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Abstract. In a finite partially ordered set, Prob (x > y) denotes the proportion of linear 
extensions in which element x appears above element y. In 1969, S. S. Kislitsyn conjectured 
that in every finite poset which is not a chain, there exists a pair (x, y) for which 1/3 ~< 
Prob (x > y) ~< 2/3. In 1984, J. Kahn and M. Saks showed that there exists a pair (x, y) with 
3/11 < Prob(x > y) < 8/11, but the full 1/3-2/3 conjecture remains open and has been 
listed among ORDER's featured unsolved problems for more than 10 years. 

In this paper, we show that there exists a pair (x, y) for which (5 - v75)/10 <~ Prob (x > 
y) ~< (5 + v~)/10. The proof depends on an application of the Ahlswede-Daykin inequality 
to prove a special case of a conjecture which we call the Cross Product Conjecture. Our 
proof also requires the full force of the Kahn-Saks approach - in particular, it requires the 
Alexandrov-Fenchel inequalities for mixed volumes. 

We extend our result on balancing pairs to a class of countably infinite partially ordered 
sets where the 1/3-2/3 conjecture is false, and our bound is best possible. Finally, we obtain 
improved bounds for the time required to sort using comparisons in the presence of partial 
information. 
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* An extended abstract of an earlier version of this paper appears as [6]. The results here 
are much stronger than in [6], and this paper has been written so as to overlap as little as 
possible with that version. 
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1. Introduction 

Given a finite partially ordered set (poset) P,  let A(P) denote the set of linear 
extensions of P,  and let L(P)  = IA(P)I. For a pair x, y of distinct elements of 
P,  let Prob (x > y) denote the number of linear extensions of P in which x > y, 
divided by L(P) .  Thus Prob (x > y) is the proportion of linear extensions 
in which x is above y. The probabilistic notation is of course quite natural, 
corresponding to making A(P) into a probability space with each linear extension 
equally likely. If x < y in P,  then Prob (x > y) = 0, while Prob (x > y) = 1 
if x > y in P.  On the other hand, if x and y are incomparable in P,  then 0 < 
Prob(x > y) < 1. In 1969, S. S. Kislitsyn [15] made the following conjecture, 
which remains one of the most intriguing problems in the combinatorial theory 
of posets. 

CONJECTURE 1.1. I f  P is a finite poset which is" not a chain, then there exists 
an incomparable pair x, y E P so that 

1/3 ~< Prob (x > y) ~< 2/3. 

Conjecture 1.1 was also made independently by both M. Fredman and N. Linial, 
and many papers on this subject attribute the conjecture to them. It is now 
known as the 1 /3-2/3  conjecture. If true, the conjecture would be best possible, 
as shown by the poset with three elements and one comparable pair. 

The 1/3-2/3  conjecture has been proved for several special classes of posets. 
Linial [17] showed that the conjecture holds for width two posets, and R Fish- 
burn, W. G. Gehrlein and W. T. Trotter [8] showed that it holds for height two 
posets. G. Brightwell [3] showed that it holds for semiorders, and Brightwell and 
C. D. Wright [5] verified it for posets in which every element is incomparable 
with at most five others. 

Following Kahn and Saks, for a finite partially ordered set P, we let 3(P) 
denote the largest positive real number so that there exists a pair (x, y) of distinct 
points from P with 5(P) ~ Prob (x > y) ~< 1 - 5(P). We may then set ~0 to 
be the infinum of 5(P), taken over all finite P which are not chains. With this 
notation, the 1 /3-2 /3  conjecture is just the assertion that 50 ~> 1/3. However, 
to the best of our knowledge, there is no entirely elementary proof that g0 > 0. 

The first major breakthrough in this area came in 1984, when Kahn and 
Saks [13] used the Alexandrov-Fenchel inequalities for mixed volumes to prove 
the following result. 

THEOREM 1.2. I f  P is a finite poset which is not a chain, then there exists an 
incomparable pair x, ff E P so that 

3/11 < Prob (x > y) < 8/11. 

Thus, 5o > 3/11 _~ 0.2727. [] 
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Our main result is the following inequality which improves the bound in Theo- 
rem 1.2. 

THEOREM 1.3. I f  _P is a finite poset which is not a chain, then there exists an 
incomparable pair x, y E P so that 

(5 - v~ ) /10  <~ Prob (x > Y) ~< (5 + v~)/10.  

Thus, go ~ (5 - v/5)/10 --~ 0.2764. 

The proof of Theorem 1.3 requires all the machinery developed by Kahn and Saks 
for the proof of Theorem t.2. In particular, it requires the Alexandrov/FencheI 
inequalities for mixed volumes to prove that certain sequences are log-concave. 

