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We make use of the partially ordered set (I{0, n), <) consisting of all closed
intervals of real numbers with integer endpoints (including the degenerate
intervals with the same right- and left-hand endpoints), ordered by [a, b] <
[e, d1if b < ¢, to show that there is no bound on the order dimension of interval
orders. We then turn to the problem of computing the dimension of I(0, n),
showing that J(0, 10) has dimension 3 but I{0, 11) has dimension 4. We use these
resulls as initial conditions in obtaining an upper bound on the dimension of
IO, n) as a logarithmic function of n. It is our belief that this example is a
“canonical” example for interval orders, so that the computation of its dimen-
sion should have significant impact on the problem of computing the dimen-
sion of interval orders in general.

1. INTRODUCTION

A fipite interval order may be regarded as a collection of closed intervals
of real numbers with the ordering [a, b] < ¢, d} if b < ¢. Fishburn {4]
has shown how interval orders arise naturally in the theory of measure-
ment. Dushnik and Miller [3] defined the dimension of a partial ordering
F of a set X as the smallest number of linear orderings of X" whose inter-
section is P, and Ore has noted that the dimension of P is also the smallest
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number of linearly ordered sets such that P is the restriction of the product
ordering of these linearly ordered sets to some subset of the cartesian
product of the sets [5]. Rabinovitch [6] has shown that the dimension of
an interval order is bounded by 1 plus the base 2 logarithm of its height
and has given a complete description of the dimension theory of semi-
orders (interval orders in which all the intervals have equal length),
showing among other things that the dimension of a semiorder is at most 3.

2. THE GROWTH OF DIMENSION

We use Ramsey’s theorem to show that the dimension of 1(0, ) can
be made as large as desired by choosing a sufficiently large n. Suppose that
I(0, n) may be realized as an intersection of k linear orders, L, , L, ,..., L;, .
Partition the three-element sets of {0, 1,..., n} into k (or perhaps fewer)
classes by the rule:

The set {r, s, ¢} (with r << 5 < ¢) is placed in class i if L; is the first
linear order in which the interval [s, ¢] is less than the interval [r, s].

Note that each three-element subset of {0, 1, 2,..., n} is placed in a class
because if ¥ << s << ¢, then [r, s] and [s, #] are incomparable, so in some
one of the L’s [s, #] will be less than [r, 5.

We make use of the following form of Ramsey’s theorem.

“For each triple of integers j, k, m there exists a number n, so that if
n > n, and the m element subsets of an # element set are partitioned
into k (or fewer) parts, there exists a j element subset of the # element set,
all of whose m element subsets lie in one of the parts.”

For our application we choose m = 3, j = 4, and k as above. Then
for n > ny, the guaranteed integer, there is a four-clement set {r, s, ¢, u}
(r < s <t < u) all of whose three-element subsets lie in the same class.
Thus in one linear extension L; of I(0, n), [r, s] is greater than [s, #] which
is greater than [f, ], and this is impossible since s < ¢ implies that
[r,s] < {t,u] in I(0, n), and thus in L. In other words, for n > n,,
more than k linear orders will be needed to realize I(0, n). This gives our
first theorem.

THEOREM 1. For each k there is an n(k) suéh that f&r n > n(k), the
dimension of I(0, n) is greater than k.

A semiorder may be thought of as an interval order all of whose intervals
have the same length. Semiorders are the orders which arise naturally
in studying the concept of “just noticeable difference’ [1]. Thus semiorders
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are natural generalizations of linear orderings. In fact Rabinovitch [6]
has shown that a semiorder has dimension at most 3. The argument of
Theorem ! may be modified to show that there is no k such that I(0, n)
1s an intersection of or is imbedded in a product of k semiorders for all 7.

3. AN EXAMPLE

The use of Ramsey’s theorem in the last section might make it appear
that the computation of the dimension of an interval order is of the same
level of difficulty as the computation of Ramsey numbers. Though we
cannot yet compute the dimension of I(0, n) for all n we feel the problem
is not hopeless. In this section we shall prove that I(0, 11) has dimension 4
and exhibit three linear orders whose intersection is I(0, 10). First we
note that 7(0, 3) has dimension 3, for it contains one of Trotter’s seven-
element partially ordered sets of dimension 3, the one shown in Fig. 1 [7].

