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Abstract 

We use a variety of combinatorial techniques to prove several theorems concerning fractional 
dimension of partially ordered sets. In particular, we settle a conjecture of Brightwell and 
Scheinerman by showing that the fractional dimension of a poser is never more than the 
maximum degree plus one. Furthermore, when the maximum degree k is at least two, we show 
that equality holds if and only if one of the components of the poset is isomorphic to Sk + 1, the 
'standard example' of a k+  1-dimensional poset. When w~>3, the fractional dimension of 
a poset P of width w is less than w unless P contains Sw. If P is a poset containing an antichain 
A and at most n other points, where n >~ 3, we show that the fractional dimension of P is less 
than n unless P contains S,. If P contains an antichain A such that all antichains disjoint from 
A have size at most w ~>4, then the fractional dimension of P is at most 2w, and this bound is 
best possible. 
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1. Introduction 

In  this paper, we consider a partially ordered set P as a pair  (X, P) ,  and  refer to X as 

the ground set and  P as the partial order. We find it convenient  to use the short form 

poset  for a part ial ly ordered set, and  we use the term subposet  to refer to a poset 

induced by a subset of the ground set. 

Let P =  (X, P) be a poset and let ~-  = {M1 . . . . .  Mr} be a multiset of l inear extensions 

of P. Brightwell and Scheinerman [-3] call ~ a k-fold realizer of P if for each 

incomparable  pair  (x, y), there are at least k linear extensions in . ~  which reverse the 

pair  (x, y), i.e., I{i: 1 ~< i ~< t, x > y in Mi)  l >>. k. Th e  f ract ional  dimension of P, denoted by 

fdim(P), is then defined in [3] as the least real n u m b e r  q~> 1 for which there exists 
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a k-fold realizer ~ = {M1 . . . . .  Mr} of P so that k/t >1 1/q (it is easily verified that the 
least upper bound of such real numbers q is indeed attained). Using this terminology, 
the dimension of P, denoted by dim(P), is just the least t for which there exists a 1-fold 
realizer of P. It follows immediately that fdim(P)~<dim(P), for every poset P. 

In this paper, we will find it convenient to use the following probabilistic interpreta- 
tion of this concept. Let P=(X,  P) be a poset and let ~- = {MI . . . . .  M,} be a multiset of 
linear extensions of P. We consider the linear extensions of ~- as outcomes in 
a uniform sample space. For an incomparable pair (x, y), the probability that x is over 
y in ~,~ is given by 

P r o b ~ [ x > y ]  = ~  1{i: l<~i<~t, x > y  in Mi}]. 

The fractional dimension of P is then the least rational number q ~> 1 so that there 
exists a multiset ~ = {M1 . . . . .  Mr} of linear extensions of P with P r o b ~ [ x  > y]/> 1/q, 
for every incomparable pair (x, y). 

For each n ~> 3, the height two poset containing n minimal elements {x~, x2, ..., x.} 
and n maximal elements {Yl,Yz . . . . .  y.} with x~<y i if and only if i4:j, for all 
i,j = 1, 2 . . . .  , n will be denoted by S.. The poset S. is known as the standard example of 
a n-dimensional poser. As noted in I-3], fd im(S . )=d im(S , )=  n. 

This paper is organized as follows. In Section 2, we introduce some terminology 
necessary for our theorems and review facts about lexicographic sums. In Section 3, 
we formulate the results relating the fractional dimension of a poser to its degree. In 
Section 4, we present a key technical lemma involving the algorithmic transformation 
of linear orders into linear extensions and present the proof  for the main theorem 
of Section 3. In Section 5, we present the forbidden subposet characterization of 
the degree inequality. In Sections 6 and 7, we derive two other forbidden sub- 
poset characterizations of inequalities for fractional dimension. In both cases 
equality is only possible when P contains a 'full dimensional'  standard example 
as a subposet. 

In Section 8, we present an inequality relating the fractional dimension of a poset 
P = (X, P) to the width of the subposet induced by X -  A, where A is an antichain. The 
bounds obtained in this case are slightly stronger than the corresponding bounds for 
dimension. We also prove that our bounds are best possible. In Section 9, we 
characterize Hiraguchi's inequality for fractional dimension. Finally, in Section 10, we 
propose some new problems for fractional dimension. 

2. Notation and terminology 

Let P = ( X ,  P) be a poset. We denote the set of incomparable pairs of P by inc(P). 
Now let ~ -- {M1, M 2  . . . . .  Mr} be a nonempty multiset of linear orders on X. We call 

a multirealizer of P if P =  t'-)~-, i.e., each Mi is a linear extension of P and 
prob~ Ix > y] > 0, for every (x, y) e inc(P). 
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When ~ is a multirealizer of P, we define the value of ~ ,  denoted valuee(~),  as the 
least rational number q ~> 1, so that p rob~[x  > y ]  >~ 1/q, for every (x, y)~inc(P). The 
fractional dimension of P is just the least rational q >~ 1 so that P has a multirealizer 

of value 1/q. 
Recall that an incomparable pair (x, y) in a poset P =  (X, P) is critical if any point 

less than x is less than y and any point greater than y is greater than x. We denote the 
set of all critical pairs of P by crit(P). The following elementary proposition, first noted 
by Rabinovitch and Rival [13], is stated formally to emphasize the fundamentally 
important role played by critical pairs in dimension theory. 

Proposition2.1. Let P = ( X , P )  be a poser and let ~ be a multiset of linear 

extensions of P. Then ,~ is a multirealizer of P if and only if prob~[x>y]>O, for 
every (x, y)~ crit(P). 