Our proof also requires a new inequality - a special case of a conjecture which 
we call the Cross Product Conjecture. Although we have not been able to settle 
the Cross Product Conjecture in full generality, the special case is enough for our 
purposes here. Even this case requires an application of the Ahtswede/Daykin 
inequality - a deep and powerful combinatorial tool which has aheady found a 
wide range of applications to posets. 

Numerically, Theorem 1.3 is only a modest improvement on the Kahn/Saks 
bound and leaves us far short of settling the 1 /3-2/3  conjecture. But in a certain 
sense, our Theorem 1.3 is best possible. To explain this remark, we extend our 
investigation to include countably infinite posets, and for this class of posets, the 
1 /3-2/3  conjecture is false. Call a poset P thin if there is some natural number k 
such that every element of P is incomparable with at most k others. If a thin poset 
has a connected incomparability graph, then it is countable, and each interval 
[a, b] -= {z: a <~ z ~< b} is finite. Let ([at, br~]) be a nested sequence of intervals 
whose union is the ground-set of P.  If the elements x, y of P lie in one of the 
intervals [am, bin], then for n > / m  we can consider Probn(x > y) - Prob(x > y) 
in the poset Pl[a~, b~]. Brightwell [2] showed that limn-+~ Probn(x > y) exists, 
and is independent of the sequence of intervals chosen. We naturally define 
Prob (x > y) in P to be this limit. This definition can be extended in an obvious 
way to thin posets with disconnected incomparability graph. 

For a thin poset P,  we again define 3(P) to be the largest positive number for 
which there exists a pair x, y ~ P with 5(P) <<. Prob (x > y) ~< 1 - 5(P). Now 
let 5~ be the infimum of 5(P) over all thin posets P other than chains. 

As was discovered independently by Brightwell [2] and Trotter, there is a thin 
poset Q with 5(Q) = (5 - v/5)/10. This example is constructed as follows. The 
poset Q has as its point set X = {xi: i E Z} with: x~ < xj  in Q if and only if 
j > i + 1 in Z. If we define the finite poset Qn to be the subset of Q consisting 
of all points whose subscripts in absolute value are at most n, then it is an easy 
exercise to show that 

lim Prob(xo > X 1) = ( 5  - -  ~v~)/10. 
n - - ~  c,o 
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Thus 5~ ~< (5 - V~)/10. On the other hand, our proof of Theorem 1.3 works 
in the infinite setting, so we obtain the following result, proving a conjecture of 
Brightwell [2] and Trotter. 

THEOREM 1.4. 5~ = (5 - x/~)/10 __. 0.2764. 

The example Q is striking on several counts. Observe that Q has width two, 
is a semiorder, and each of its elements is incomparable with just two others. 
As noted above, any finite poset P satisfying any one of these three conditions 
would have 5(P)  >/ 1/3. 

Prior to 1994, the Kahn-Saks bound given in Theorem 1.2 was the best known 
bound known lower bound on 5o valid for all finite posets. However, other 
proofs bounding 50 away from zero have been given. In [14], L. Khachiyan 
uses geometric techniques to show 60 ~> 1/e 2. Kahn and Linial [12] provide a 
short and elegant argument using the Brunn-Minkowski theorem to show that 
5o/> 1/2e. In [10], J. Friedman also applies geometric techniques to obtain even 
better constants when the poset satisfies certain additional properties. In [6], 
Felsner and Trotter showed that there exists an absolute constant e > 0 so that 
50 >~ 3/11 + e .  

Kahn and Saks conjectured that 5(P)  approaches 1/2 as the width of P tends 
to infinity. In [16], J. Koml6s provides support for this conjecture by showing 
that for every e > 0, there exists a function ¢~(n) = o(n) so that if IPI = n and 
P has at least f~(n) minimal points, then 5(P)  > 1/2 - e. 

The remainder of the paper is organized as follows. In Section 2, we outline 
the basic flow of the proof of Theorem 1.3. In Section 3, we present the Cross- 
Product Conjecture, and the proof of the special case of the conjecture necessary 
for this paper. The main body of the proof is given in Sections 4, 5 and 6. In 
Section 7, we provide additional details on the class of countably infinite posets 
where our Theorem 1.3 holds and is best possible. Finally, in Section 8, we 
produce a new bound for sorting using comparisons - the motivating problem 
for the study of balancing pairs. 

2. The Basic Approach 

For the next three sections of this paper, we shall deal exclusively with finite 
posets. Our aim is to develop the machinery necessary to prove Theorem 1.3. 
Fundamentally, our method is a both a refinement and an extension of that used 
by Kahn and Saks in [13]. Accordingly, we will use the notation and terminology 
of that paper as far as possible. 

