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ON-LINE COLORING AND RECURSIVE GRAPH THEORY*

H. A. KIERSTEAD’I:, S. G. PENRICE’t’:I:, AND W. T. TROTTERS

Abstract. An on-line vertex coloring algorithm receives the vertices ofa graph in some externally determined
order, and, whenever a new vertex is presented, the algorithm also learns to which of the previously presented
vertices the new vertex is adjacent. As each vertex is received, the algorithm must make an irrevocable choice
of a color to assign the new vertex, and it makes this choice without knowledge of future vertices. A class of
graphs I’ is said to be on-line x-bounded if there exists an on-line algorithm A and a function f such that A
uses at mostf((G)) colors to properly color any graph G in I’. If H is a graph, let Forb(H) denote the class
of graphs that do not induce H. The goal of this paper is to establish that Forb(T) is on-line x-bounded for
every radius-2 tree T. As a corollary, the authors answer a question of Schmerl’s; the authors show that every
recursive cocomparability graph can be recursively colored with a number of colors that depends only on its
clique number.
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1. Introduction. The main result of this article can be formulated in terms of re-
cursive function theory or on-line algorithms. Since the on-line formulation gives a slightly
stronger statement and is more universally accessible, we adopt it. However, since the
roots ofthe subject lie in recursive graph theory, we begin with a briefsummary ofresults
in this area. A recursive graph is a countable graph G (V, E) such that there exist
algorithms (Turing machines) for computing the characteristic functions of Vand E. A
recursive graph is highly recursive if each vertex has finite degree and there exists an
algorithm for calculating the degree of each vertex. A graph is recursively k-colorable if
there exists an algorithm that computes a proper k-coloring of the vertices of the graph.
The recursive chromatic number ofa graph is the least k such that the graph is recursively
k-colorable. During the 1970s, several authors, including Manaster and Rosenstein [MR]
and Bean, Schmerl, and Kierstead studied the recursive chromatic number of various
classes of graphs. For example, Bean [B] proved that every planar highly recursive graph
has recursive chromatic number at most 6. Schmerl S showed that every highly recursive
k-colorable graph can be recursively 2k-1-colored, and, in general, this is best possible.
He also proved $2 that Brooks’s bound on the chromatic number of a graph also holds
for the recursive chromatic number of a highly recursive graph. Kierstead [K2] proved
that the recursive chromatic number of a highly recursive perfect graph was, at most,
more than its chromatic number and that the recursive edge chromatic number of a
highly recursive graph was, at most, more than its edge chromatic number.

While there were many positive results for highly recursive graphs, the results for
recursive graphs were almost always negative, unless the class of graphs under consid-
eration had bounded degree. For example, Bean [B] showed that there are recursive
forests whose recursive chromatic number is infinite. However, Kierstead [K1 did give
a positive result for a similar problem. He answered a question of Schmerl, by show-
ing that every recursive ordered set with width w could be partitioned into at most
(5 w_ )! 4 recursive chains. From a purely graph theoretical point of view, partitioning
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an ordered set of wictth w into 0 chains is equivalent to partitioning a comparability
graph with independence number w into 0 complete subgraphs, which, in turn, is equiv-
alent to properly coloring a cocomparability graph with clique number w using 0 colors.
However, Kierstead’s algorithm made explicit use of the orientation of the recursive
ordered set. These considerations led Schmerl to ask whether there exists a functionf(w)
such that every recursive comparability graph with independence number w can be par-
titioned into f(w) recursive cliques. Kierstead and Trotter KT1 showed that this was
true for comparability graphs of interval orders.

Now we consider Schmerl’s question from the point of view of on-line algorithms.
An on-line graph is a structure G (V, E, <), where G (V, E) is a graph, V is finite
or countably infinite, and < is a linear ordering of V. (If V is infinite, then < has the
order type of the natural numbers.) We call G an on-line presentation of the graph G.
The on-line subgraph of G induced by a subset X V is the on-line graph G<[X]
(X, E’, <’), where E’ is the set of edges in E both ofwhose endpoints are in X and <’ is
< restricted to X. Let Vi { xl, x,. } denote the first vertices of V in the linear
order < and set G G<[ Vi ]. More generally, we refer to on-line structures S, where
S is some structure such as an ordered set or partitioned graph. An algorithm for coloring
the vertices of an on-line graph G (or, more generally, calculating some function on
the universe of an on-line structure) is said to be on-line if the color of a vertex xi is
determined solely by G. Intuitively, the algorithm colors the vertices of G one at a
time in some externally determined order x,..., xn, and, at the time a color is irrevocably
assigned to the vertex xi, the algorithm can only see G. A simple but important example
ofan on-line algorithm is the algorithm First-Fit, denoted by FF, which colors the vertices
of G with an initial sequence of the colors { 1, 2 } by assigning to the vertex x/. the
least possible color not already assigned to any vertex x Vi- such that x is adjacent
to x;.

Usually, an algorithm for recursively coloring recursive graphs results in an on-line
algorithm, while more specialized algorithms for coloring highly recursive graphs do not.
The reason for this is that algorithms for coloring highly recursive graphs can learn about
the neighbors of a vertex, or the neighbors of the neighbors of a vertex, and so forth,
before coloring the vertex. An on-line algorithm for coloring graphs always produces an
algorithm for coloring recursive graphs. In this vein, the proof of Kierstead’s recursive
chain coveting theorem actually yields the following slightly stronger statement.

THEOnEM 1. I. There exists an on-line algorithm A that will partition any on-line
ordered set pc into (5 )/4 chains.

Similarly, Bean’s example of a forest with infinite recursive chromatic number pro-
duces an on-line tree that cannot be finitely colored by any on-line algorithm.

Schmerl’s question proves to be a special case of a more general problem. Before
continuing, we introduce some terminology and graph theoretical results. The clique size
and chromatic number of a graph G are denoted by w(G) and x(G), respectively. Let A
be an on-line graph coloring algorithm. Then XA(G<) denotes the number of colors A
uses to color the on-line graph G <, and XA(G) denotes the maximum of XA(G<) over
all on-line presentations G of G. A class of graphs I’ is said to be x-bounded if there
exists a function f such that, for all G I’, x(G) _<f(0(G) ). Easy examples ofx-bounded
classes include the class of perfect graphs (which include cocomparability graphs), the
class of line graphs, and, more generally, the class of claw-free graphs. Similarly, for an
on-line algorithm A, the class P is xa-bounded if there exists a function f such that, for
all G r, xA(G) < f(w(G)). The class I is on-line x-bounded if F is XA-bounded for
some on-line algorithm A. The class of perfect graphs is not on-line x-bounded. In fact,
the subclass of trees is not even on-line x-bounded as we noted above. However, the
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class of claw-free graphs is on-line x-bounded. We now rephrase Schmerl’s question in
these terms.

Question 1.2. Is the class of cocomparability graphs on-line x-bounded?
A graph H (X, F) is an induced subgraph of a graph G (V, E) if and only if
X V, and (2) for all vertices x, y X, xy F if and only if xy E. For a graph H,

let Forb(H) be the class ofgraphs G such thatH is not isomorphic to an induced subgraph
of G. In the mid-1970s, Gyhrfhs [G1] and Sumner [Su] independently formulated the
following conjecture.

