, another contradiction. So $j \neq i-2$. If $j=i$ then $y_{i+2} \leqslant y_{i}$; if $j=i+2$ then $x_{i+2} \leqslant x_{i}$. The argument for x_{i+2} and y_{i} is similar.

Now for each $i \in[5]$ let

$$
\begin{aligned}
& U\left(x_{i}\right)=\left\{j \in[5]: x_{i} \leqslant y_{j}\right\} \\
& D\left(y_{i}\right)=\left\{j \in[5]: x_{j} \leqslant y_{i}\right\}
\end{aligned}
$$

CLAIM 5. For all $i, j \in[5]$,

$$
U\left(x_{i}\right) \subseteq U\left(x_{j}\right) \Longrightarrow\left(x_{j}, x_{i}\right) \notin \operatorname{inc}(\mathbf{P})
$$

and

$$
D\left(y_{i}\right) \supseteq D\left(y_{j}\right) \Longrightarrow\left(y_{j}, y_{i}\right) \notin \operatorname{inc}(\mathbf{P})
$$

Proof. Suppose otherwise for the first implication that

$$
U\left(x_{i}\right) \subseteq U\left(x_{j}\right) \quad \text { and } \quad\left(x_{j}, x_{i}\right) \in \operatorname{inc}(\mathbf{P})
$$

Since $U\left(x_{i}\right) \nsubseteq U\left(x_{i+1}\right)$ and $U\left(x_{i}\right) \nsubseteq U\left(x_{i-1}\right)$, we may assume that $j=i+2$. Choose $\left(x_{k}, y_{k}\right) \in \operatorname{crit}(\mathbf{P})$ so that $x_{k} \leqslant x_{j}=x_{i+2}$ and $x_{i} \leqslant y_{k}$. Inequality $x_{k} \leqslant x_{i+2}$ implies that $k \neq i+1$ and $k \neq i+3=i-2 ; x_{i} \leqslant y_{k}$ implies $k \neq i$. If $k=i+2$ then $U\left(x_{i}\right) \subseteq U\left(x_{i+2}\right)$ implies $x_{i+2} \leqslant y_{i+2}$, which is false. Finally, if $k=i-1$ then $U\left(x_{i}\right) \subseteq U\left(x_{i+2}\right)$ and hence $x_{i+2} \leqslant y_{i-1}$. However, $x_{k}=x_{i-1} \leqslant x_{i+2}$ then gives $x_{i-1} \leqslant y_{i-1}$, a contradiction. We conclude that $U\left(x_{i}\right) \subseteq U\left(x_{j}\right) \Rightarrow\left(x_{j}, x_{i}\right) \notin \operatorname{inc}(\mathbf{P})$. The proof of the D implication is similar.

CLAIM 6. For some $i \in$ [5], either
(1) $x_{i} \leqslant x_{i+2}$ and $x_{i} \leqslant x_{i-2}$,
or
(2) $y_{i+2} \leqslant y_{i}$ and $y_{i-2} \leqslant y_{i}$.

Proof. Suppose to the contrary that (1) and (2) fail for every i. By Claim 1 and symmetry, we may assume that $x_{1} \| y_{3}$. By Claim $4, x_{3} \leqslant x_{1}$ or $y_{3} \leqslant y_{1}$. Using duality, we may assume that $x_{3} \leqslant x_{1}$. Then $x_{3} \leqslant y_{5}$, so $y_{3} \| x_{5}$ by Claim 2 . Therefore $x_{3} \leqslant x_{5}$ or $y_{3} \leqslant y_{5}$. However, $x_{3} \leqslant x_{5}$ satisfies (1), so we have $x_{3} \leqslant x_{5}$ and $y_{3} \leqslant y_{5}$. It follows that $x_{2} \leqslant y_{5}$ and $x_{5} \| y_{2}$. This in turn requires $y_{2} \neq y_{5}$ and $x_{2} \leqslant x_{5}$. Then $x_{2} \leqslant y_{4}$ and $y_{2} \| x_{4}$, so $x_{2} \leqslant x_{4}$ and $y_{2} \leqslant y_{4}$. Thus $x_{1} \leqslant y_{4}$ and $x_{4} \| y_{1}$. Claim 4 applied to $x_{4} \| y_{1}$ gives $x_{1} \leqslant x_{4}$ or $y_{1} \leqslant y_{4}$. However, $x_{1} \leqslant x_{4}$ and $x_{3} \leqslant x_{1}$ imply $x_{3} \leqslant x_{4}$, contrary to Claim 3 , and $y_{1} \leqslant y_{4}$ and $y_{2} \leqslant y_{4}$ violate our supposition that (2) fails.