We say that a linear order L reverses the critical pair (x, y) if x > y in L. Similarly, we 
say L reverses the set S c  crit(P) if L reverses each pair in S. 

The following remark is noted in [3]. 

Proposition 2.2. Let P = ( X , P )  be poset and let q>~ 1 be a rational number. Then 
fdim(P)~<q if and only if there exists a multiset ~ of linear extensions of P so that 
Prob~ [x > y] >~ l/q, whenever (x, y) ~ crit(P). 

Let P = ( X , P )  be a poset, and let ~={¥x=(Y~ ,Qx) :  xEX} be a family of posets 
indexed by the point set X of P. The lexicographic sum of ~ over P is the poset 
S whose point set consists of all pairs of the form (x, y~), where x e X and y e Y~. The 
partial order on S is defined by setting (xl,y~,)<~(x2,y~2) in S if and only if 

(1) x l < x 2  in P, or 

(2) xl =x2 and Yx, <<,Yx2 in Q~,. 
Both dimension and fractional dimension are well behaved with respect to lexi- 
cographic sums. The statement for dimension is due to Hiraguchi [10], and the 
statement for fractional dimension is given in [3]. 

Proposition 2.3. Let S be the lexicographic sum of ~ = { Yx: x ~ X } over P = (X, P). Then 
(1) dim(S) = max {dim(P), max~x dim (Y~)/. 
(2) fdim(S) = max {fdim(P), maxx~x fdim(Y~) }. 

A poset S is decomposable with respect to lexicographic sums if it is isomorphic to 
a lexicographic sum of a family ~ = { Yx: x ~ X } over a poset P = (X, P), where iX [ >~ 2, 
and I Yxl >~2 for at least one x e X .  Otherwise, we say S is indecomposable. 

Given a point x in a poset P = (X, P),  let Dr(x) denote the set of all points which are 
less than x in P, and Up(x) the set of points which are greater than x in P. Whenever 
the meaning is clear from the context, we will drop the subscripts and just write O(x) 
and U(x). Two points x and y are said to be interchangeable in a poset P = ( X , P )  if 
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D(x) = D(y) and U(x)= U(y). Thus x and y are interchangeable if and only if both (x, y) 
and (y,x) are critical pairs. Note that a poset with an interchangeable pair is 
decomposable with respect to lexicographic sums unless it is a 2-element antichain. 

3. Fractional dimension and degree 

For a point x in a poset P=(X,P),  define the degree of x, denoted deg(x), as the 
number of points comparable (but not equal) to x in P. Then let A(P) denote the 
maximum degree of P, i.e., A (P) = max {deg(x): x ~ X }. 

The following theorem is proved by Brightwell and Scheinerman in [3]. 

Theorem 3.1. I f  P=(X,P)  is a poser, then fdim(P)<~2 + A(P). 

In Section 4, we prove the following improved bound which was conjectured 
in [33. 

Theorem 3.2. I f  P=(X,P)  is a poset and is not an antichain, then fdim(P)~< 
I+A(P). 

As noted in [33, f d im(S , )=n=  I+A(S,) ,  for all n~>3, so Theorem 3.2 is best 
possible. In Section 4, we show that when the maximum degree of a connected poset 
P is at least 2, the inequality in Theorem 3.2 is strict, unless P is the standard example 
of dimension 1 + A (P). This result has much the same flavor as Brooks' theorem [4], 
which asserts that the chromatic number of a connected graph is at most one more 
than the maximum degree, with equality holding if and only if the graph is a complete 
graph or an odd cycle. It also provides another instance in which the role played by 
standard examples in dimension theory is analogous to the role played by complete 
graphs in the theory of graph coloring. This parallel is explored in greater detail in the 
monograph [17]. 

We will in fact prove a result that is slightly stronger than Theorem 3.2. Given 
a point x in a fixed poset P = ( X ,  P), let D[x] =D(x)w {x}. Then let degD(x)= ID(x)I, 
and define AD(P)=max{dego(x):xeX}.  The set U[x] and the quantities 
degc(x), Au(P) are defined dually. 

With this notation, we can now state the result we actually prove. 

Theorem 3.3. I f  P=(X,  P) is a poset, then fdim(P)~< 1 + AD(P). 

Note that Theorem 3.3 has Theorem 3.2 as an immediate corollary. Since fractional 
dimension is dual, i.e., a poset and its dual have the same fractional dimension, the 
following result will also be an immediate corollary to Theorem 3.3. 

Corollary 3.4. I f  P=(X,P)  is a poset, then fdim(P)~< 1 + min { dD(P),dv(P) }. 
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4. Linear orders and linear extensions 

In [8"], Ffiredi and Kahn  showed that dimension theory problems could be for- 
mulated in terms of linear orders on the g round  set instead of  linear extensions. Let 

P = ( X , P )  be a poset and let L be any linear order  on the g round  set X. When S c  X 
and x ~ X - S ,  we write x > S  in L when x > s  in L, for every s~S. We let 

Cg(L)={(x, y): (x,y)ecri t(P) and x > D [ y ]  in L}. F/.iuredi and Kahn  noted that the 
following statement holds. 

Proposition 4.1. Let P =(X,  P) be a poser and let L be any linear order on X. Then there 

exists a linear extension M of  P with Cg(L) ~ C~(M). 

Given a poset P = ( X , P )  and a linear order  L on X, we let ¢K*(L)=CK(L) u {(x,y): 

(x,y) is a critical pair, x > D ( y )  in L, and [O(y)p=AD(P)}. 

Lemma 4.2. Let P = ( X , P )  be a poser with no interchanyeable pairs, and let L 
be any linear order on X. Then there exists a linear extension M of P with 
cK*(L ) ~ C~(M). 