CONJECTURE 1.3. For any tree T, the class ofgraphs Forb(T) is x-bounded.
Several comments about this conjecture are in order. First, it is easy to show (see

G or Su that, if x:(G) k, then G contains every tree T on k vertices as a subgraph,
but not necessarily as an induced subgraph. Second, if Forb(H) is x-bounded, then H is
acyclic. This follows immediately from a result of Erdrs and Hajnal [EH that, for every
positive integer > 2, there exists a graph Gi such that both the girth and chromatic
number of Gi are at least i. Such graphs have clique number 2 and do not contain any
graph that contains a cycle of length i. Finally, if F is a forest, Forb(F) is x-bounded if
and only if, for each of the connected components Ti of F, the class Forb(Ti) is X-
bounded. Thus, ifthe conjecture is true, its proofyields a characterization ofthose graphs
H such that Forb(H) is x-bounded.

Rrdl proved a weaker version of the conjecture. He showed [KR] that, for every
tree T and complete bipartite graph Kt,t, the class Forb(T) f) Forb(Kt,t) is on-line :-
bounded. Gyhrfs [G2 showed that the conjecture is true when T is any path. Gyrfs,
Szemerrdi, and Tuza [GST] verified the conjecture for triangle-free graphs in Forb(T),
when T is any radius-2 tree, and Kierstead and Penrice [KP1] extended this result by
showing that Forb(T) is x-bounded whenever T has radius 2. The latter two results use
Rrdl’s theorem. We need the following strengthening of Rrdl’s result due to Kierstead
and Penrice KP ].

THEOREM 1.4. For every tree T and complete bipartite graph Kt,t, Forb(T) N
Forb(Kt,t) is xvv-bounded.

An old result of Chvtal [C] shows that Forb(P4) is bvv-bounded, where Pn is a
path on n vertices. Gy(rfs and Lehel GL3 made an exciting and unexpected break-
through when they extended this result by proving that Forb(Ps) is on-line x-bounded.
They also showed that Forb(P6) is not on-line x-bounded. Thus, if Forb(T) is on-line
x-bounded for some tree T, then T has radius at most 2. The central result of this article
is that this condition is not only necessary, but is also sufficient.

THEOREM 1.5. For every tree T, the class Forb(T) is on-line x-bounded ifand only

if T is a radius-2 tree.
We are indebted to Gyhrfs for reminding us that, as a consequence of Gallai’s

characterization of comparability graphs [Ga], cocomparability graphs do not induce
the radius-2 tree obtained by subdividing each edge ofK,3 (see Fig. 1.1 ). Of course, this
is part of the easy direction of Gallai’s characterization and can be readily verified from
scratch. Thus, as an immediate corollary, we obtain the following answer to Schmerl’s
question.

COROLLARY 1.6. The class ofcocomparability graphs is on-line x-bounded.
This paper is organized as follows. In the remainder of this section, we state some

preliminary results and review our notation and terminology. In 2 we give an overview
of the off-line proof and the problems we must deal with to create an on-line algorithm.
In 4 and 5 we develop some purely combinatorial lemmas needed to verify the cor-
rectness of the main algorithm. In 5 we also present a key on-line subroutine and in 6
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FIG. 1.1.

we give the proof of Theorem 1.5, after giving a more technical reformulation of it as
Theorem 6.1.

We use the following easy lemma, which follows, for example, from Turan’s theorem.
LEMMA 1.7. Let D be a directed graph, where A out denotes the maximum outdegree

olD and where u and e denote the number ofvertices and edges olD, respectively. Then
D contains an independent set ofsize at least u/(2Aut + ).

Let R[a, b] denote the Ramsey function with the property that every graph on
R[ a, b] vertices contains an independent set of size a or a complete subgraph of size b.

Let Ta, be the radius-2 tree whose root r is adjacent to a level-1 vertices x
Xa, and each level-1 vertex xi is adjacent to b leaves Yi,, Yi,b. We call the set
{ Yi, Yi,6 } a level-2 group. We abbreviate T, by T. The complete s-partite graph
with w vertices in each part is denoted by KSw.

If two vertices x and y are adjacent, we write x y. IfX and Y are sets of vertices
such that every vertex in X is adjacent to every vertex in Y, then we write X Y. We
denote the neighborhood of a vertex x by N(x) { y: x y }.

2. Overview. In this section, we give an overview ofthe proofofthe off-line version
of our main theorem and the additional problems that must be solved to prove the on-
line theorem. This section also serves as a guide to reading the rest of the paper. We
begin by noting that, if T’ is a subtree of the tree T, then Forb(T’) Forb(T), and thus
Forb(T’) is on-line x-bounded if Forb(T) is. Thus it suffices to prove that, for all k,
Forb(Tk) is on-line x-bounded. In 3, two elementary combinatorial lemmas on trees
are presented, which simplify the remaining arguments. In particular, quasi-
induced trees are defined, and it is shown that it suffices to prove that the smaller class
q Forb(Tk) of graphs that do not contain a quasi-induced T is on-line x-bounded.

The central idea in both the on-line and off-line proofs is the notion of s-templates
and their use to partition the graph so that the vertices can be properly colored in terms
of local and global colors. Roughly, an s-template is a complete s-partite graph with a
very large number of vertices in each part. The exact definition of its part size depends
on w(G) and s. However, there will be an absolute upper bound on part size in terms
of t. At a given stage of a double induction on and s, we assume the following for some
bound c depending on s and t:

IfH is a graph on q Forb(T) such that either (a) o(H) < or (b) w(H) and
H does not contain an induced s-template, then X(H) < c.

It is easy to partition the vertices of G as (X, B, O, B, O2 B, O,) so that,
for _< < j < n, the following assumption holds:

(2) a Bi is an s-template,
(b) Each vertex in Oi is adjacent to at least k vertices in some part of Bi,
(c) No vertex in B is adjacent to k or more vertices in any part ofB,
(d) X does not contain an s-template.
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By part (b) of assumption ), we can color X with c colors. Using a different
disjoint set of c lBil colors, we can, by part (a), color each Oi with c lBi] colors so that
all vertices of Oi that receive the same color have a common neighbor in Bi. However,
two adjacent vertices, one in Oi and the other in Oj with 4 j, may receive the same
color. Finally, using a third disjoint set of BI colors, we can color each Bi so that each
vertex of Bi receives a distinct color. Again, two adjacent vertices, one in Bi and the
other in Bj with 4 j, may receive the same color. Call these colors local colors and let
(a) denote the set of vertices with local color a.

It remains to show that we can color each local color class (a) with a bounded
number of colors. Before describing this coloring, we must mention one technical com-
plication. A point x is said to be an extra point for an s-template B if, roughly, x is
adjacent to almost every vertex in every part of Bi. Extra points will create all sorts of
minor problems, which require special attention. Fortunately, if any template has too
many extra points, we will be able to start over using an algorithm based on (s + )-
templates. For the rest of this informal discussion, we ignore the possibility of extra
points. With this sluff, we can give a simple statement of the following crucial properties
of our partition. In 4 these properties are stated in full technical detail and proved.