Throughout, we consider the sample space of all linear extensions of a finite 
poset P,  with all linear extensions being equally likely. For a linear extension 

and a point x E P ,  h~(x)  denotes the height of x in ,k, i.e., if )t orders the 
points in P as xl < x2 < " ' "  < Xn and x = xi,  then h),(x) = i. We denote 
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by h(x) the expected value of h~(x). When (x, y) E P × P is a fixed ordered 
pair of incomparable points, then for each positive integer i, we let ai denote 
the probability" that h;~(y) - h;~(x) = i, and we let bi denote the probability that 
ha(x) - ha(y) = i. We also set b = bl and let B = ~ i  bi = Prob (x > y). Then 
we set e = biB.  Define the height of the pair ({ai}, {bi}) of sequences to be 
~ i  iai - ~ i  ibi; note that this is just h(y) - h(x), the expected height difference. 

We collect together various results from [13] in a lemma. 

LEMMA 2.1. 

al = bl = b. (2.1) 

a i = O ~ a i + l = O ,  f o r i >  1, and b i = O ~ b i + l = O ,  f o r i >  1. (2.2) 

i>~ l i )  l 

a2 + b2 ~< al + bl. (2.4) 

ai+l <~ ai + ai+2, for  i >~ 2 and bi+l ~< bi + bi+2, for  i ~> 2. (2.5) 

ai+t2 ~ aiai+~,_ for  i ~ 2 and bi2+l >~ bibi+2, for  i ~> 2. (2.6) 

Inequalities (2.1), (2.2) and (2.3) are trivial, but already (2.4) requires a clever 
little argument, and (2.5) is more substantial. A simpler proof of (2.5), based 
on a generalisation of (2.4), was provided by Felsner and Trotter [6]. The proof 
of (2.6) uses the Alexandrov-Fenchel inequalities for mixed volumes; a highly 
non-elementary piece of theory. 

The basic approach of [13] may now be summarized as follows. Since P 
is not a chain, it follows that we may choose an ordered pair (x, y) with 0 ~< 
h(y) - h(x) < 1; necessarily x and y are incomparable. Kahn and Saks prove 
that, if the sequences ai and bi. satisfy (2.1)-(2.6), and the condition that the 
height of the pair of sequences be at most 1, then B = ~ i > l  bi >~ 3/11. (If we 
have h(g) - h(x) < 1, then we obtain the strict inequality B > 3/11.) Together 
with Lemma 2.1, this technical result implies Theorem 1.2. 

We go a little deeper into the Kahn-Saks method here, for later use. 
Say that a (two-way) sequence ({ai}i>l, {b~}i>l) of non-negative real numbers 

is packed, with parameters B, e, k (0 ~< B ~ 1/3, 0 < e ~< 1, k E N), if it is of 
the form: 

(1) bi = Be(1 - e )  i - 1  for all i ~> 1, 

(2) ai = Be(1 + e)i-1 for 1 ~< i ~< k, 

(3) ak+l + ak+2 = 1 - ~ i > 1  bi - Y~,k= 1 ai, ai = 0 for i ~> k + 2, and either: 

Case (i) k ) 2, a/~+2 = 0, with e/(1 + e) ~< ak+l/ak ~< 1, or 

Case (ii) a~+I = ak + ak+2, with 1 ~< ak+l/ak <~ 1 + e. 
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Note that packed sequences satisfy inequalities (2.1) through (2.6), and have 
bi = B. Note also that, for each pair (B, ~) there is exactly one packed 

sequence with parameters B, e and k, for some k. The easiest way to see this is 
to set about constructing such a pair of sequence: B and ~ determine the values 
of the bi, and also that of al = bl. Then one must set a j+l  = (1 + e)aj, until 
such time as there is not enough probability left to satisfy aj+2 >~ eaj; at this 
point, one sets aj+ 1 as large as possible. Either this will give aj+l ~ aj and 
aj+z = 0 (Case (i)), or aj+l >>- aj and aj+2 = aj+l - aj (Case (ii)). For each 
fixed B ~< 1/3, decreasing c from 1 to 0 leads us through the cases in order: 
Case (ii), k = 1; Case (i), k = 2; Case (ii), k = 2; Case (i), k = 3; etc. The 
sequences are continuous functions of e throughout this process. 