Proof.  In order to simplify arguments  to follow, we present an algorithmic proof. We 

describe a deterministic algorithm, L1NEX, which takes an arbi t rary linear order  L on 

X as input and outputs  a linear extension M = LlNEx(L) satisfying the conclusion of  
the lemma. 

Set L 0 = L ;  for j~>0, we obtain Lj+I  from Lj by moving an element of  X to an 
alternate position according to rules which we describe below. The procedure halts 

when we have a linear extension M = Lj satisfying the conclusion of the lemma. We 

divide the process into two phases. The first phase just t ransforms L into a linear 
extension N with ~ (L)  ___ W(N) and W*(L) ~ ~*(N),  so in this phase, we will already 

be proving a modest  extension of  Proposi t ion 4.1. 

Phase 1: Obtaining a linear extension. This phase ends when Lj is a linear extension 
of P. If  it is not, a m o n g  all pairs (u, v) with u < v in P and v < u in L~, choose one for 

which the number  of points between them in Lj is minimum. If there is more  than one 

such pair, we choose one for which v is as low as possible in L i. 

Claim 1. I f  w is between u and v in Lj, then w is incomparable with both u and v. 

Proof. Suppose to the cont rary  that  w is between u and v in L j, but that w is 

comparable  to u. N o w  w < u in Lj. Also, there are fewer points between w and u than 
between u and v. If  u < w in P, then we contradict  our  choice of the pair (u, v), as we 
would prefer the pair (u, w). On  the other hand, if w < u in P, then w < v in P, and we 

would prefer (v, w) to (u, v). The argument  when a point  between u and v is comparable  
to v is dual. 
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Now form Lj+ 1 from Lj by moving v to a point immediately over u. From Claim 1, 
we note that L j+ 1 preserves exactly one more comparable pair of P than does Lj. This 
insures that Phase 1 will terminate. 

Claim 2. C~(Lj) _ c6:(Lj+ 1)" 

Proof. Suppose to the contrary that there exists a critical pair (x, y)e rK(Lj)--¢£(Lj+ 1), 
and suppose v was placed over u in the construction of L j+ 1- Then v E D [y],  v < x in 
Lj, but x < v  in Lj+I .  However, u < v  in P now implies that u < y  in P. Now 
(x,y)erg(Lj) requires x > u  in Lg. This already gives x > v  in Lg+I, a contradiction. [] 

The argument for Claim 2 also establishes the next claim, which we state for 
emphasis. 

Claim 3. ~*(Lj) ~_ (~*(Lj+ 1). 

We may now assume that Phase 1 terminates with a linear extension N of P. 
Phase 2: Doing more. Set N o = N .  This phase produces a sequence {Ni:j~>0 } 

of linear extensions of P and terminates when M = L I N E x ( L ) = N j  satisfies 
rg*(M)=rg(M). At each intermediate stage, we will preserve the key properties that 
C£(Nj) _~ Cg(Nj+ 1) and c~*(Nj) ~_ c~*(Nj+ 1). 

Suppose that there is some pair (x, y )6~* (Ni)--fg(Nj). Choose one such pair and 
note that x < y  in Nj, but z < x  in Nj for each z 6 X  with z < y  in P. 

Claim 4. No point between x and y in N j  is comparable to y. 

Proof. Suppose to the contrary that u is between x and y in N j, but that u is 
comparable to y. Since Nj is a linear extension of P, we know that u < y  in P. However, 
this contradicts the assumption that (x, y ) ~ * ( L ) .  [] 

Form the linear order N j+ 1 from Nj by moving y immediately below x. In view of 
Claim 4, we know that Nj+ 1 is a linear extension of P. 

Claim 5. C~(Nj) _ OK(N j+ 1). 

Proof. Suppose to the contrary that (u,v)EC~(Nj)-C~(Nj+l). Then it follows that 
u=y .  Since ID(y)l is maximum, y is maximal element in P. However, since (y, v) is 
a critical pair, we know D ( y ) ~  D(v), and thus D(y)=D(v). So v is also a maximal 
point, and U(y)=  U(v)=0. We conclude that y and v are interchangeable. [] 

Exactly the same argument establishes the following claim. 

Claim 6. cg*(Nj) _ c60*(Nj+ 1). 
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Phase 2 terminates because Cg(Nj) is a proper subset of rg(Nj+ ~), as the second set 
contains (x, y), but the first does not. This completes the proof of the lemma. [] 

We now present the proof of Theorem 3.3. 

Proof of Theorem 3.3. Clearly, we may assume that P is indecomposable with respect 
to lexicographic sums; in particular, P has no interchangeable pair. 

Let IXl=n and set t=n!.  Then consider the set ~,~={L1,L2 . . . . .  Lt} of all linear 
orders on the ground set X. Note that for a point x and a set S with x¢S ,  the fraction 
of linear orders in which x is higher than all points in S is exactly 1/(IS] + 1). It follows, 
that a critical pair (x, y) with I D (y) l < k is in if(L) for n !/( I D [ y] I + 1) different permuta- 
tions L. Also, a critical pair (x, y) with ID(y) l = k is in c~, (L) for n !/(ID(y)I+ 1) different 
permutations L. 

Apply the algorithm L~NEx defined in the previous section, and let 
6~={Ma,M2 . . . . .  Mr}, where MI=LtNEx(Li), for each i=1 ,2  . . . . .  t. Lemma 4.2 
implies Probse[x>y]>~l/([D[y]l+l) ,  when ID(y)l<k and Prob~[x>y]>~  
1/(ID(y)l + 1), when ID(y)I =k. Thus, Prob~[x  > y ]  ~> 1/(k+ 1), for every critical pair 
(x,y) i nP .  [] 

We remark that local exchange arguments of the type used in this argument have 
also been applied in [5]. 