(3) There exists a constant d such that, for any vertex x, local color a, and integer
i<n,

(a) ]{j:x y, for some y e By} <_ d,
(b) I{J: x is adjacent to at least k vertices in O fq (a) }1 < d,
(c) I{ J: for some x Oi fq (a), x is adjacent to at least k vertices in Oy fq

-< d.
Properties a)-(c) in the above assumption allow us to color each (a) with a bounded

number of colors as follows. If a is a local color that is used on a vertex in some Bi, then
a is used on exactly one vertex ofeach B2. Thus, by part (a), the degree of(a) is bounded
by d, and so (a) can be d + colored. Suppose that a is a local color that is used on a
vertex of O/.. We define a directed auxiliary graph G’ on the vertices { 1,..., n } by ---*
j if and only if there exists a vertex x Oi N (a) such that x is adjacent to at least k
vertices of Oj N (c). By part (c), G’ has outdegree at most d and thus can be colored
with at most 2d + colors. We assign each vertex x 6 (a) a two-coordinate global color.
The first coordinate is the color of in G’, ifx Oi. Now let (a, r) be the subset of (a)
of vertices whose global color has first coordinate ft. By (a) and (b), the degree of
(a, r) is less than d2, and thus (a, r) can be colored with d2 colors. We have thus
properly colored G with a bounded number of colors.

Next, we consider the problems involved in implementing the above proof on-line.
The major problem is that we cannot calculate the partition of G into (X, B, 0, B2,
02, Bn, On) on-line. When a vertex x is presented, it may appear to belong to the
first part X of the partition, but later we may learn that it must be assigned to some B
or Oi. Without being able to properly assign x to a part ofthe partition, we have no basis
for coloring x. Now suppose that we are very fortunate and that whenever a new vertex
x is presented we correctly guess its proper position in the partition. There is still a minor
problem. Suppose that x is correctly assigned to Oi. Then x is given a global color, which
is based in part on the auxiliary graph G’. However, the presentation ofx may cause an
edge from toj to appear in G’, when previously we had assigned andj the same color.
This problem is solved in {}5, where the definition ofthe auxiliary graph is slightly modified
to facilitate dealing with the extra points. In particular, the auxiliary graph will not be
directed.

To handle the more serious problem, our on-line algorithm will maintain a partition
of G into P (X, B, O, B2, 02,...), which approximates the desired partition in the
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following sense. At any stage + 1, when we consider the vertex x + 1, Pwill be a partition
of Gi, which satisfies parts (a)-(d) of assumption (2). At any stage, vertices may be
removed from X to form Bj+, where Bj is the last template in the previous partition.
When this happens, other vertices may be moved from Xto Oi. Once a vertex is assigned
to a part of the partition other than X, it will never move. Thus, when we are presented
with xi + 1, we try to assign x + to some Oj.. If this is not possible, we try to form a new
s-template with x + 1, together with some vertices from X. Ifthis is not possible, we assign
Xi + tO X.

We are left with the problem of coloring the newly presented vertex xi / . There is
no problem if x/. / is assigned to a new s-template Bj., and, if x is assigned to some 0,
it is relatively easy to color x using the techniques of 5, referred to above. The main
problem arises when x; / is first assigned to X. In this case, we do not know where Xi +
will end up, so we must somehow hedge our bets. We would like to color X + using the
on-line version of part (b) of ). The set of points currently in X does not contain an
s-template, but this property is maintained artificially by removing vertices that would
otherwise form an s-template in X. Simply removing vertices from X does not solely
solve the problem of coloring vertices of X’, the set of points originally assigned to X,
because the color ofa vertex originally assigned toXcontinues to influence future vertices
even after the point is removed from X. We cannot afford to change the set of colors
used for vertices entering X every time vertices are removed from X, because we may
have to change color sets an unbounded number oftimes due to the fact that the template
sequence may be unbounded in length. Thus, we want part (b) of to forbid, not s-
templates in X, but much larger s-partite graphs KSw in X’, and we will be able to do so
because of the other properties of the algorithm. By parts (a) and (b) of assumption 3 ),
the vertices of a supposed Kw in X’ could not have been used to form too many different
s-templates, nor could this set of vertices intersect too many of the Og’s. Thus, if X’
contains a copy B’ of KSw, then, by setting w large enough, we can assume that, for each
part Qa of B’, there exists a large subset Q such that either Q c X or Q’a Oj(a) [,-J nj(a)
for some j(a). Here, large means the size of a part in an s-template. This motivates the
intricate induction hypothesis presented in 6, where we will color X’ on-line with a two-
coordinate color. The first coordinate will ensure that, if x, y e X’, x y, and
x X’ X at the time y is presented, then x and y receive different colors. From this
fact, following the remarks above, we will show that no first coordinate color class
ofX’ contains Kw for appropriately chosen w. Thus we will be able to color each ofthese
first coordinate color classes on-line by a revised version of the induction hypothesis (b)
of(l).

3. Lemmas on radius-2 trees. In this section, we develop some preliminary results
about trees. We begin with some fundamental definitions. A graph H is called a pseudo-
induced Ta,b if H has a spanning tree T that is isomorphic to Ta,b and the root of T is
not adjacent in H to any leaf of T. A graph H is called a quasi-induced Tk if H has a
spanning tree T that is isomorphic to Tk, and, if xy is an edge in H that is not present
in Tk, then x and y are either both level-1 vertices, or they are both level-2 vertices. Note
that quasi-induced T is the stronger of the two: Every quasi-induced T is a pseudo-
induced T, but a pseudo-induced T may have "extra" edges between the first and
second levels. In a similar vein, we say that H is an augmented Kw if V(H) can be
partitioned into s sets Q Qs of size w such that x y whenever x e Qi, y e Qj,
and < <j < s. We abuse standard usage by calling the Qi’s "parts" ofH, even though
they need not be independent sets.
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We introduced the definition of a quasi-induced Tk to simplify future arguments.
It is easier to verify that a graph contains a quasi-induced Tk than it is to verify that a
graph contains an induced Tk, because, in the latter case, we must in effect check every
pair of vertices to see if the proper edge or nonedge is present, whereas, with quasi-
induced trees, we need only check pairs of vertices from different levels. The next lemma
shows that the results we desire for graphs that do not contain induced trees can be
obtained from results about graphs that do not contain quasi-induced trees.

LEMMA 3.1. For all positive integers k and t, there exists a positive integer k’( k, t)
such that, ifk’ k’ k, t) andH is a quasi-induced Tk, then H contains either an induced
Tk or a clique on vertices.

Proof. If k’ is.sufficiently large, then, by repeated applications ofthe Bipartite Ramsey
Theorem, we may assume that, between any two level-2 groups, either all edges are
present, or no edges are present. If there are R[R[ k, t], t] level-2 groups, then either
there exist level-2 groups with all edges between any two distinct groups present, in
which case there exists a t-clique in H, or there exist R[ k, level-2 groups with no edges
present between any two groups. By Ramsey’s theorem, among the level-1 vertices as-
sociated with each of these R[ k, t] level-2 groups, there exists either a t-clique or a set
of k independent vertices. In the latter case, however, we have an induced Tk.

We use q Forb(T) to denote the class of graphs that do not contain a quasi-
induced Tk. Lemma 3.1 may then be paraphrased as "If k’ is sufficiently large, then
q Forb(Tk,)

_
Forb( Tk)." Henceforth, our arguments will refer to quasi-induced trees

rather than induced trees. Also, we denote by q Forb(Kw) the class of graphs that do not
contain an augmented Kw, and q Forb( Tk, Kw) denotes the class of graphs that contain
neither a quasi-induced T nor an augmented KSw.