Kahn and Saks calculated that, if we are in case (i) for some k, then 

1 + 2e + 2e 2 (1 + e) l -k  
~< ~< 1 + 2e, (2.7) 

l + e  B 

while if we are in Case (ii) for some k, then 

l + 2 e ~ <  ( l + ~ l - k '  ~< l + 2 e + 2 e  2. (2.8) 
B 

The main interest in packed sequences stems from the following lemma, also 
taken from Kahn and Saks [13]. 

LEMMA 2.2. Suppose that ({ai}, {bi}) is any two-way sequence satisfying in- 
equalities (2.1) through (2.6), with ~ bi = B, and b l / B  = c. Then there is a 
packed sequence with the same values of  B and c, and height no greater than 
that o f  ({ai}, {bi}). 

Now we define H ( B ,  ~) to be the height of the unique packed sequence with 
parameters B and e, for 0 ~< B ~< 1/3 and 0 < E ~< 1. Note that, for each fixed 
B, this is a continuous function of e. Kahn and Saks proved that H(3/11,c)  >/ 
H(3/11,  t) = 1 for every ~, which, combined with Lemma 2.2, gives their result. 

The following are expressions for H(B ,  e) in the various ranges, essentially 
taken from Kahn and Saks. 

Case (i): H ( B , e )  = ]c + 1 - B(1 + ~)k+l (2.9) 

Case (ii): H(B ,  c) = k + 3 B 2 2e (1 + ~)k-1(4~2 + 5~ + 2). (2.10) 

LEMMA 2.3. For each fixed B with 0 <, B <~ 1/3, the function H(B ,  c) is 
decreasing in ~, except in case (ii), with k = 1, when ~ <~ 1Iv@ 

Note that the exceptional range only occurs when B ~> 1 - l /x /2  ~- 0.293. The 
range is at its largest when B = 1/3, when it is [0.618 . . . .  0.707 ...]. Note also 
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that, in Case (ii), k = 1, we have H ( B , e )  = H(B ,  1/2c), so, since e ~< 1/2 
is never a possibility, we have that H ( B , e )  <<. H(B ,  1) for every e, for any 

1/3. 
Proof Again, much of this is containeA in Kahn and Saks [1.3]. Because of 

the continuity, we need only prove that the function is decreasing in each range. 
Case (i) is relatively straightforward. First we claculate that 

OH(B, ~) B(1 + e) k 
- (1  - e k ) .  ( 2 . 1 1 )  

0e  e 2 

Now if e < l / k ,  then 

3~< ~ < ( l + e ) k - l ( l + 2 e ) <  1 +  1 +  , (2.12) 

which is easily seen to be false for all integers k ~> 2. Therefore the derivative 
is negative for every range where Case (i) applies. 

Case (ii) is a little more delicate. Here we have: 

OH(B,  e) 

0e (2.13) 

_ B(1 Jr ¢)k-2  [(l q-- g)(2 --4C 2) -- e(4~ 2 -k 5C -t- 2)(/¢ -- 1)] 
2e 2 

For k = 1, this is positive just when e 2 < 1/2, as claimed. 
For h = 2, one needs to verify directly that the condition 

(t + e) k-1 ~> 1 ~> 3 (2.14) 
B(1 + 2e + 2e a) 1 + 2e + 2e 2 

implies that e > 0.4044, and that this in turn implies that the derivative is 
negative. 

For k >~ 3, the bound in (2.14) implies that e > 3/(3k + 1.1), which in turn 
implies that the derivative is negative. [] 

Lemma 2.2 tells us that, if our aim is to maximise h(y) - h(x) subject to con- 
straints on t3 and possibly also E, then we may restrict attention to packed 
sequences. Lemma 2.3, and the remarks after the statement, say that we should 
take e = 1 wherever possible. Thus, in the case B = 3/11, the extremal se- 
quence is given by: bl = al = 3/11, a2 = 4/11 and a3 = 1/11, the packed 
sequence with e = 1, satisfying Case (ii) with k = 1. 

The Kahn-Saks proof actually gives the stronger result that, for any pair x, y of 
incomparable elements of P such that 0 ~ h(y) - h(x) ~< 1, we have Prob (x > 
y) /> 3 / t  t. This stronger result is best possible, as there is a six point poset (see 
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Trotter [20], for example) containing an incomparable pair x, y with h ( y ) - h ( x )  = 
1 and P r o b ( x  > y) = 3/11.  