5. Characterizing the case of equality 

As noted by Brightwell and Scheinerman, the standard example of an n-dimen- 
sional poset satisfies fdim (P )=  I+A(P) ,  so Theorem 3.2 is best possible. In this 
section, we will show that the standard examples are the only connected posets for 
which the inequality in Theorem 3.2 is tight. Before presenting the details of the 
argument, we need a little more notation. 

Let P =  (X, P) be a poset, and let o~ be a multirealizer of P with value ( ~ )  = r. We 
define ess(o~)= {(x,y)ecrit(P): p r o b ~ [ x > y ]  = 1/r}. The pairs in ess (~)  are called 
the essential pairs of o~. 

We call a multirealizer o~ of a poset P = ( X ,  P) an optimal family for P if value 
(o~) = fdim(P). Let ~1 and ~2 be multirealizers of P. We denote by o~1 w o~2 the union 
of the two multisets, defined so that ifa linear order appears n times in ~a and m times 
in ~2,  it appears n +m times in o~1 ~ ~z .  The following elementary proposition is 
stated formally for emphasis. 

Proposition 5.1. l f  o~ and o~ 2 are optimal multirealizers of a poset P, then o~ 1 u o~ 2 is 
also an optimal multirealizer. Furthermore, 

ess(~l w o~z) = ess(~l)  c~ ess(~2). 



108 s. Felsner, W.T. Trotter~Discrete Mathematics 136 (1994) 101 117 

We may then say that a critical pair (x,y)~crit(P) is an essential pair of P if 
(x, y)Eess(~) ,  for every optimal multirealizer ~ .  We let ess(P) denote the set of all 
essential pairs of P. Note that ess(P) is always nonempty when P is not a chain. When 
L is a linear order on X, we let ess(L)=rg(L)c~ ess(P) and ess*(L)=Cg*(L)c~ ess(P). 
The next statement is an immediate consequence of the preceding defintions. 

Proposition 5.2. Let P = (X, P) be a poset and let ,~  be an optimal multirealizer for P. I f  

Mx,  M 2 ~  and ess(Mx)~ ess(M2), then ess(M1)=ess(M2). 

We are now ready to present our characterization of Theorem 3.3. 

Theorem 5.3. I f  P = (X, P) is a poset with AD(P) >~ 2, then fdim(P) < 1 + Ao(P), unless 

P contains a standard example of a poser of dimension 1 + AD(P). 

Proof. Let P = ( X ,  P) be a poset, k=AD(P), fdim(P)= 1 + k  and [X[ =n. Without loss 
of generality, we may assume that P is indecomposable with respect to lexicographic 
sums; in particular, we may assume P has no interchangeable pair. Again, let 
5 p denote the family of linear extensions of P constructed in the proof  of Theorem 3.3. 
given in the preceding section. Then 5~ is optimal. We now derive some elementary 
statements about the essential pairs reversed by a linear extension in 5g. 

Claim 1. Let L be any linear order, and let M=LtNEx(L) .  Then ess*(L)=ess(M). 

Proof. Let (x ,y)ecri t (P)  and let L' be a random linear order on X. The probability 
that (x,y) belongs to ess*(L') is at least 1/(k+ 1). Should this inequality not be tight, 
then it follows that the pair (x, y) does not belong to ess(P). If there is any linear order 
L on X for which there exists a pair (x,y)eess(LlNEx(L))--ess*(L),  then we would 
conclude that P r o b ~ [ x > y ] >  1/(k+l) ,  and thus (xy)¢ess(P). [] 

Claim 2. I f  (x, y)eess(P), then [O(y)l =Ao(P). 

Proof. Suppose to the contrary that r = [D (y)l< A D(P)= k. If r < k--1,  then the prob- 
ability that (x,y)~<g(L) for a random linear order on X is 1/(r+2), which is greater 
than 1/(k + 1). Hence (x, y)¢ess(P), a contradiction. 

Now suppose r = k - 1  and let D ( y ) = { y l , y z  . . . . .  Yk-x}. Also let L be any linear 
order on X so that the lowest k + l  elements of L are { x } w D [ y ]  with 

Y x < Y2 < "'" < YR-~ < Y < X in L. Let L' be obtained from L by switching the positions 
of x and y. Then (x,y)¢ess(L'). We conclude from Claim 1 and Proposition 5.2 that 
there is a pair (a, b) in ess* (L') -- ess* (L). It is easy to see that this requires (a, b) = (y, z), 
for some z which is higher than x in L. This is in turn requires degD(z)= k and hence 
D(z)= {x} w D(y). 

Let L" be obtained from L by moving Yr immediately above x. Now 
ess(L") ~ ess(L), which is a contradiction. [] 
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Proof of Theorem 5.3 (conclusion). Now fix an essential pair (Yk + 1,2k + t)  of P and let 
D(zk+ 1) = {Yt, Y2 . . . . .  Yk}. Then let R be any linear order on X in which the k + 1 lowest 

elements are {Yl,Y2 . . . . .  Yk+1} with Y l < Y 2 < " "  <Yk+l in R. Note that 
(Yk + 1, Zk+ 0 ~ ess*(R). 