LEMMA 3.2. Let H q Forb(T) be a graph that is spanned by T, a pseudo-induced
Tk(2a + 1),kb. Then some level-1 vertex x of T has b neighbors in a distinct level-2 group,
other than the level-2 group associated with x.

Proof. Let xl,..., xtza+ 1) be the level-1 vertices of Tand let $1,..., Sk(2a+ 1) be
the level-2 groups of T. Suppose that no level-1 vertex has b neighbors in a distinct
level-2 groups. Define a directed graph D on the vertex set { 1, k(2a + )} by di-
recting an arc form to j, :/: j, if and only if xi has b neighbors in S. By our sup-
position, AUt(D) _< a. It follows from Lemma 3.2 that D has an independent set of
size k. This means that we may assume without loss of generality that, for 1,
k, xi has less than a neighbors in each S., < j < k, j :/: i. Thus, by removing at most
(k )(a vertices from each S., leaving at least k vertices in each level-2 group,
we find a quasi-induced T, a contradiction.

4. Definitions and structural lemmas. Let k, p, s, and be fixed positive integers
such that s > 2 and p > k4. If B is a subgraph of G isomorphic to an augmented KSw
with w p + k4, then we call B a template of G. We call a vertex x B an extra point
ofB ifx has less than k4 nonneighbors in each part of B. We call a vertex x B a strong
1-neighbor of B if x has k neighbors in some part of B. Note that an extra point is also
a strong 1-neighbor. A sequence oftemplates B1,..., Br is called an acceptable template
sequence if, whenever < m < n < r and x Bn, x is not a strong 1-neighbor of Bm.

This section has two goals: to define an /-tube and to prove a technical lemma,
Lemma 4.1, which will play a crucial role when we verify that our on-line algorithm uses
a bounded number of colors. In particular, it will help us to verify that the auxiliary
graphs have bounded degree, and it will have other applications as well. The following
definition and the statement of Lemma 4.1 are, in fact, the only elements of this section
used in the rest of the paper. The first-time reader may wish to proceed to 5 after
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studying the remarks following the statement of Lemma 4.1 and return to the proofs of
this section later.

DEFINITION. Let be a nonnegative integer. Then we call a subgraph U (B, N,
N2, Ni an i-tube if

(i) B is a template,
(ii) BNNm= for < m < i,
(iii) Nm f"l Nn for < m < n < i,
(iv) INml k for < m < and INil 1,
(v) Ifx N, then x has at least k neighbors in some part of B,
(vi) Nm Nm+ for < m < i- 1.
We refer to the unique element of Ni as the top of U. We refer to Nm as the mth

level of U for < m < i. Also, B is the 0th level of U. If U is a 0-tube, then B is the
top level.

LEMMA 4.1. There exists a function f i, k, o) such that, for every graph G
q Forb(T) and every vertex x ofG, if

(i) U { U,..., U is a collection ofpairwise disjoint i-tubes in G with O-levels
B, B, forming an acceptable template sequence,

(ii) x is not an extra point ofany template in the sequence B, B,
(iii) x has a neighbor in the top level ofeach of U, Uj.,
(iv) B, has less than o extra pointsfor < n <_ j,

thenj <J(i, k, 0).
Lemma 4.1 has simple interpretations in the cases where 0 and 1. Namely,

if x is a vertex of a graph G 6 q Forb(T) and there exists an acceptable sequence of
templates B B such that x has a neighbor in B but x is not an extra point of B,
for _< n _< j, then j < ]] (0, k, p), because a template is, in fact, a 0-tube. Similarly, if,
instead of assuming that x has neighbors in the Bn’s, we assume that x has neighbors x,

xj. such that x is a strong 1-neighbor of B for _< n _< j, then j < J] 1, k, o),
because B tO {x } is a 1-tube for _< n < j. (In the latter case, we retain the assumption
that x is not an extra point of the templates; for the x,’s, we need not make a distinction
between extra points and nonextra points.) The case where 2 is also used in our proof,
but describing it informally outside the context of the algorithm is awkward.

We surmise that tubes play a role in proving off-line results concerning trees of
radius larger than 2; this is the theoretical reason for proving a general version ofLemma
4.1 (for arbitrary i) when only the cases where 0, 1, and 2 are used. (As a practical
matter, the heart of the proof, Lemma 4.3, is proved by induction, so the general result
is obtained with more economy than proving these three cases separately.) We also remark
that the hypotheses of Lemma 4.1 can be weakened if a corresponding change is made
in the definition of an /-tube. Specifically, the tubes need not be completely disjoint,
provided that the bases form an acceptable template sequence, which, by definition,
consists of disjoint templates. However, to realize this apparent strengthening of the
lemma, we must add to the definition of an/-tube the condition that no vertex in the
tube is an extra point of the base. After making this adjustment, a different version of
Lemma 4.1 enables us to prove Theorem 6.1 using an on-line algorithm, which, while
more complicated, appears to use fewer colors than the algorithm of this paper.

Establishing Lemma 4.1 requires some other purely technical lemmas. We state and
prove each separately.

LEMMA 4.2. Let B be a template and suppose that x B is not an extra point ofB.
If <_ q < k4 and x has q neighbors in some part ofB, then there exist vertices x,
Xq in one part P ofB and y, y, in a different part Q such that x is adjacent to Xm
for < m < q and x is not adjacent to ymfor < m < k4
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Proof. Since p >_ k4, every part of B contains either k4 neighbors of x or k4 non-
neighbors ofx, by the pigeonhole principle. Since x is not an extra point ofB, then some
part, say Q’, ofB contains k4 nonneighbors of x. By the hypothesis, some part of B, say
P’, contains q neighbors of x. If P’ 4: Q’, set P P’ and Q Q’, and we are done. If
P’ Q’, then, since s >_ 2, we may consider another part, say R. As we observed earlier,
either R contains k4 neighbors of x or R contains k4 nonneighbors of x. In the former
case, set P R and Q Q’. In the latter case, set P P’ and Q R. It is then easy to
find the desired vertices.

As we indicated at the beginning of this section, one of our short-term goals is to
prove Lemma 4.1, which states roughly that there is a bound on the number of tubes in
which a point can have neighbors. To prove this bound, it is helpful to prove a bound
for a sequence oftubes with special properties and then extend the results to more general
sequences of tubes. Thus we are motivated to introduce the following definition. A se-
quence of/-tubes U1, U, where Un (Bn, N1,n, Ni,n), is called an acceptable
j-sequence ofi-tubes if

(i) U,, N U, for <_ m < n <_j,
(ii) The sequence B Bj. is an acceptable template sequence,
(iii) If x Urn, then x is not an extra point of B, for _< m 4: n _< j.
Having introduced this definition, we now show that it is reasonably easy to establish

the kinds of bounds we seek when we consider acceptable sequences of/-tubes. The
following argument, with weaker bounds, was useful in [GST and [KP 1].