As Kahn and Saks point out in [13], one way to improve the constant in 
Theorem 1.2 would be to show that there exists a positive absolute constant "y 
so that if P is not a chain, then it is always possible to find an ordered pair 
(x, y) with 0 ~< h(y) - h(x)  ~< 1 - % However,  nobody has yet been able to 
settle whether such a 3' exists. If it does, then as shown by Saks in [18], it must 
satisfy 7 ~< 0.133. Even this value would not be enough to prove 5(P) >~ 1/3. 
Our methods show that it would imply 5(P)  >~ (3 + 23,)/11 ,.o 0.297. In fact, as 
noted by Felsner and Trotter in [6], if one is going to argue solely on the basis 
of  packed sequences, only when 0 ~ h(y) - h(x)  <<, 2/3  can we safely conclude 
that 1/3 ~< Prob (x > y) ~< 2/3.  So we need a new idea. 

Our approach towards improving Theorem 1.3 is to look at the relative heights 
of  three elements rather than two. We prove the following result. Here and 
throughout, allb means that a and b are incomparable. 

T H E O R E M  2.4. Let x, y, z be distinct points in a finite poset  P, not forming a 
chain x < y < z. Suppose that h(x)  <, h(y) <<, h(z)  <~ h(x)  + 2. 

(i) I f  x < y in P, then Prob (y > z) ~> 1/3. 

(ii) I f  y < z in P, then Prob(x  > y) >~ 1/3. 

(iii) I f  xllY and yllz in P, then either 

P r o b ( x > y ) ~ >  1/3, or P r o b ( y > z ) ~ >  1/3, or 

Prob (x > y) + Prob (y > z) />  (5 - v/5)/5. 

We also have the following simple result. 

L E M M A  2.5. For any finite poset  P, not a chain, with at least three elements, 
there are three distinct elements x, y, z, not forming a chain x < y < z, such 
that h(x)  <. h(y) <. h(z)  <~ h(x)  + 2. 

Proof. Clearly we may assume that P contains no element comparable to all 
others. This implies that, if x < y in P ,  then h(y) - h(x)  > 1. Therefore if 
x, y, z satisfy h(x)  <~ h(y) <~ h(z)  <~ h(x)  + 2, we cannot have x < y < z in P .  

Write the elements of  P in non-decreasing order of average height, as xl . . . . .  
Xn. Note that h ( x l ) + h ( x 2 )  >/ 3, and h ( x n ) + h ( x n _ l )  ~< 2 n -  1. If n is 
odd, we deduce that [h(xn) - h(x~)] + [h(xn-1)  - h(x2)] ~< 2n - 4, so either 
h(xn)  - h ( x l )  ~< n - 1, or h(xn-1 )  - h(xa) ~< n - 3. In either case, we can 
write the difference as a sum of terms of the form h(xk+2) - h(xk),  and so find 
a k such that h(x~+2) - h(xk)  ~< 2, as required. The proof for the case n even 
is similar. [] 
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Theorem 2.4 and Lemma 2.5 clearly imply Theorem 1.3. Our primary task is thus 
to prove Theorem 2.4. In the next section, we develop a new inequality, similar 
in theme to inequality (2.6). Then we use this, together with other inequalities, 
to derive Theorem 2.4. 

3. The Cross Product Conjecture 

Let P be a finite poset, and let x, y, z be distinct elements of P.  For i, j ~> 1, set 
L(i, j )  equal to the number of linear extensions A of P in which hA(y)--hA(x) = i 
and h;~(z) - hA(y) = j .  Also set p( i , j )  = L ( i , j ) / L ( P ) ,  the probability that 
hA(y) - hA(x) = i and hA(z) - hA(y) = j .  

We make the following conjecture. 

CONJECTURE 3.1 (The Cross Product Conjecture). For any finite poset P and 
any integers i, j >~ 1, 

L ( i , j )L ( i  + 1, j  + 1) ~ L ( i , j  + 1)L(i + 1,j). 

We have not been able to settle the Cross Product Conjecture, but we have been 
able to prove the following special case - and this is enough for the results of 
this paper. 

THEOREM 3.2. For any finite poser P, 

L(1, 1)L(2,2) ~< L(1,2)L(2,  1), 

and therefore 

p(1, 1)p(2,2) ~< p (1, 2)p(2, 1). 

Before proceeding with the proof of Theorem 3.2, we comment that this is the 
only new non-linear inequality we need for the proof of Theorem 1.3. Thus 
Theorem 3.2 plays the same role for us as the log-concavity statement (2.6) does 
for Kahn and Saks in [13]. Just as for (2.6), the proof of Theorem 3.2 is based 
on a powerful combinatorial tool that has been found useful in various similar 
contexts - the Ahlswede-Daykin Four Functions Theorem [1]. This result can 
be stated (not quite in full generality) as follows. 