For each i =  1,2,. . . ,k,  let R~ be the linear order on X obtained by moving 
y~ immediately over Yk+l in R. Now choose an integer i~{1,2 . . . . .  k}. Then 
(yk+l, Zk+x)q~ess*(Ri). It follows that there is a pair in ess*(Ri)-ess*(R).  Claim 2 
implies that this pair has the form (y~,z~) with JD(z~)l=k and hence 

D ( z i ) = { Y l , Y 2  . . . . .  Y i - l , Y i + l  . . . . .  Yk+x}. We conclude that the subposet of P induced 
b y  { y  1,  Y2 . . . . .  Yk + 1 ) k..) { Z 1, Z2 . . . .  , Zk + 1 } is a standard example of dimension k + 1. [] 

We note that Theorem 15 in [-3] is a special case of the preceding theorem. We also 
note that the characterization for Theorem 3.2 follows immediately. 

Corollary 5.4. I f  P = ( X , P )  is a poser with 3~<fdim(P)= 1 +AD(P), then one of the 
connected components of P is isomorphic to the standard example of dimension 
1 +AD(P ). 

6. Fractional dimension and width 

The following inequality is due to Dilworth [6]. 

Theorem 6.1. Let P = ( X , P )  be a poset. Then dim(P)~<width(P). 

The forbidden subposet characterization problem for the inequality in Theorem 6.1 
remains an unsolved (and we suspect very challenging) problem, although in [15], 
some infinite families of examples are constructed which must be present in the 
solution. Also, it is not known whether it is NP-complete to determine whether the 
dimension of a poset is less than its width. Using the techniques developed in the 
preceding sections, we can answer these questions completely for fractional 
dimension. 

Let P=(X,  P) be a poset and let S and T be disjoint subsets of X. When M is 
a linear extension of P, we say S is over Tin  M, and write S/Tin  M, when x > y  in M, 
for every (x, y)~inc(P), with x e S and y ~ T. The following elementary result is due to 
Hiraguchi [10]. 

Proposition 6.2. Let P =  (X, P) be a poser and let C c X be a chain. Then there exist 
linear extensions M1, M2 of P with C / ( X - C )  in M1 and ( X - C ) / C  in M 2. 

Recall that Dilworth's theorem [6] asserts that a poset P of width w can be 
partitioned into w chains. As a consequence, the inequality in Theorem 6.1 is an 
immediate corollary to Proposition 6.2. 
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In what follows, we will concentrate on chain decompositions (also called chain 
covers), i.e., we will write the ground set as a union of not necessarily disjoint subsets, 
each of which is a chain. 

Theorem 6.3. Let P be a poset. Then fd im(P)~width(P) .  Furthermore, fd im(P)<  
width(P), unless 

(1) width (P)=2;  or 
(2) width ( P ) = w  for some w~>3, and P contains the standard example of a t- 

dimensional poser as a subposet. 

Proof. The first statement is trivial. Suppose the second is false and choose a counter- 
example P = ( X , P ) w i t h  X as small as possible. Let w=width(P)=fdim(P)>~3. The 
minimality of IXI requires that fdim (Q)<w,  for any proper subposet Q of P. 

Now suppose that P has fewer than w maximal elements. Then there exist a maxi- 
mal element y and a chain decomposition X = C1 u C2 w.-" w Cw of P so that y be- 
longs to two or more of the chains in the decomposition. Let Q=(Y,Q)  be the 
subposet obtained by removing y from P, and let fdim (Q)= r < w. Let f¢ be an optimal 
realizer of Q and suppose that ff consists of t linear extensions. For  each M ~ f¢, form 
a linear extension M'  of X by adding y at the top of M. Let f¢' denote the resulting 
family of linear extensions of P. 

Then for each i = 1, 2 . . . . .  w, let M~ be a linear extension of P with (X - C~)/C~ in M~. 
Let ~ = { M 1 ,  M 2 . . . . .  Mw} and recall that value ( ~ )  = 1/w. Then for eachj~> 2, l e t j ~  
denote the multirealizer of P consisting o f j  copies of each linear extension from ~-. 

Let ;rgj = f¢' u j ~  and observe, that for j sufficiently large, value (~}fgj)> 1/w, which is 
a contradiction. 

The same argument with an appropriate ~ shows that for each maximal element 
y of P, there is some x e X  so that (x, y)eess( P). 

Let { ya, Y2 . . . . .  Yw} denote the set of maximal elements of P, and choose an integer 
i from {1,2 . . . . .  w}. Then choose an element x ~ X  for which (xi,y~)eess(P). Since 
(x~,y3~inc(P), we know that x~¢C~. Choose an integer j=j~ so that x ~ C j .  Then 
x~<~yj. We now show that x ~ y  k in P, for every k = l , 2  . . . . .  w, with kv~i. 

Suppose to the contrary that there is some integer ke{1,2  . . . . .  w} with k4:i, 
for which x ~ y k .  It follows easily that there is a linear extension M~, of P with 
(X--Ck)/Ck and x~>y~ in M~,. However, this implies that (xi,yOCess(P). The contra- 
diction completes the proof  of our assertion that x~ <~ Yk in P, for every k =~ 1, 2 . . . . .  w, 
with k ~ i. 

Now it follows that the points {xl,x2 . . . . .  xw} form an antichain and the order 
induced on {x~,x2 . . . . .  x w } u { y l , y  2 . . . . .  yw} is isomorphic to Sw. [] 

7. The complements of antichains I 

The following theorem was proved independently by Kimble [11] and Trotter  [-14]. 
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Theorem 7.1. Let  P =  (X, P) be a poset, let A c X be an antichain and let n = I X -  A I. 

Then dim(P)  ~< max  {2, n }. 

In [16], a forbidden subposet  character izat ion of this inequali ty is obtained.  The  
case where I X -  A] ~< 2 is trivial, and the case I X -  A] = 3 includes some pa tho logy  
associated with the family of 3-irreducible posers. However ,  for I X - A ]  = n ~> 4, there 

are exactly 2 n - 1  forbidden subposets  in the list. 
For  fractional dimension,  the result is even more  elegant. 