LEMMA 4.3. Let { bi ) be the sequence offunctions defined by bo(k) k(2k + 1)
and bi + (k) k(2bi(k) + + bi(k) if > O. Let U { U U.) be an acceptable
j-collection ofi-tubes, for somefixed >_ O, in some graph G q Forb(Tk). Suppose that
x is a vertex such that x is adjacent to the top vertex of U, and x is not an extra point of
B, for <_ n <_ j. Then j < bi k)

Proof. Let k be fixed and assume for notational ease that bi bi (k) for >_ 0. We
induct on i. Let 0 and suppose for contradiction that x has a neighbor in B for _<

n _< j bo. Our first goal is to find a vertex y, a strictly increasing function r, and sets
B’(i) and B(i) for k such that

B(i), B](i) c B(i),
(2) n’()l, Ine) >-
(3) y is adjacent to every vertex of B(i),
(4) y is nonadjacent to every vertex of
5 B’(i) B(i.
By applying Lemma 4.2 to x and to each of the templates B,..., B, we may find

T, a pseudo-induced T. with a b0, b k4, whose level-2 groups are contained in
distinct templates. Applying Lemma 3.2, we find a level-1 vertex y of T1, which has a
set B(i) of k neighbors in each of k templates B(),..., B(k), none of which are at
the base of the tube containing y. Observing that (by the definition of an acceptable
sequence of/-tubes) y is not an extra point ofany ofthe templates, we may apply Lemma
4.2 again to find B(), B(g) as desired. Without loss of generality, r(i) i,
for all i.

Having found the structures with properties )-( 5 ), we now seek to find a quasi-
induced T. To do so, we construct a sequence of sets S, Sk and a sequence of
vertices R, R as follows. Let Rg be any vertex of B and let S be any k-element
subset of B. Suppose that Rk, S,, R,_ , Sk_ , Rr, Sr are constructed for r > 1.
Define R_ to be any vertex of B’_ that is not adjacent to any vertex of S t_J tA
S. This is possible, since each vertex w of S tO tO S has fewer than k neighbors in
B_ and [S t_J tA S[ < k2. Define S_ to be any k-element subset of B_ that
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does not contain any neighbors ofRr,..., Rk. Again, this is possible because each vertex
Rr, Rk has fewer than k neighbors in BT_ and { Rr, Rk } < k.

When we have chosen Rl,..., R, S1,..., Sg, these vertices, together with y, form
a quasi-induced Tk.

Suppose that > 0. Without loss of generality, x has a neighbor in each ofNi,,...,
Ni,bi; say these neighbors are x, Xbi. By induction, we may assume that x has no
neighbors in Ni- 1,1, Ni- 1,bi- bi_ 1" Then x is the root of a pseudo-induced Ta,b with
a k(2bi- -- and b k. Then, by Lemma 3.2, we find a level-1 vertex xn that has
a neighbor in bi- level-2 groups contained in tubes that do not contain xn. This is a
contradiction of the induction hypothesis, since, by the definition of an acceptable se-
quence, xn is not an extra point of any template that is at the base of a tube (from the
acceptable sequence) not containing xn.

ProofofLemma 3.1. Let J (i, k,/9 (bi (k)) (2o + ). Suppose that conditions
(i)-(iv) of the hypothesis hold with j J (i, k, o). Define a digraph on { l,..., j } by
directing an arc from m to n if and only if Un contains an extra point of Bm. Since
the U’s are pairwise disjoint, the digraph has outdegree at most o; by Lemma 1.7, we
must find an independent set of size bi(k) in the digraph. However, independent sets
in this digraph are acceptable tube sequences in G. Thus, we may assume that U’
{ UI Ub } is an acceptable b-sequence of/-tubes, where b bi (k). Then, since x
has a neighbor in the top of each of these tubes, Lemma 4.3 implies that bi (k) < bi (k),
a clear contradiction.

5. Lemma for using auxiliary graphs on-line. We now deal with the minor problem
mentioned in our overview. We wish to show that to color a graph G e q Forb(T)
on-line with a bounded number ofcolors, it suffices to partition G on-line into independent
sets 11, ...,/r with the following properties:

(a) For all m, < m < r, { n: Im to In contains an augmented Ke,e ) <- f,
(b) IfH Kd,d is a subgraph of G, then there exist Ip and Iq such that some subset

of (ip tO Iq) f) H contains an augmented Ke,e.
The number of colors used will be bounded in terms of d, e, f, and w(G). Many of the
essential ideas are present in a transparent way when we consider the off-line setting. We
begin with this argument.

PROPOSITION 5.1. There exists a constant c depending only on d, e, f, and w( G),
such that, ifG q Forb(Tk) can be partitioned into independent sets as in a and b ),
then X( G) < c.

Proof. Suppose that G is partitioned into independent sets I, /r in a way
satisfying (a) and (b). Define a graph G’ on the sets I,..., /r by declaring that Im is
adjacent to In if and only if Im tO In contains an augmented Ke,e. Note that, by the
definition of (a), A(G’) <f, and it easily follows that x(G’) < f+ 1. Let g’ be an optimal
coloring of G’. Define a two-coordinate coloring g of G as follows. Compute the first
coordinate of each vertex x by assigning x the color g’(In), where In is the independent
set in the partition that contains x. After all the first coordinates have been computed,
for every a e range (g’), define a graph G, as the subgraph of G induced by vertices that
received color a in their first coordinate. Let g be an optimal coloring of G, and let
g(x) be the second coordinate of g(x). It is clear that g is a proper coloring of G and
that

range (g)l < range (g’)l max { Irange (g.)l" a e range (g)}.

It remains for us to verify that range (g) is bounded in terms of d, e, f, and o4 G). We
have already noted that range (g’)[ < f + 1. Since q Forb( Tk, Kd,d) is x-bounded
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(indeed, it is Xvv-bounded), it suffices to show that G q Forb(Kd,d). Suppose that G
contains an augmented Kd,d; call this subgraph H. By condition (b), there exist inde-
pendent sets Ip and Iq of the partition such that (Ip tO Iq) f3 H contains an augmented
Ke,e. Then, however, Ip and Iq are adjacent in G’, so vertices on opposite sides ofthe Kd,d
received different colors in their first coordinate of g, contradicting the fact that every
vertex ofH received color c in its first coordinate. []

We refer to G’ as the auxiliary graph. To avoid confusion with the vertices of G,
we call the points of G’ nodes. There are several adjustments that must be made in the
on-line case. The greatest difficulty arises from the fact that, when G and the partition
I1,...,/r } are presented on-line in G’, it is possible that an edge may be "discovered"
in G’ well after both of its nodes have appeared. This is because the nodes ofthe auxiliary
graph are sets of vertices of G, and edges are formed in the auxiliary graph only when a
large number of edges (of G) are present between the two sets of the partition. Thus the
auxiliary graph does not strictly fall under the on-line model. However, as colorers, we
are aided by the fact that (again, in contrast to the standard on-line model) we may
change the color of a node as we discover new edges incident on the vertex, provided
that the number of times we change the color of a node is no larger than the degree of
the node.

LEMMA 5.2. There exists an on-line algorithm A and a constant c depending on
d, e, f, and w such that, if G<is an on-line presentation of a partitioned graph G
V, E, 11, 12 ), with w(G) < o and G q Forb(Tk), satisfying (a) and (b), then A
colors G using at most c colors.

Proof. Let G’ be defined as in Proposition 5.1. Without loss of generality, we may
assume the node set of G’ is the set of positive integers. As a new vertex in G is presented,
it may cause a previously unseen edge to appear in G’. Despite this complication, we
seek to maintain a proper coloring of G’, even though we may occasionally change the
color of a node of G’.