{3,313

[2,3]

[0,11

[0,01

FIGure 1

Thus J(0,n) has dimension at least 3 for n = 3. To prove that the
dimension of /{0, 11) is 4, we consider a partition of it into three parts,
I, == I(6,11), 1, = I(0, 5) and I, = I(0, 11) — (§; U L,). Each element of
75 1s incomparable with something in 1, and something in I, , for the inter-
vals in 1, have left endpoints 5 or less and right endpoints 6 or more. An
element of I, cannot simultaneously be below an element of , and above
an element of [ in a linear extension of £(0, 11), for each element of I,
is below each element of I . Thus if X0, 11) is an intersection of three
linear orders, then each element of 7, must either be below evervthing in
f, with which it is incomparable in one of these orders, or must be above
everything in 7, with which it is incomparable in one of these orders.
Suppose now that in a linear extension of I(0, 11), the interval [a, b]
of I is ordered below everything it is incomparable with in I,. Then
every interval of £, whose right-hand endpoint is greater than or equal
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to a is above [a, b] in this linear order, and every interval whose right-hand
endpoint is less than «a is below [a, 5] in this linear order.

When each interval in a set X with right-hand endpoint ¢ or greater
is above each interval with right-hand endpoint less than e in a linear
ordering of X, we say the ordering splits X at right-hand endpoint e.
Similarly if each interval with left-hand endpoint e or less is listed below
each interval with left-hand endpoint greater than e by a linear ordering
of X, we say the linear ordering splits X at left-hand endpoint e. In this
terminology, if [a, b] is below everything in /, with which it is incomparable
in a linear order L, then L splits I, at right-hand endpoint a. In what
follows a linear ordering of X is regarded as a list of the elements of X.
We say x is listed above y if x is greater than or equal to y in the linear
ordering.

Our computation of the dimension of [(0, 11) begins with the foliowing
lemma.

LemmA 1. If the linear order L and two other linear orders may be
intersected to yield I(0, 4), then L does not split 1(0, 4) at all of the righi-
hand endpoints 1,2, 3 and 4.

Proof. Suppose, contrary to the lemma, that L does split (0, 4) at
right-hand endpoints 1, 2, 3, and 4. Then in two linear orderings L,
and L,, we must put the first element of each of the following pairs of
intervals over the second. '

0,2, [1,3]
(1,3, 13,4}
[0, 1), 11,3},
[0,01, [0, 1]
[0,1], [1,2],
1,2,  [2,3]
2,31, (3,4}
0,25, 123}

Since for any two successive rows above we cannot put the first interval
of each row over the second in the same linear order, [0, 2] must be over
[1, 3] in one of L; or L, , and [0, 2] must be over [2, 3] in the other. Thus
[0, O] cannot be over [0, 2] in either of L, or L,—and also not in L. This
proves the lemma. "

LemmMa 2. If Ly, Ly, and Ly are three linear orderings whose inter-
section is I(0, 4), then it is impossible to have L, split I(0,4) at right-hand
endpoint 4 and L, split I(0, 4) at right-hand endpoints 1, 2, and 3.
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Proof. Suppose to the contrary that L, and L, split I(0, 4) as described
above, This determines many of the comparisons made by L, . In particular
{0, 1] must be listed above [1, 4] in Ly and [1, 2] must be listed above [2, 4]
in Ly. However, since [0, 1] cannot be listed above |2, 4] and L, splits
I(0, 4) at right-band endpoint 2, {0, 1] must be listed above {1, 2] in L, .
However, then there is no list in which [0, 0] may be listed above [0, 1],
a contradiction,

LemMA 3. If L, L, and Ly are three linear orderings whose intersection
is 1(0, 4) then it is impossible for L to split I(0, 4) at right-hand endpoints 2
and 4 and for L, to split I(0, 4) at right-hand endpoints 1 and 3.

Proof. 1f three lists as described above exist then in I3 [0, 0] must be
listed above [0, 2] and [0, 2] must be listed above [2, 4], and this is clearly
impossible.

Lemma 4. If Ly, L, and L, are three linear orderings whose intersection
is I(0, 5) then there is at least one right-hand endpoint at which none of
Ly, Ly and Ly split 10, 5).

Proof. 1f L, Ly, and L; were each to split J(0, 5) in at least one
right-hand endpoint, then [0, 0] would not be listed over [0, 4] in any
of the lists. Now four or more splits other than the trivial split at zero
cannot be made in one list by Lemma 1. Thus if among L, , I, , and L,
there are five distinct splits (other than the trivial split at zero) at right-hand
endpoints, they must be distributed in two lists, say three in list 1 and 2
in list 2. Now unless the three splits in list 1 are at endpoints 5, 4, and 3
and the two in list 2 are at endpoints 2 and 1, we may remove enough
elements from (0, 5) to get an isomorphic copy of (0, 4) and three lists
that violate either Lemma 2 or Lemma 3. Now assume list 1 splits 1(0, 5)
at right-hand endpoints 3, 4 and 5 and list 2 splits 7(0, 5) at right-hand
endpoints 1 and 2. Then [0, 0] cannot be listed over [0, 3] in either list
1 or 2 s0 it must be listed over [0, 3] in list 3. Then [0, 3] cannot be listed
over {1, 4] in either list 1 or list 3, so it must be listed over [1, 4] in list 2.
However [1, 1] cannot be listed over [1, 4] in either list 2 or list 1, thus
11, 1] must be listed over [1, 4] in list 3. Thus there is no list in which
i1, 4] may be listed above [4, 5]. This proves the Lemma.