Theorem 7.2. Let  P = ( X ,  P) be a poset, let A c X be an antichain and let n = I X - A [ .  

Then fdim(P) ~< max  {2, n}. Furthermore, fdim (P) ~< max  {2, n - ( n -  2)/(n-- 1)}, unless 

(1) n = 2  and P contains a 2-element antichain; or 

(2) n>~3 and P contains the standard example o f  an n-dimensional poset as a 

subposet. 

Proof. Again, the first s ta tement  is trivial. We provide  a sketch of the p roof  of the 
second, omit t ing details for some routine parts  of the argument .  When  n>~4, it is 
p roved  in [11] that  the dimension of P is at most  n - 1 ,  unless the n points  of X - - A  

consti tute an ant ichain on one side of  A (that is, complete ly  above  or complete ly  
below A). When  n = 3, we leave it to the reader to show that  fdim (P) ~< ~, unless the 
3 points  in X - . 4  are an ant ichain and all three are on the same side of  A. Note  that  

this s ta tement  is not true for o rd inary  dimension. 
To  complete  the proof,  it is sufficient to show that  the following poser has frac- 

tional d imension at most  n - 1  + 1 / (n -1 ) .  The antichain A is the set of  minimal  
elements of P. The maximal  elements of  P are the n points  in 
Y =  X -  A = { Yl, Y2 . . . . .  y,}. Fur thermore ,  for each nonempty  subset S c { 1, 2 . . . . .  n} 
with S :~ { 1, 2 . . . . .  n -  1 }, there is an element as c A  with as < Yi in P if and only if i e S. 
No te  that  by requiring S :~ { 1, 2 . . . . .  n - 1 }, we are excluding the appearance  of S,  as 
a subposet  of P. 

Here  is the basic idea. We describe two families of  linear extensions 

• / t ' = { m t , m 2  . . . . .  M.} and . ~ = { R I , R 2  . . . . .  R , -x}  such that  ~ - = , / ¢ w ( n - 2 ) 9 ~  is 
a ( n -  1)-fold realizer of  P. 

To  define these extensions, we first describe how they order  the points  of  Y. Once  
this is done, we have the 'gaps '  between these points  into which the points  of  the 
ant ichain A will be inserted. These insertions will be done  according to a specified set 
of rules. Finally, we will provide  a rule for ordering elements of  A which are inserted 

into the same gap. 
Let  a . = a : . , ;  note that  a . < y i  in P if and only if i=n .  Here  are the rules for 

construct ing ~t '  = {M1, M2 . . . . .  M,}:  
(1) For  each i =  1, 2 . . . . .  n, the point  Yl is below all o ther  elements of  Y in M~. 
(2) The largest element of  Y in M~ is y..  
(3) For  each i = 2, 3, .. . ,  n, we insert a e A -- { a.  } into the highest gap in Mi consistent 

with the partial  order  P. 
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(4) For each i -  1,2 . . . . .  n, ifa, a'~A - {a.}, both belong to the same gap in Mi, and 

[ U(a)l >1U(a') I, then a > a' in Mi. 
(5) The point a, is the second largest element in MI and the first element of M~ for 

each i = 2 , 3  . . . . .  n. 

Here are the rules for constructing ~ = { R 1 , R 2  . . . . .  R, -1}:  
(1) For each i---1,2 . . . . .  n--1,  the point y~ is below all other elements of Y in Ri. 
(2) For  each i =  1, 2 . . . .  , n -  1, the point y, is the second lowest element of Y in Ri. 
(3) For each i=1 ,2  . . . . .  n - 1  and each aEA, we insert a into the highest gap in 

M~ consistent with the partial order P. 
(4) For  each i - -1 ,2  . . . . .  n - l ,  if a,a'EA, both belong to the same gap in Ri, and 

IU(a)l>lU(a')l, then a>a' in Ri. 
We leave it to the reader to verify that a critical pair of the form (as, a,) with n e S is 

reverted in M~ for i = 2 . . . .  , n, while every other critical pair (x, y) is reversed in a linear 
extension M ~ '  and in a linear extension R ~ .  This shows that ~- is a (n-1)- fo ld  
realizer. Since o~ consists of ( n - 1 ) 2 + l  linear extensions we conclude that 
fd im(P)<<.n- l+l / (n-1) ,  as claimed. 

It is interesting to note that we have been able to provide a discrete ' jump'  in the 
fractional dimension in the characterization of equality in Theorem 7.2. However, 

there is no such jump in the characterizations of equality for Theorem 3.3. 

Remark 7.3. For  all k~>2 and every e>0 ,  there exists a poset P with Ao(P)=k and 
k+ l - e < f d i m ( P ) < k  + 1. 

Let P be the incidence poset of a k-regular, k-partite hypergraph, where the sides if 
the k-partition all are of size n for some large n = n~. 

8. The complements of antichains II 

There is another inequality bounding the dimension of the complement of an 
antichain. This is another result of Trotter [14]. Let A ~ X  be an antichain in P with 
X -  A ~ 0, and let Q be the subposet of P induced by X -  A. 

Theorem 8.1. Let P = ( X , P )  be a poset, with A and Q as above. Then 
dim(P) ~< I + 2 width(Q). 

In [16] it is shown that this inequality is best possible. The proof  makes use of the 
Product Ramsey Theorem (see [9, Ch. 5]). We now show, that in the case of fractional 
dimension the situation changes slightly. For  a poset P = ( X ,  P) and a subset Y_~ X, 
we let P(Y)  denote the restriction of P to Y, so that Q=(Y,  P(Y))  is the subposet of 
P induced by Y. 