Suppose that a vertex x enters G and is assigned to Im. If x does not produce any
new edges incident on Im, do not change the coloring of G’. If x does produce one or
more new edges incident on Im, assign Im a new color (if necessary) so that the color of
Im is different from all of its previous colors, as well as the current colors of all the
neighbors of Im in G’. Since Im has at most fneighbors in G’ and each vertex of G’ has
at most f+ different colors throughout its history (since only the addition ofan incident
edge can cause a color change), a color will always be available for Im, provided that we
use f2 + f+ colors to color G’. Moreover, we have something more than a proper
coloring: After an edge Imln appears, Im is never given a color previously held by In, and
vice versa.

Now x will be assigned a two coordinate color. The first coordinate will be the color
of Im in G’ after any edges in G’ caused by adding x to G have been added to G’. To
compute the second coordinate, apply First-Fit to the subgraph of G induced by the
vertices that received the same first-coordinate color as x.

Clearly, this algorithm gives a proper coloring ofG, and we have already determined
that at mostf2 + f+ colors are needed in the first coordinate. Thus it suffices to show
that the number of colors used in the second coordinate is bounded by a function of d,
e, T, and w(G). In fact, we have already done so when we argued for Proposition 5.1,
because the bound in the second coordinate ofthat coloring could be realized by applying
First-Fit. q

6. The main theorem. In this section, we prove the following technical reformulation
of Theorem 1.5, our central result.
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THEOREM 6.1. For every positive integer k, there exists an on-line coloring algorithm
Ak and afunction ck such that, ifG is an on-line presentation ofG Forb(T), then A
gives G a proper coloring using at most c(w( G)) colors.

Proof. Let k be a fixed positive integer. We have already observed that it suffices to
prove the theorem for q Forb(T,). Another simplifying observation is that it suffices to
prove the following, apparently weaker, statement:

(*) For every positive integer t, there exists an on-line algorithm A, and an absolute
constant Ck, such that, if G q Forb(T) and co(G) < t, then Ak, colors G using at most
ck,t colors.

Statement (*) is, in fact, no weaker than Theorem 6.1; we simply use pairwise
disjoint sets of colors for each algorithm A,t. If G is an on-line presentation of a graph
G e q Forb(Tk), then, whenever o(G 7: o(Gi<_ ) t, we may color X using Ak,t. On
the other hand, if w(GT:) o(GT:_ ) + 1, we may begin using Ak,t + and a new set of
colors. We then have Theorem 6.1 by taking c(c0(G)) 22 = ck,t.

We now prove * by induction on theclique size t. If 1, the statement is obvious,
since First-Fit will assign the same color to every vertex ofa graph with no edges. Assume
that > and that there exists an on-line algorithm A,t_ and a constant c,,t- such
that Ak,_ colors any on-line presentation G of G q Forb(T) satisfying o(G) <
1, with at most ck,t_ colors. To prove the induction step, we must show that there exists
an algorithm Ak,t and a constant c,t such that A,t colors any on-line presentation G of
G e q Forb(T) satisfying w(G) < t, with at most ck,t colors; to this end, we set up a
secondary induction. To state the secondary induction, we must refer to three sequences
of parameters P2 pt, , and w2 wt. We delay the calculation of these
sequences until after a sketch of the secondary induction.

We call a template with s parts and p + k4 vertices in each part an s-template. To
appreciate the following statement, which we will prove by induction on s, it is important
to realize that Ps + k4 will be much smaller than w.

* *) For 2 < s < + 1, there exists an algorithm A,,t,s and a constant c,,,s such
that

(i) For 2 < s < t, if G is an on-line presentation of G q Forb( T, Kw,) with
o(G) < t, then Ak,l,s colors G using at most c,,t,s colors,

(ii) For 3 < s < + 1, ifG is an on-line presentation of a graph G 6

q Forb(Tk), where co(G) < and no (s )-template of G has Os- extra points, then
A,,t,s colors G with at most c,t,s colors.

Some general comments are in order now. The first comment is that the base step,
the case where s 2, follows from Theorem 1.4, regardless of the value of w2. Note that
(ii) makes no assertion in this case. By far, the hardest part of proving (* *) is showing
that, if (i) is true for s 1, then (ii) is true for s. Next, the sequences of parameters will
be defined in such a way that, whenever we have (ii) for a particular value of s, 3 < s <
t, we obtain (i) for the same value of s as an immediate corollary. Finally, we will define
ot 1, so that (ii) in the case where s + implies that we may prove the primary
induction by putting A,t A,t, + and ck,t Ck,t,t + 1. If o(G) _< t, a t-template of G
cannot have any extra points, since no vertex of G can have neighbors in every part of
a t-template.

We now state the properties that our sequences of parameters must have for us to
prove * * ).

(a’) If G q Forb(Kws) and B is an (s )-template of G, then B has less than
os- extra points, for 3 < s _< t.

(b’) If G is a graph and B is an s-template of G that has k extra points, x,..., x,
then N(x fq f3 N(x) f3 B 4: , for 2 _< s _< t.
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Property (a’) is all we need to show that establishing (ii) for a particular value of s
yields a proof of (i) for that same value. Suppose that we have defined our parameters
so that (a’) holds and assume (ii) for some s < t. Let G be an on-line presentation of
G e q Forb( Tk, Kws) with w(G) < t. Assuming (ii), we know that, if Ak,t,s uses more
than ck,t,s colors on G<, then some (s )-template ofG has los extra points. However,
by (a’), G q Forb(Ks), a contradiction. Property (b’) is used to handle a small tech-
nicality that arises when we show that, if (i) is true for s 1, then (ii) is true for s. A
more detailed motivation for (b’) outside the context of the algorithm is impractical.

We now define our parameters, using a "reversed" induction. Let the function w
be defined by w(k, p, ,o) (p + k4)( +j] (0, k, lo) +jq( 1, k, lo)) for all positive integers
k, p, and

Base: Let p k5. Let lot 1. Let wt w(k, p, lot).
Induction: Suppose that Ps, los, and ws have been defined for s > 2. Then Ps-

max { k4ws, k5 }, los- ws, and Ws- w( k, p_ 1, los- 1).
As is the case for property (b’), the definition of the function w is motivated by

technicalities that arise in a detailed discussion of the algorithm.
We now verify (a’). Suppose that G q Forb(Kws) and B is a template of G with

s parts, p_ + k4 vertices in each part, where 3 _< s _< t. Suppose for contradiction
that B has r los- Ws extra points, x x. Consider any fixed part Q of B. By
the definition ofan extra point, Xl has Ps- >- k4ws neighbors in Q. At least k4ws k4 of
these neighbors are neighbors of x2, again by the definition of an extra point. At least
k4ws 2k4 of these points are neighbors of x3. Continuing in this manner, we may find
a subset of Q of size at least k4ws ((los-1 )k4) Ws, which is adjacent to all of
Xl Xr }. Since Q was chosen arbitrarily, we may do the same in every part of B.

This results in an augmented Kw,, a contradiction.
Property (b’) is verified in a similar manner. Suppose that G is a graph, that B is a

template of G with s parts, Ps + k4 vertices in each part, and that B has k extra points,
x, xk. Then Xl has at least Ps >- k kk4 neighbors in every part of B, at least
kk4 k4 ofwhich are also neighbors ofx2, and so on. We then find a common neighbor
for x, x. (In fact, we find at least kk4 (k )k4 k4 neighbors in each part
of B.)