THEOREM 3.3. Let £ be a finite distributive lattice, and let oe,/3, % 5 be four  
functions from. ,g to the positive reals satisfying: 

~(A)/3(B) <~ ~/(A v B)5(A A B) 

for  any A, B E f-.. Then 

AE£ AEE AE£ AE£ 
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Throughout this section, we will be dealing with restrictions of the poset P to 
subsets of its g-round-set We shall abuse terminology slightly by referring to 
the restriction to a subset X as simply X, so in particular we write L(X) for 
the number of linear extensions of the poset induced by P on a subset X of the 
ground set. Also, we refer to L(X) as the number of linear extensions of X. 

We shall also make use of the following consequence of the Four Functions 
Theorem. This result was first proved by Fishbum [7], and a simpler proof, 
based on an inequality of Shepp [19], was supplied by Brightwell [2]. See also 
[4] for further applications. 

THEOREM 3.4. Let P be a finite poser, and suppose that V and W are two 
up-sets in P. Then 

L(V) L(W) Ivl lwl  
<<. <~1. 

L(V U W) L(V N W) IV u Wlt lV n 

In this note, we do not need the full strength of Fishburn's Inequality, Theo- 
rem 3.4: we use only that, with V and W as above, L(V)L(W)  <~ L(V U 
W) L(V N W). We note next one fairly straightforward consequence. For a 
finite poset P ,  a minimal element x of P,  and an integer i >~ 1, set Si(P; x) 
equal to the number of linear extensions A of P in which h),(x) = i. 

LEMMA 3.5. Suppose x is a minimal element in a poset Y, and Z is an up-set 
of Y containing x. Then 

S2(Z; x)/SI(Z; x) <~ S2(Y; x) /SI(Y;  x). 

Proof Note that El(Z; x) is just the number of linear extensions of Z \ { x } ,  and 
S2(Z; x) is the number of such linear extensions in which the bottom element is 
incomparable with x. Hence S2(Z; x)/SI(Z; x) is the probability that a randomly 
chosen linear extension of Z \ {x} has its bottom element incomparable to x. 

Let V(Z) be the set of elements v of Z such that x is the only element below 
v in Z. Then we have 

Sz(Z; x) 

SI(Z; x) 

= 1 - -  

Z Prob (v is the bottom element in a linear extension 
v~v(z) of Z \ {x}) 

L(Z \ 
L(z \ • 

v~V(Z) 

The same is true with Y in place of Z, so it is sufficient to prove that 

L(Y \ {v, x}) L(z \ L(z \ 
-- L(Z \ 

i 

vCV(Z) veV(Y) 
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Now V ( Y )  C_ V(Z) ,  so it is sufficient to prove that, for any v E V(Y) ,  

L ( Z  \ {v,x})  >~ L ( Y  \ {v,x}) 

L ( Z  \ {x}) L ( Y  \ {x}) " 

This last inequality follows from Fishbum's Inequality, Theorem 3.4, with V = 
Z \ {x} and W = Y \ {v ,x} .  [] 

Proof of Theorem 3.2. First note that we may as well suppose that x < y < z 
in P ,  since we are counting only linear extensions where these relations are 
satisfied. Also, we may assume that y is the only element between x and z, 
since otherwise L(1, 1) = 0. 

Now set D equal to the set of elements of P below y, U equal to the set of 
elements above y, and I equal to the set of elements incomparable to y. So 
(D, U, I)  is a partition of P \ {y}. Se t / / / equa l  to the set of up-sets of I, and 
note that/.4 is a distributive lattice under set-inclusion. For A Egg, let A c be the 
complement I \ A. 

Observe that L(i, j )  is equal to the sum, over all elements A of t / ,  of the number 
of linear extensions/k of P in which: (i) h;~(y)-hx(x) = i and h;~(z)-h;~(y) = j ,  
and (ii) A c < y < A. This number is just the product of (i) the number f j (A)  of 
linear extensions # of U tO A in which h~(z) = j,  and (ii) the number gi(A c) of 
linear extensions r, of D U A e in which h,(x)  = ID O ACl - i + 1, i.e., exactly 
i - 1 elements come above x. Thus we have 

L(i , j )  = ~ fj(A)g.i(AC). 
A Ebl 

Our aim is to apply the Four Functions Inequality, Theorem 3.2, to the lattice 
/.4 with: 

o~(A) = fl(A)91 (AC), 

/3(A) = f2(A)g2(AC), 

7(A) = fz(A)gl (AC), 

5(A) = fl(A)g2(AC). 

This wilt imply our result, provided we can prove that the condition of the Four 
Functions Theorem is satisfied. 

Thus it suffices to show that, for any A, B E b/, 

f1(A)gl(AC)f2(B)g2(B c) 
(,) 

<<. f2(A U B)gl (A c N BC)fl(A n B)g2(A c U Be"). 