Theorem 8.2. Let P = (X, P) be a poset, let A be an antichain with X -  A nonempty, and 
let Q=(Y,P(Y)) .  Then let w=width(Q).  
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(1) l f  w= l or w=2,  then fd im(P)<l /2  + 2w. 
(2) I f  w=3,  then fdim(P)< 1/4+2w. 

(3) l f  w>~4, then fdim(P)~<2w. 
Furthermore, for w = 1 and w >14, the inequalities are asymptotically best possible. 

Proof. Let Ct, C 2 . . . . .  C w be a chain partition of Q. With C~ + we denote the subchain 

of C~ above A and with C~- the subchain below A. We may assume that Ci = C~ + w C~- 
for all i. Also let Y = X - - A  and define Y+ = Y ~ U ( A )  and Y- = Yc~D(A). 

To prove the theorem we will construct a multirealizer ~ of P. This multirealizer is 

the union of three blocks of linear extensions, i.e., ~ = ~  k..)~2 k.-),~ 3. 

Block 1. For each i = 1 .. . .  w, let Li and Mi be linear extensions with C i / ( X -  Ci) and 

( X -  Ci)/Ci. Let ~ = {L1 .. . . .  Lw} and ~¢ = {M1 . . . . .  Mw}. Define N1 as p ~  u p S ,  the 
value of p = p(w) to be specified later. 

Block 2. In ~'2 we have for each i = 1 . . . . .  w a subblock ~i of linear extensions, i.e., 

:~2 = c£ 1 u . . .  ~ ~w. Each linear extension in ~i has ( Y+ - C +)/C + and C/-/( Y- - C/-). 
Moreover, for every subset B of A with IB[=IA[/2 (we may assume [AI to be even) 
there is a linear extension LB in ffl in which elements of B are as low as possible, while 

/ IA[ elements of A - B  are as high as possible. Let q =t lA i /2  , denote the number of linear 
extensions in cgi. 

Block 3. In N3 we assemble r copies of a linear extension which simultaneously 

reverses all critical pairs (x, y) with x, y e A. Assuming that there are no interchange- 

able pairs this can easily be done. 
To count how often a critical pair (x,y) of P is reversed in o~, we have to distinguish 

three types. 
Type 1. x eCi and y eC i. The pair is reversed whenever C i / ( X - C i )  and when 

( X - C j ) / C  1. Since i¢ j ,  this gives 2p reversals in ~1. 

Type 2. x ~ Ci and y s A. The pair is reversed whenever C~/ (X-  Ci), giving p rever- 
sals in ~1. However x e C 7  and the pair is also reversed in a linear extension LseCg~ 
when y eB. Together this gives p+q/2 reversals. By the dual argument, the same 

number counts the reversals when x e A and y e Ci. 
Type 3. x ~ A and y e A. The pair is reversed r times in N'3. Also each cgi gives more 

than q/4 reversals, together this makes more than r+(wq)/4. 
Note that I o~1= (2p + q)w + r. We now give the proportions of p and r relative to q. 

w= l ~ p=O, r=q/4, 

w = 2  --, p=q/2, r=q/2, 

w=3  --* p=q/2,  r=q/4, 

w>~4 --* p=q/2,  r=0 .  

A simple calculation shows that the multirealizers built with these proportions have 

the right values. Note, that in the first three cases, the values p and r where chosen as 
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to balance the proportion of reversals of Type 3 with the proport ion of reversals of 
Types 1 and 2. In the calculation we only counted (wq)/4 reversals of Type 3 in ~3.  As 
already noted, the actual number is slightly larger. This proves that the given bounds 
cannot be attained. 

We now sketch the argument showing that for every e>0 ,  there is a poset 
P containing an antichain A, such that width ( P - , 4 )  = w and the fractional dimension 
of P is at least 2 w - e .  

For given w and n, let P = ( X , P )  be the poset defined by: 
(1) ,4 is an antichain in P. 
(2) C1 . . . . .  Cw is a chain partition of X - , 4 .  
(3) ]C~ + ] = I C~- I = n for all i. 
(4) C + is incomparable to C + , Ci- is incomparable to C f  and Ci- < C + for all i :~j. 
(5) For every down-set S~_D(A) and every up-set T ~ _ U(A) there is an element 

as.re,4 with D(as, r ) = S  and U(as, r)= T. 
Now let ~ be an optimal multirealizer of P, in what follows we consider ~ as 

a probability space. We choose a 6--  6~ and round all probabilities to multiples of 6. 
Consider an antichain B consisting of one point from C + for each i. For each n in the 
symmetric group on w objects, let p~ be the (rounded) probability that in a linear 
extension in o~ the elements of B appear  in the order specified by n. There are fewer 
than (1 + 1/6) w~ possible functions n ~ p ,  and we color the antichains by these func- 
tions. Provided n is large, the product Ramsey theorem guarantees the existence of 
a two-element subchain Ei in each C~ +, such that all antichains consisting of one point 
from each El receive the same color. Note that this implies that in all but a negligible 
portion of linear extensions in ~- the subchains El behave as points relative to one 
another, i.e, if x e E i , y e E  i and x < y ,  then E~<Ej. 

The same argument allows us to choose two element subchains F~ in C~ for 
each i, such that the Fg behave as points relative to each other almost all linear 
extensions in ~ .  