By our earlier remarks, to prove the induction step of * ), it suffices to prove * * ).
We have already noted that, in the base step of (* *), (i) is a consequence of Theorem
1.4 and (ii) is trivial. By our remarks on property (a’), to show the induction step of
(* *), it suffices to show that, whenever (i) holds for s 1, (ii) holds for s, 2 < s _< +
1. By the primary induction hypothesis, there exists an algorithm A,,t- and a constant
c,t- such that, if G is. an on-line presentation of a graph G q Forb(Tk) with
w(G) _< 1, then A,_ colors G with at most c,,t- colors. By the secondary induction
hypothesis, there exists an algorithm A,,t,s- and a constant c,t,s- such that, if G is
an on-line presentation of G q Forb( Tk, s-1Kws_l) with w(G) _< t, then Az:,t,s- colors G
with at most c,,t,s- colors. It remains for us to show that, given these hypotheses, there
exists an on-line algorithm A,t,s and a constant c,t,s satisfying (ii).

For the remainder of the proof, let p Ps and lo as 1. Also, "template" should
be read as "(s )-template." Recall that, if B is a template, then we call a vertex x a
strong 1-neighbor of B if x has k neighbors in some part of B. We call x an extra point
of B if x has less than k4 nonneighbors in every part of B. An acceptable template
sequence is a template sequence Bl Br such that, if _< m < n _< r and x B,, then
x is not a strong 1-neighbor of Bm.

We now present the algorithm A,,t,s. To show (ii), we assume that no template of
the graph being presented has los- extra points. The key feature of the algorithm is that
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it maintains an acceptable template sequence B Br. Whenever a template Bi is
added to the sequence, we arbitrarily assign labels { 1,..., Bil} to the vertices of Bi.
These labels are not part ofthe coloring, since a vertex may not become part ofa template
until long after it has entered the graph. To each template Bi, we will also associate a set
of (not necessarily all) strong 1-neighbors, Oi. A vertex x may be assigned to Oi in one
of two ways, either when x enters the graph (if Bi had already been formed) or when Bi
is formed (if the template doesn’t appear until after x has entered). In the latter case, we
give x a "shadow" color, as we detail below. As with the labels on the template points,
the shadow colors are not part ofthe coloring produced by the algorithm, but are instead
records to be used internally .by the algorithm. In either case, the assignment of x to Oi
is irrevocable, and the Oi’s are pairwise disjoint.

Suppose that when a vertex x enters the graph the acceptable sequence oftemplates
is B, Br. The algorithm colors x and updates the template list as follows.

Case 1. If x is a strong 1-neighbor of some template in the sequence, find the
smallest such that x is a strong 1-neighbor of B. Add x to Oi. Assign x a several
coordinate color. The first coordinate identifies x as a vertex that was classified as a strong
1-neighbor at the time it entered the graph. The second coordinate is the set of labels
used on N(x) f) Bi. Note that there are a fixed number of labels since all the templates
have the same size. To compute the third coordinate, apply the algorithm Ak,t- (which
exists by the primary induction hypothesis) to the subgraph induced by vertices of Oi
that received the same colors as x in their first two coordinates. Since these vertices have
a common neighbor in Bi, the induction hypothesis implies that we use at most ck,t-
colors in this coordinate. Let V’ be the set of vertices that received the same color as x
in their first three coordinates. Note that V’ f) O; is an independent set for j r.

Claim A. The subgraph induced by V’ and the independent sets V’ fq O; satisfy
conditions (a) and (b) of Lemma 5.2 with d (k + p)jq 1, k, p), e k + t, and f=
(s 1)(p + k4)j( 1, k, p)J(2, k, p).

Given this claim, by Lemma 5.2, we may apply an on-line algorithm to the subgraph
induced by vertices that received the same color as x in their first three coordinates. The
number of colors used in each coordinate will be bounded in terms of k, p, s, and w(G),
all of which are bounded in terms of t, and it will be a proper coloring.

Case 2. If x is not a strong 1-neighbor for any template in the sequence at the
time x enters, then we attempt to find a set of vertices that, together with x, form a
template that may be added to the sequence without violating the key properties of the
sequence. That is, we look for a set Br+ such that Br+ is an (s )-template and
Br/ (Bi k.J Oi for < < r. Note that, if Br + satisfies this condition, no vertex
of Br+ is a strong 1-neighbor of any earlier template in the sequence. If such a set Br /
can be found, add B+ to the template sequence and assign labels to the vertices ofBr + 1.

Assign x a two-coordinate color. The first coordinate identifies x as a vertex that was
used to form a new template at the time it entered. The second coordinate is computed
by applying First-Fit to the subgraph induced by vertices that received the same color as
x in their first coordinate. Note that every template in the acceptable sequence contains
precisely one such vertex. Since we use First-Fit in the second coordinate, we know that
x will be properly colored. Moreover, it is easy to see that the algorithm will use a bounded
number ofcolors in the second coordinate for the subgraph induced by vertices that were
used to form templates at the time they entered. This is because, by Lemma 4.1 and the
fact that x is not an extra point of any previous template (it is not even a strong 1-
neighbor), this subgraph has degree at mostJ (0, k, p).

If y is a vertex that entered before x such that, for < < r, y Bi Id Oi (with y a
strong 1-neighbor of Br+l), then assign y to Or+l. The algorithm then assigns to y a
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"shadow" color c(y); this color is strictly for record-keeping purposes, since y’s "real"
color was assigned when y entered. The shadow color is assigned as follows. Imagine that
a "twin" vertex y’ is presented immediately after x and that y’ has precisely the same
neighbors as y (at the time x enters and thereafter). Apply the algorithm to y’ as if it
were an actual point presented and, for any points in the graph that have already received
a shadow color, use the shadow color, rather than the color actually assigned, to compute
the color for y’. In fact, y’ would be colored under Case 1, because y’ looks exactly like
y, which is now a strong 1-neighbor of Br+1. When other vertices require shadow colors
in the future, y’ will be treated as if it had been actually presented. This will guarantee
that the shadow colors form a proper coloring of the set of vertices that received shadow
colors. Ifthere is more than one such y, say y,..., Ym, when B+ is formed, then apply
the same procedure to each vertex. Finally, the algorithm assigns shadow colors to all
the vertices of Br + 1, except x.

Claim B. If x is a vertex with shadow color c(x), then c(x) S(x) { c(y):
yeN(x)}.

Case 3. If x is not a strong 1-neighbor of any template at the time x entered and if
x cannot be used to form a new template for the sequence, then we assign x a three-
coordinate color as follows. The first coordinate identifies x as a vertex that could not
be colored in either Case or Case 2. The second coordinate ofx is the set S(x) c(y):
y N(x) }. Note that the number of colors used in the second coordinate is 2 b, where
b is the maximum number of colors used in step 1; assuming Claim A, b is bounded in
terms of t, so 2 b is, as well. To compute the third coordinate of x, apply the algorithm
Ak,t,s- (whose existence is asserted by the secondary induction hypothesis) to the subgraph
Gs induced by vertices that received the same colors as x in their first two coordinates,
where S S(x) is the second coordinate of x’s color.

S--IClaim C. The subgraph Gs does not contain an augmented Kws_ 1.

Assuming Claim C, by the secondary induction hypothesis, A,,t,s- gives a proper
coloring of Gs, and therefore x is properly colored. Moreover, the secondary induction
hypothesis implies that no more than c,,t,s- colors are used in the third coordinate.

By the remarks included in the statement of the algorithm, to finish the proof of
(* * ), it suffices to prove Claims A-C.