TaeorRem 2. The dimension of 1(0, 11) is 4.

Proof. Recall that [, == I(6,11), Iy = £(0,5) and I = I{0, 11) —
({; U L) In particular, /; consists of all intervals whose left-hand endpoints
are less than or equal to 5 and whose right-hand endpoints are greater
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than or equal to 6. Suppose that there are three linear orders L,, L,
and L, whose intersection is I(0, 11). We say an element of I; ‘“‘goes
down” in L, if in L, this element is below some element of 1, . An element
of I; “goes up” in L; if in L, this element is above some element I; .
If [a, b] goes down in exactly one L, , then in that L, , it must get below
everything in 1, with which it is incomparable. Thus this Z; splits 1,
at right-hand endpoint 4. Similarly if [e, b] goes up in exactly one L;,
then L; splits I; at left-hand endpoint b.

Now suppose a set of intervals of I contains an interval with left-hand
endpoint a for a = 1,2, 3,4, 5. Then by Lemma 4 at least one element
of this set must go down in two different linear orderings L, . Similarly
if a set of intervals of I, contains an interval with right-hand endpoint b
for b = 6,7, 8,9, 10 then at least one of the intervals in this set must go
up in two different linear orderings L;. We construct a set S as follows.
Foreachb = 6,7, 8,9, 10 some element of the set

{1, (28], [3,8], [4B], I[50]

must go down in two different L,’s. Let § consist of one such interval
for each b. Since S contains an [a, b] forallb = 6,7, 8, 9, 10, some element
of § must go up in two different L,’s. This is not possible for there are only
3 L;s by hypothesis. Thus the dimension of I(0, 11) must be at least 4.
For many reasons, one of which appears in Section 4, the dimension can
be no more than 4, so the theorem is proved.

[0, 4] [0, 4] [4, 4]
(1,4 [4,4] [3,3]
{2, 4] [3, 31 [1, 4]
[3, 4] [0, 3] [2, 3]
[4,41 [3, 4] {1, 3]
[1, 2] [3, 41
[0, 3] [0, 2] [2, 2]
[1, 3] [2, 4] [2, 4]
[2, 31 [2, 2] [0, 1]
13,31 [2,3] [1, 11
{0, 1 11, 2]
[0, 2] L1} {0, 0]
— <
[1, 2] [1, 31 [0, 2]
[2, 2] [1, 4] [0, 3]
[0, 4]
[1, 1] [0, 0]
[0, 0]
—_— <
[0, 11

Frc. 2. Three special linear orders that realize 1(0, 4).
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In fact the computations made in the proofs of the lemmas suggested
to us the three linear orderings described as lists in Fig. 3 whose inter-
section is I(0, 10). The elements of {(0, 4) are listed in the order in which
they are shown in Fig. 2; the elements of I(6, 10) are listed according to
a similar linear order of I(6, 10). (To get the orderings of #(6, 10), reverse
the roles of left- and right-hand endpoints in the orderings at (0, 4),
and interchange ordering 1 with ordering 3.)

Linear order of [10, 101 [, 107s
I(6, 10) with no splits [9, 101
[1, 97’s with [1, 9] on top
15, j7s and [1, j]'s Rest of 1(6, 10) [10, 10]
other than {1, 9] [9, 9]
All things incomp. with {1, 87s
[k, 47's [5, 51 except [1, jI’s and {8, il's
14,7Ts [1,97s [, 7Fs
[k, 3]s [7,i7s
[3,/7s All of 110, 4] but [0, 0] [, 6]'s
[k, 1T's [6, iI's
12,Ts All[1, s but {1, 9]
i, 1] {1, 5V's and [/, 97’s except
{1, 91 {0, 0] [1, 9]
[0, 0]
[0, 11 All of I(0, 4) but [0, 0],
[0, 71s {0, 41, [0, 31 and {0, 2]
{1, 9]
10,01
0,2
[0,3]
10, 4]

Fia. 3. Three special linear orders that realize {(0, 10) (convention j > 5; k <C 4,
i>6, 1<%

4, An Upper Bounnp ON DIMENSION

Suppose now that, for each k, n(k) denotes the largest # such that the
dimension of K0, n) is k. For example n(1) == 0, since J{0, 1) has an anti-

six elements and is not one of the examples in [2], and K0, 3) contains
the three-dimensional interval order first exhibited in [7] and reproduced
Fig. 1. In Section 3 we saw that n(3) == 10. We shall use a recursion on
n{ky to obtain a bound on the dimension of I(n). For this purpose we
need a lemma from {6].
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LemMmA (Rabinovitch). If A and B are disjoini subsets of an interval
order I then there is a linear extension of I in which each element of B is
above each element of A with which it is incomparable relative to 1.