In view of Claim 6, assume henceforth without loss of generality that $y_{3} \leqslant y_{1}$ and $y_{4} \leqslant y_{1}$. We show that \mathbf{P} contains \mathbf{C} or \mathbf{C}^{d}. In anticipation of the proof of Theorem 4.4, we prove that either
(I) \mathbf{P} contains a copy of \mathbf{C} with $A(\mathbf{C}) \subseteq\left\{x_{1}, \ldots, x_{5}\right\}$ and $B(\mathbf{C}) \subseteq\left\{y_{1}, \ldots, y_{5}\right\}$, or
(II) \mathbf{P} contains a copy of \mathbf{C}^{d} with $A(\mathbf{C}) \subseteq\left\{x_{1}, \ldots, x_{5}\right\}$ and $B(\mathbf{C}) \subseteq\left\{y_{1}, \ldots, y_{5}\right\}$.

Since $x_{1} \| y_{1}$ by our initial labelling of $\operatorname{crit}(\mathbf{P})$ in this section, we require $x_{1} \leqslant y_{3}$, and $x_{1} \nless y_{4}$, so $U\left(x_{1}\right)=\{2,5\}$. We divide further arguments into two cases.

Case 1. HYPOTHESIS: either $y_{2} \| x_{4}$ or $x_{3} \| y_{5}$.

Assume without loss of generality that $y_{2} \| x_{4}$. By Claim $4, x_{2} \leqslant x_{4}$ or $y_{2} \leqslant y_{4}$. Since $y_{2} \leqslant y_{4}$ along with $x_{1} \leqslant y_{2}$ and $y_{4} \leqslant y_{1}$ yields $x_{1} \leqslant y_{1}$, which is false, we have $y_{2} \not \leqslant y_{4}$ and $x_{2} \leqslant x_{4}$. Then $x_{2} \leqslant y_{5}$ and $y_{2} \| x_{5}$. Therefore $D\left(y_{2}\right)=\{1,3\}$.

If $x_{3} \| y_{5}$ then $\left\{x_{1}, x_{3}, x_{4}, y_{1}, y_{2}, y_{5}\right\}$ yields S_{3}, so we have $x_{3} \leqslant y_{5}$ and $y_{3} \| x_{5}$. At this point we know that $D\left(y_{5}\right)=\{1,2,3,4\}$ and $D\left(y_{3}\right)=\{2,4\}$, so Claim 5 gives $\left(y_{5}, y_{3}\right) \notin \operatorname{inc}(\mathbf{P})$. It follows that $y_{3} \leqslant y_{5}$. We also have $U\left(x_{1}\right)=\{2,5\}$, $U\left(x_{3}\right)=\{2,4,5\}, U\left(x_{4}\right)=\{1,3,5\}$ and $U\left(x_{5}\right)=\{1,4\}$. Recalling that $x_{2} \leqslant x_{4}$, Case 1 now splits into two subcases.

Subcase 1a. HYPOTHESIS: $x_{2}<x_{4}$.

Since $\left(x_{4}, y_{4}\right)$ is a critical pair, $x_{2}<y_{4}$. Therefore $U\left(x_{2}\right)=\{1,3,4,5\}$, and we know $U\left(x_{i}\right)$ and $D\left(y_{i}\right)$ for every $i \in[5]$. Furthermore, it follows from Claim 5 that the subposets of \mathbf{P} determined by the y_{i} and by the x_{i} are as shown in Figure 2.

Fig. 2.
However, we do not know whether \leqslant in each of $x_{1} \leqslant y_{2}, x_{5} \leqslant y_{4}$ and $x_{4} \leqslant y_{3}$ is $=$ or $<$. Figure 3 gives a pseudo-diagram of \mathbf{P} that encloses these three \leqslant in ovals. It follows easily that both (I) and (II) hold.

Fig. 3.

Subcase 1b. HYPOTHESIS: $x_{2}=x_{4}$.
In this subcase, we know that the subposet of \mathbf{P} determined by the y_{i} is the same as shown in Figure 2. Figure 4 shows the new subposet on the x_{i}.