Proof of Claim A. Since it is the simpler of the two, we first verify that condition
(b) ofLemma 5.2 is satisfied. That is, we check that, whenever V’ contains an augmented
Kd,d, say H, there exist integers a and/3 such that H f) O, t_J O) contains an augmented
K,,., where d (k + o)J] 1, k, p) and e k + p. Consider a complete bipartite graph
H in V’ with (k + o)fl 1, k, o) vertices in each part. Let H1 and He be the independent
sets of H. If y e HI, then y e O, for exactly one j, < j < r. Note that, if I { j 3y
Oj- n }, II] <f 1, k, ). To see this, suppose without loss of generality that {
j 1, k, )} is contained in I. Then, since no template has extra points and HI >
oj] 1, k, ), by the Pigeonhole Principle, some vertex y’ of H2 is not an extra point of
templates B,..., B., where g j] (1, k, p). Then, however, we have a contradiction
of Lemma 4.1, since y’ is adjacent to all ofH. Because of this bound on I1, using the
Pigeonhole Principle, we may find an index a such that 10, U HI k + o. By a similar
argument, we find a subset of H2 fq Oe of size k + . This completes the verification of
condition (b).

We now verify (a) of Lemma 5.2; that is, for all a, < a < r, 1{/3: (V’ fq O,) tO
(V’ O) contains an augmented K,e}l < f, where e k + and f= (s 1)
(p + ka)f 1, k, p)f (2, k, p). Consider an arbitrary node B, of the auxiliary graph (or,
more precisely, the node of the auxiliary graph corresponding to the template B,). We
wish to show first that, for every edge in the auxiliary graph that is incident on B, (say
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the other endpoint is Be), there exist a vertex xe B and a strong 1-neighbor Ye ofB
such that

(i) Ye is at the top level of a 2-tube with 0-level Be,
(ii) xe and Ye are not extra points of Be,
(iii) xe

This is illustrated in Fig. 6.1.
First, note that, if there exists a complete bipartite graph with k + 0 vertices in each

part where one part, say X, is contained in V’ f30 and the other, say Y, in V’ f3 On for
some a 4:/3, then there exists a 2-tube such that its 0-level is Be, its first level is contained
in Y (choose any k vertices of Y), and the vertex Ye at the top level of the tube is an
element ofX that is not an extra point ofBe. Note that Ye exists because some vertex of
X must fail to be an extra point of Be, since IX] > 0. Moreover, since every vertex of
X is a strong 1-neighbor ofB, we may find k vertices in one part ofB that are neighbors
of Ye. One of these k vertices must fail to be an extra point of B: if a > /3, then no
element of B is an extra point (or even a strong 1-neighbor) of Be. If/3 > a and k
vertices in one part ofB are extra points of Be, then they have a common neighbor z
in B, by property (b’). Then, however, z is a strong 1-neighbor of B, and this fact
would have prevented us from adding B to the template sequence. Thus we may choose
xe to be any neighbor of Ye that is not an extra point of Be.

Thus, if the degree ofB is (s )(p + k4)f 1, k, o)J] (2, k, o) or higher, we find,
by the Pigeonhole Principle (there are only (s )(p + k4) vertices in B), a vertex x
ofB that has a neighbor in the top level ofj] 1, k, o)fl (2, k, o) 2-tubes with distinct
0-levels. (That is, x xe forJ] 1, k, o)J] (2, k, o) distinct values of/L) See Fig. 6.2. Since
the algorithm forces the Oi’s to be pairwise disjoint, the l-levels ofthese tubes are pairwise
disjoint. It is still possible, however, that the 2-levels may not be disjoint. For each/3,
however, we choose the Ye so that it will not be extra point ofBe. Thus no vertex y Ye
can be at the top ofJ] 1, k, 0) of these tubes, or else there exist f 1, k, o) disjoint 1-
tubes whose bases form an acceptable template sequence and whose top levels are all
adjacent to y, contradicting Lemma 4.1. Thus we may find among the collection of 2-
tubes whose top points are adjacent to x a subcollection ofJ] (2, k, o) pairwise disjoint
2-tubes. When these tubes are ordered so that their bases are a subsequence of the ac-

B

O

FIG. 6.1.
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B

B3 By B8

FIG. 6.2.

ceptable template sequence generated by the algorithm, the hypotheses of Lemma 4.1
are satisfied, so this is a contradiction. This shows that (a) of Lemma 5.2, i.e., the degree
condition for the auxiliary graph, holds as claimed, r--I

ProofofClaim B. Ifc(x) is the shadow color ofx and c(x) S(x), then there exists
some vertex ywith shadow color c(y) c(x) such that y received its shadow color before
x entered the graph and y x. However, since y x and y had a shadow color at the
time the shadow color ofx was assigned, c(y) 4: c(x).

Proofof Claim C. We argue by contradiction. Suppose that, at some point in the
s--1algorithm, some Gs contains an augmented Kws_ 1. Let Q be this subgraph and let Q,

Qs- be the parts of Q. Let x be the last vertex of Q to enter the graph. Without
loss of generality, x Qs . Let B, Br be the templates in the sequence at the time
x entered.

We first claim that, for _< j < s 2, no element of Qj has been added to any
or Oj before x entered; if there were such a vertex, say y, then y would have received a
shadow color c(y). Then, however, c(y) S(x) S S(y), contradicting Claim B.

Now consider Qs_ . Let z be the last vertex of Q’ Q to to Q_ to enter the
graph. Note that, by the above argument, z is not an extra point of any template in the
sequence at the time x entered. (Indeed, this is true of all the vertices in Q’.) Label the
vertices of Q_ as follows. For each y Qs- , assign y, if possible, the smallest m such
that, at the time x entered, either y Bm or y Om. If no such m exists, assign y the
label . Note that the fact that z is not an extra point of any template in the sequence
at the time x entered and the fact that z is adjacent to all of Q_ imply that at most
+ )] (0, k, o) + J] (1, k, o) labels are used. Thus we find a set of vertices of size

p + k4 all of whose elements have the same label. In this case, however, v cannot be
the common label, or else the algorithm would have been able to add some template
from Q to the sequence (and thereby give some vertex in Q a color according to Case
2). Thus the common label is a natural number m. Let x,..., Xa, where a p + k4,
be the vertices of Qs that received the label m. Each of x,..., Xa must have entered
the graph before Bm was formed; any that entered after Bm was formed would have been
a strong 1-neighbor at the time it entered, and thus would have been colored in Case 1.
On the other hand, z must have entered after Bm was formed: by the manner in which
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sets of strong 1-neighbors are formed, x Xa are not strong 1-neighbors of any
template preceding Bm in the sequence; else, they would have been assigned to, say, On
where n < m, as soon as Bn was formed. Hence, if z, and therefore all of Q’, entered
before Bm was formed, the algorithm would have added a template to the sequence and
the last of the points z, x,..., Xa to enter the graph would have been colored by Case
2. It cannot be the case that z entered at the time Bm was formed; else, z would have
been colored in Case 2. If, however, z enters G after Bm is formed, then, x, for example,
had received a shadow color by the time z entered, so c(x) S(z). Then c(x)
S( z) S(x and S( z) 4: S(xt ), a contradiction. El

This completes the induction step of (* * ). The induction step of (*) follows, and
the proof of the theorem is complete. E]
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