We use the ambiguous notation A < B for an order on A U B of the
type described in the lemma; this notation is ambiguous because there
may be several orders of the type the lemma describes. Since any of these
orders will do for our purpose we will make no attempt to be specific.
Conceptually it is convenient to think of this notation in two different
ways; the second way amounts to a change in notation. The notation
A — B denotes a linear extension of the restriction of the interval order
to A U Bin which each element of 4 is below each element of B with which
it is incomparable.

A second notion from [6] is the following.

(**) If x and y are each above and below exactly the same
elements of X — {x, ¥} in a poset (X, P), then the restriction of P
to X — {x} and the restriction of P to X — {y} have the same
dimension. (This is also the dimension of P unless P linearly orders
X —{xporX —{y})

The lemma below gives us a recursive lower bound on n(k) which in turn
will give us an upper bound on the dimension of (0, #). In the proof of
the lemma if P and Q are linear orderings of disjoint sets, the notation PQ
means the linear ordering of the union of the sets which places each element
in the domain of P before each element in the domain of Q and agrees
with P and Q on their domains.

Lemma 5. n(k) = 2n(k — 1) -+ n(k — 2).

- Proof. We must show that the dimension of I = I(0, 2n(k — 1) -
n(k — 2)) is at most k. We split 7 into three parts:

I = Ik — 1) + nlk — 2), 2n(k — 1) + n(k — 2)),
I = I0, n(k — 1)),
I =1I— (L, Ul).

The ordering of I, I, , and I is that inherited from I. The dimension of
1, and I, is k — 1. For each element x in I; there is a y in I(n(k — 1),
n(k — 1) + n(k — 2)) which is above and below exactly the same things
in I that x is. Thus by the remark (*¥*) above, I, has the same dimension
as 1(0, n(k — 2)); that is I, has dimension &k — 2,

Let L(1, 1), L(1, 2),..., L(1,k — 1) be a set of linear orders whose
intersection is [ , let L(2, 1), L(2, 2),..., L(2, k — 1) be a set of linear orders
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whose intersection is [, and let L(3, 1), L(3, 2),..., L(3, k — 2) be a set of
linear orders whose intersection is I3 . We claim that the & linear orderings
given by

LA, D LG, HLE D

L,k —2) L3, k — ) L2, k — 2)
Lk — 1)1,
I, < LL2, k — 1)

intersect to give I. Since they are clearly extensions of I we need only prove
that if two elements x and y of [ are incomparable then x is over y in some
list and y is over x in some list. It is not possible for one of x and y to be in
I, and the other in [, , and if both are in I, or in [, or in I3, then x is over
v in one of the linear orderings. Thus we may assume one of x or y is in
I, and the other is in I; or I, . Suppose x is in I; and y is in 7; . Then x
is over v in the first linear ordering, and y is over x in the last one. The
other possibilities are covered similarly, and thus the dimension of 7
is at most k.
Now we apply the lemma to get the following theorem.

THeOREM 3. dim [(0, n) << log,(n) + % where a = 1 4 2412,

Suppose mk) = 2mk — 1) + m(k — 2) and n(2) = m(2) and
1(3) = m(3). Then by the lemma, n(k) = m(k) for k > 2. Substituting
m{k) = a* gives

@ —Z2a—1=20,

or
a =14 272
Thus
mk) = C(1 ++ 222 | Cy(1 — 212)%,
Since n(2) — 2 and n(3) = 10, we have
g = AP S, Gy A2 - 5
Thus
n{k) = (420* — S5)(1 ++ 2H3F o (42512 - 550 — 2V,

By rearranging terms and taking logarithms it is possible to show that
fork =4, ifg=1-4 217

log (nlk)) > k — &.
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(In fact, by using the computer it is possible to show that for k = 4
n(k) — a"1/2 < 0.004,
so that this bound is very sharp indeed.) Thus if n(k + 1) > n = n(k),
dim(Z(0, n)) = k < log,(n(k)) + § < log,(n) + &.
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