Fig. 4.

We do not know whether \leqslant in each of $x_{2} \leqslant y_{3}, x_{1} \leqslant y_{2}$ and $x_{5} \leqslant y_{4}$ is $=$ or $<$. Figure 5 represents this in a manner similar to Figure 3. Regardless of whether any or all of the oval pairs are distinct, we observe that (II) holds for P.

Fig. 5.
Case 2. HYPOTHESIS: $x_{4}<y_{2}$ and $x_{3}<y_{5}$.
By Claim 2, $x_{2} \| y_{4}$ and $x_{5} \| y_{3}$. Moreover, either $x_{2} \| y_{5}$ or $y_{2} \| x_{5}$. By symmetry, we may assume that $x_{2} \| y_{5}$. Then $U\left(x_{1}\right)=\{2,5\}, U\left(x_{2}\right)=\{1,3\}$, $U\left(x_{3}\right)=\{1,2,4,5\}$, and $U\left(x_{4}\right)=\{1,2,3,5\}$. If $x_{5}<y_{2}$, relabelling yields the situation of Subcase 1a, where both (I) and (II) hold. If $x_{5} \| y_{2}$, then $y_{2}=y_{5}$ and we get the dual of Subcase 16 where (I) bolds for \mathbf{P}.

Proof of Theorem 4.4. We again argue by contradiction under the assumption that \mathbf{P} does not contain S_{t}. We know by Theorem 4.2 that $m=t+2$. Moreover, for each n with $4 \leqslant n \leqslant t+2$, no set of n critical pairs can be reversed by only $n-3$ linear extensions. Also, by Lemma 4.1, G does not contain K_{t}. We may
therefore assume that $\{1,3\}$ is not an edge of G. Since the subgraph of \mathbf{G} induced by $\{2,4,5, \ldots, t+2\}$ is not complete, we may assume also that $\{2,4\}$ is not an edge of \mathbf{G}. For each $i \in\{1,2,3,4\}$ let

$$
N_{i}=\{j: 5 \leqslant j \leqslant t+2 \text { and }\{i, j\} \text { is not an edge of } \mathbf{G}\} .
$$

We continue with a series of claims.

CLAIM 1. $N_{1} \cap N_{3}=\varnothing=N_{2} \cap N_{4}$.
Proof. Suppose to the contrary of $N_{1} \cap N_{3} \neq \varnothing$ that $j \in N_{1} \cap N_{3}$. Consider the subgraph of \mathbf{G} induced by $\{1,2,3,4, j\}$. It contains no triangle and is not induced by a cycle on five vertices. It follows that two linear extensions reverse the five critical pairs in $\{1,2,3,4, j\}$, a contradiction. Thus $N_{1} \cap N_{3}=\varnothing$. Similarly, $N_{2} \cap N_{4}=\varnothing$.

CLAIM 2. Either $N_{1}=\varnothing$ or $N_{3}=\varnothing$. Either $N_{2}=\varnothing$ or $N_{4}=\varnothing$.
Proof. Suppose both N_{1} and N_{3} are nonempty. By Claim 1 we have $j \in N_{1}$, $k \in N_{3}$ and $j \neq k$. It follows that three linear extensions (one each for $\{1, j\},\{3, k\}$, $\{2,4\}$) reverse the six critical pairs in $\{1,2,3,4, j, k\}$, a contradiction. The argument for N_{2} and N_{4} is symmetric.

We assume henceforth without loss of generality that $N_{1}=N_{4}=\varnothing$. Then $\{1,4\}$ is not an edge of G, since otherwise \mathbf{P} contains \mathbf{S}_{t}.

CLAIM 3. There is a unique $j \in\{5,6, \ldots, t+2\}$ for which $N_{2}=N_{3}=\{j\}$.
Proof. Suppose $N_{2}=\varnothing$. If $\{1,2\}$ is an edge of G, we get S_{t}. Hence $\{1,2\}$ is not an edge of G. Take $j \in\{5,6, \ldots, t+2\}$ and consider the five critical pairs in $\{1,2,3,4, j\}$. Since we need three linear extensions to reverse these five pairs, $\{3,4, j\}$ induces a triangle in \mathbf{G}, contrary to an hypothesis since it implies that \mathbf{P} contains S_{t}. We conclude that $N_{2} \neq \varnothing$. Similarly, $N_{3} \neq \varnothing$. If $j \in N_{2}, k \in N_{3}$ and $j \neq k$, we get a set of six critical pairs which are reversed by three linear extensions, a contradiction. Hence $N_{2}=N_{3}=\{j\}$ for some j.