In fact we shall prove that 

f~(A)f2(B) ~ f2(A U B ) f l ( A  N B); (**) 
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the analogous inequality for the gj follows by symmetry, and (,) then follows. 
Inequality (**) is trivial if either f l(A) or f2(B) is equal to 0, which is the 

case whenever either (i) A contains any element below z, or (ii) B contains more 
than one such element. We break the argument into two cases, depending on 
whether/3 does or does not contain an element v < z. 

First we suppose that B does contain such a v. Now observe that f l(A),  the 
number of linear extensions of U U A with bottom element z, is simply equal 
to L(U U A \ {z}). Similarly f2(B) = L(U U B \ {z, v}), and similarly for the 
other expressions in (**). Thus (**) follows in this case on applying Fishbum's 
Inequality with V = U tO A \ {z} and W = U U B \ {z, v}. 

Now we move on to the other case, where z is minimal among the elements 
of U U A U/3.  In this case, Lemma 3.5 is applicable, and we observe that 
fi(C) = &(U U C; z), for ally i, and any set C c I such that z is minimal in 
U U C. Thus in particular we have 

f2 (B) / f l (B)  <~ fz(A U B ) / f l ( A  U B). 

Also, Fishburn's Inequality tells us that 

f l (A) f l (B)  <~ f l (A  U B) f l (A  N B). 

Combining these two inequalities gives us inequality (**) in this case as well, 
which completes the proof. [] 

Perhaps the methods of this section can be extended to prove that, for any for 
any finite poset P and any positive integers i, j ,  

L(1, l )L(i , j )  <. L(1,j)L(i, 1), 

but something more powerful seems to be needed to prove the general form of 
the Cross Product Conjecture. 

4. T h e o r e m  2.4 - Two  Easy  Cases  

Suppose we have three points x, y and z of our poset P,  not forming a 3- 
element chain, with h(x) <~ h(y) <~ h(z) <~ 2 + h(x). We break the proof of 
Theorem 2.4 into cases, depending on the subposet of P formed by {x, y, z}. 
Taking advantage of duality, we observe that we need only consider the following 
four situations. 

Case A: x < z and y < z in P.  
Case B: y < z, xlly and ecllz in P.  
Case c :  {x, y, z} is a 3-element antichain. 

Case D: x < z, zlly and yllz in P.  
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Theorem 2.4 then says that, if Cases A or B hold, then Prob (x > y) >~ 1/3,  
and if Cases C or D hold, then either Prob (x > y ) />  1/3, or Prob (y > z) ~> 1/3, 
or Prob (x > y) + Prob (y > z) >/(5 - v ~ ) / 5 .  

In arguments to follow, we will continue to use the previous definitions for b, 
B,  ai, bi and e; the pair of  elements they are defined for (usually (x, y)) will be 
clear from the context. Later, we will we need to consider sequences for two 
pairs simultaneously - then we will clarify this in the notation. 

In the remainder of  this section, we deal with Cases A and B. We begin with 
Case A. 

T H E O R E M  4.1. I f  Case A holds', then 

Prob (x < y) ~< 2/3.  

Proof  In this case, note that h),(z) - h~,(x) >~ 1 for every linear extension A, 
that Prob (ha(z) - hA(x)) = 1 ~< Prob (x > y) = B,  and that 

Prob ( h ~ ( z ) - h ~ ( x )  <~ 2) <~ Prob (x > y )+Prob  ( h ~ ( y ) - h x ( x )  = 1) = B+b.  

Thus we have 

2 ) h(z) - h(x) >~ B + 2 b +  3(1 - B -  b). 

This implies that 1 ~< 2 B  + b <~ 3 B  so tha t /3  >~ 1/3. []  

Incidentally, Theorem 4.1 is best possible, as shown by a poset on 4 elements 
x , y , z , w ,  with x < z and w < y < z. 

T H E O R E M  4.2. I f  Case B holds, then 

Prob (x < y) ~< 2/3.  

Proof  Obviously, 

I + Z (  j - 1)p(i, j)/> 1 +p(-  1, 2) + 2 ~ p(-  1, i) + ~ p(1, i). h(z) h(y) 
i , j  i >~ 3 i>/2 

Using ~i>>.lP(1,i) = }-]4>~2P(-1,j) = bl and p ( - 1 , 2 )  = p(1, 1) = p ( - 2 ,  1) ~< 
52 we obtain h(z) - h(y) ~> 1 + b2 + 2(bl - ba) + (bl - b2) = 1 + 351 - 2b2. 

This leads to a correlation between the height of  x and y and their probability 
of  being reversed and close to each other: 

h(y) - h(x) <~ 2 - (h(z) - h(y)) ~< 1 - 3bl + 252. 