Now let a 6 A be the element with a < max Ei, a II min Ei, a II max Fi and a > min Fi for 
all i = 1 . . . . .  w. Observe that when the E~ and F~ behave as points in a linear extension 
L, then only one of the 2w events a > min E~, a < max F~ for i = 1 . . . . .  w can hold in L. 
Hence the probability of the least probable of these events is at most ( 1 - 7 ) / 2 w +  y, 
where Y, the probability that the Ei or the F~ do not behave as points, only depends on 
the accuracy of the rounding, i.e., on 6. Now 6 can be chosen so that (1 -7 ) /2w + 7 < 1/ 

(2w-e) .  This completes the proof. [] 

Note, that the examples given in the proof of Theorem 8.2 have already been used in 

El6] to show that the inequality of Theorem 8.1 is tight. 

9. Hiraguchi's inequality and removal theorems 

We now give two further characterizations for inequalities involving fractional 
dimension. Both results will be easy corollaries of previous results, and both show that 
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some problems are much easier when stated in terms of fractional dimension. The 
first example is known as Hiraguchi's inequality [10]. In this case, when IXl>~8, 
the characterizing posets are the same for both ordinary dimension and frac- 
tional dimension. For ordinary dimension, the proof  is only moderately com- 
plicated when IXI is even (see [1]). However, for ordinary dimension, there is no 
transparent proof  when IXI is odd. The most frequently cited source for the proof  
is Kimble [11], but to the best of our knowledge, the arguments therein are 
incomplete. 

By way of contrast, the proof  of the characterization for fractional dimension is very 
easy in both cases (for an analogous situation, see the characterization given for 
interval dimension in [2]). 

Theorem 9.1. I f P = ( X ,  P) and IXl ~>4, then fdim(P)~<[_IXI/2/. Furthermore,/flXI ~ 6, 
then fdim(P)=[_lXI/2 j only/ f lXl  is even and P is a standard example, or IXl is odd and 
P contains a standard example on I X [ -  1 points. 

Proof. If P contains an antichain A with IAI>IX[/2, then Theorem 7.2 implies 
fdim(P)~< I X - A t  < IX I/2. Now assume that there is no antichain of size more than 
[St/2, then width (P)<~LIXi/2A. In this case Theorem 6.3 implies fdim(P)<~l_lXI/2J. 
The characterization is an immediate consequence of the characterization of 
Theorem 6.3. '~ 

Theorem 9.2. I f  P = ( X , P )  is a poset and x 6 X ,  then f d i m ( X - x , P ( X - x ) ) > ~  
f d i m ( P ) -  1. Furthermore fdim(X - x ,  P(X  - x) ) = f d i m ( P ) -  l for each x 6 X only if P is 
a standard example. 

Note, that the condition d i m ( X - x , P ( X - x ) ) = d i m ( P ) - I  for each x e X  gives 
a definition for irreducible posets. A characterization of irreducible posets has only 
been obtained for dimensions two and three. An indication for the abundancy of 
irreducible posets is the following estimate: For each t ~>4,/fn > 10t, then the number of 
t-irreducible posets on n points is at least as laroe as the number of posets on n/3 points 
havin9 dimension at most t - 1 .  

Proof of Theorem 9.2. In [3] it is shown that a poset P = ( X ,  P) on n elements contains 
an element x, such that f d i m ( X - x , P ( X - x ) ) < ~ ( ( n - 2 ) / n ) f d i m ( P ) .  Hence, when 
fdim(P)<lXI/2,  there is an element x ~ X ,  such that f d i m ( X - x , P ( X - x ) ) >  
f d i m ( P ) -  1. The result now follows from Theorem 9.1. [] 

10. Open problems for fractional dimension 

In most instances, we have been able to show that our inequalities for fractional 
dimension are best possible. In two cases, there is still some uncertainty. 



I 16 S. Felsner, W.T. Trotter / Discrete Mathematics 136 (1994) 101-117 

Problem 10.1. Are the following two inequalities of Theorem 8.2 best possible? 
Let P-=(X,P) be a poset, let A be an antichain with X - A  nonempty, and let 

Q=(Y,P(Y). Then let w=width(Q).  
(1) If w--2,  then fd im(P)< 1/2+2w. 
(2) If w=3,  then fd im(P)< 1/4+2w. 

For  the inequality of Theorem 6.3 (see the remarks at the end of Section 7), we make 
the following conjecture. 

Conjecture 10.2. (1) For each e > 0, there is an integer w~ so that for every w > w~, there 
exists a poset P so that w-e<fdim(P)<w=width(P). 

(2) For every positive integer w>~2, there is an ew>0 so that fdim(P)<~w-e~, for 
every poset P with fdim(P) < w = width(P). 

Our results and techniques suggest that many dimension theoretic problems have 
analogous versions for fractional dimension which may be somewhat more tractable. 
Here are two such problems. The first problem is just a restatement of a problem first 
posed by Peter Fishburn (see [7]). 

Problem 10.3. For each t/> 3, l e t f ( t )  be the minimum number of incomparable pairs 
in a poset P with fdim(P)~>t. Is it true thatf(t)=t2? 

We note that the 'chevron'  [17] has dimension 3, and has only 7 incomparable 
pairs. However, an easy exercise shows that a poset with fractional dimension at least 
3 must have at least 9 incomparable pairs. The case t = 4  was resolved by Qin [12]. He 
showed that a poset must have at least 16 incomparable pairs in order to have 
dimension 4. 

Problem 10.4. Given rational numbers p and q, what is the minimum value of the 
fractional dimension of P ×  (2, where fd im(P)=p  and fdim(Q)=q? 

We were unable to make any progress on determining whether a poset on three or 
more points always contains a pair whose removal decreases the fractional dimension 
by at most 1. As is the situation with ordinary dimension, this appears to be a very 
difficult problem. Perhaps the following restricted version is accessible. 

Problem 10.5. Does there exist an absolute constant e > 0 so that any poset with 3 or 
more points always contains a pair whose removal decreases the fractional dimension 
by at most 2 - e ?  
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