Assume without loss of generality that $N_{2}=N_{3}=\{5\}$. It follows that $\{1,2,3,4,5\}$ induces a 5 -cycle in \mathbf{G} and that $\{i, i+1\}$ (cyclically) is an edge of \mathbf{G} for $i=$ $1,2,3,4,5$.

CLAIM 4. For all $i \in\{1, \ldots, 5\}$ and $j \in\{6, \ldots, t+2\},\{i, j\}$ is an edge of \mathbf{G}.
Proof. Otherwise three linear extensions reverse the six critical pairs in $\{1,2,3,4,5$, j\}.

CLAIM 5. \mathbf{P} contains $\mathbf{S}_{t-3} \otimes \mathbf{C}$ or $\mathbf{S}_{t-3} \otimes \mathbf{C}^{d}$.
Proof. It is routine to see that all six claims in the proof of Theorem 4.3 are valid in the present setting. The proof of Claim 5 and hence of Theorem 4.4 is completed
by the following observations. First, for all $i, j \in[5], x_{i} \neq y_{j}$. This follows from the fact that $x_{i} \leqslant y_{6}$ and $x_{6} \leqslant y_{j}$ for all $i, j \in[5]$. Second, if the hypothesis of Case 1 near the end of the proof of Theorem 4.3 holds, then P contains $S_{t-3} \otimes C^{d}$, and if the hypothesis of Case 2 holds then \mathbf{P} contains $\mathbf{S}_{t-3} \otimes \mathbf{C}$.

5. Motivation: A Conjecture Concerning Incomparable Pairs

The original motivation for investigating the characterization problem discussed in this paper is the following conjecture made by the first author.

CONJECTURE 5.1. For each $n \geqslant 4$, any poset \mathbf{P} with dimension at least n contains at least n^{2} incomparable pairs. Furthermore, if $\operatorname{dim}(\mathbf{P})=n$ and \mathbf{P} contains exactly n^{2} incomparable pairs, then \mathbf{P} contains the standard example \mathbf{S}_{n} as a subposet.

In [7], Jun Qin verifies this conjecture when $n=4$. He also shows that any 5dimensional poset has at least 24 incomparable pairs. The argument for this partial result is quite complicated and seems to suggest that a more complete understanding of the relationship between dimension and the number of incomparable pairs (and for that matter, the number of critical pairs) remains to be discovered.

References

1. B. Dushnik and E. W. Miller (1941) Partially ordered sets, Amer. J. Math. 63, 600-610.
2. A. Ghoulà-Houri (1962) Caractérisation des graphes non orientes dont on peut orienter les arêtes de manier a obtenir le graphe d'une relation d'ordre, C. R. Acad. Sci. Paris 254, 1370-1371.
3. T. Hiraguchi (1955) On the dimension of orders, Sci. Rep. Kanazawa Univ. 4, 1-20.
4. D. Kelly (1977) The 3-irreducible partially ordered sets, Can. J. Math. 29, 367-383.
5. D. Kelly (1981) On the dimension of partially ordered sets, Discrete Math. 35, 135-156.
6. R. J. Kimble (1973) Extremal Problems in Dimension Theory for Partially Ordered Sets, Ph.D. Thesis, Massachusetts Institute of Technology.
7. Jun Oin (1991) Some Problems Involving the Dimension Theory for Ordered Sets and the First-Fit Coloring Algorithm, Ph.D. Dissertation, Arizona State University.
8. I. Rabinovitch and I. Rival (1979) The rank of a distributive lattice, Discrete Math. 25, 275-279.
9. W. T. Trotter (1992) Combinatorics and Partially Ordered Sets: Dimension Theory, Johns Hopkins University Press, Baltimore.
10. W. T. Trotter (to appear) Partially ordered sets, in R. Graham, M. Grötschel and L. Lovász (eds), Handbook of Combinatorics.
11. W. T. Trotter and J. I. Moore (1976) Characterization problems for graphs, partially ordered sets, lattices, and families of sets, Discrete Math. 16, 361-381.