Now suppose that there are sequences {ai}i>~l and {bi}/~>l satisfying the con- 
ditions of  (2.1)-(2.6), with ~i~>l i(ai - bi) ~< 1 - 3bl + 2b2 and ~i~>1 bi ~< B.  

Then the packed sequences ai = b(1 + e) i and bi = b(1 - e) i also satisfy all these 
conditions. Therefore we  can analyze the situation with the techniques of  [13]. 
It turns out that the worst  case occurs in Case (ii) with k = 3. For this value of  
k, it may be verified that B >~ 0.335, which is a little more than what is claimed 
in the statement of  the theorem. [] 
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5. T h e o r e m  2 . 4  - C a s e  D 

In this section, we assume that we are in Case D, i.e., that x,  y, z are three 
elements of P ,  with h(x )  <<, h (y )  <<. h ( z )  <~ h (x )  + 2, x < z,  xlly and yf lz  in P.  
Set B = Prob (x > g), as before, and B t = Prob (y > z). Our aim is to prove 
that B + B t >/(5 - v/5)/5. We give reasonably full details of the computation 
in this case, since it is critical to our analysis. 

We start by noting that, for any j ~> 2, p ( - 1 , j )  = p ( 1 , j  - 1), since swapping x 
and y gives a bijection between the two sets of linear extensions being counted, 
and similarly p( j ,  - 1 )  = p ( j  - 1, 1). Note also that, since x < z in P,  p ( i , j )  = 0 
whenever i + j ~< 0. 

To simplify the computational efforts, we let X = B + B',  xl = p(1, 1), 
x2 = p(1, 2) + p(2,  1), x3 = p(2, 2), x4 = p(1, 3) + p(3, 1), x5 = p(2, 3) + p(3, 2) 
and x6 = p(1,4) + p(4, 1). 

Our method is to produce various inequalities relating X and the xi, and then 
to prove that, subject to the various inequalities, the minimum value of X is 
(5 - x/~)/5. The inequalities we derive and use may seem to be somewhat 
arbitrary; undoubtedly there are other inequalities, perhaps stronger and/or more 
natural, that can be derived. Motivation for the particular inequalities chosen 
came from two sources: (a) we know that, in the infinite poset Q defined in 
Section 7, we have X = (5 - v~) /5 ,  z~ = (3v/-5 - 5)/10, x2 = (10 - 4v/5)/5, 
x3 = (Tv~ - 15)/10, and x4 = x5 = x6 = 0, so the inequalities we use should 
be tight for this assignment of values, (b) we carried out extensive numerical 
experiments using various computer algebra packages, and these suggested which 
inequalities would be useful. In particular, the Cross Product Conjecture was 
discovered with these experiments. 

We now begin the derivation of the required inequalities. First we use the 
inequality h(z )  - h (x )  ~ 2 to obtain: 

2 >~ ~-~( i  + j )p ( i ,  j )  
i , j  

>~ 2p(1, 1) + 3p(1,2) + 3p(2, 1) + 4/)(1, 3) + 4p(3, 1) + 4p(2, 2)+ 

+ 5p(1,4) + 5p(4, 1) + 5p(2, 3) + 5p(3, 2) + 6 [1 - B - t3'- 

- p ( 1 ,  1) - p ( l ,  2)  - p (2 ,  t )  - p (1 ,  3)  - p (3 ,  1) - p (2 ,  2 ) -  

- p(1,4) - p(4, 1) - p(2, 3) - p(3, 2)] + 2p ( -1 ,3 )  + 2p(3, - 1 ) +  

+ 3p ( -1 ,4 )  + 3p (4 , -1 )  + @ ( - 1 , 5 )  + 4p (5 , -1 )  + [B + B'-  

- p ( - 1 ,  3)  - p ( 3 ,  - 1 )  - p ( - 1 , 4 )  - p ( 4 ,  - 1 )  - p ( - 1 ,  5)  - p (5 ,  - 1 ) ]  

= 2Xl + 3x2 + 4x4 + 4x3 + 5x6 + 5x5 + 6(1 - X - Xl - x2 - x 4 -  

- -  x 3 - -  X 6 - -  X 5 )  + 2x2 + 3x4 + 4x6 + (X - x2 - -  x 4  - -  x 6 ) .  

Rearranging, and noting that x6 >~ 0, we obtain that: 

4 ~< 5 X  + 4xl + 2x2 + 2x3 + xs. (5.1) 
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Next we have that 

B + B'  ) p ( - 1 , 2 )  + p ( - 1 , 3 )  + p ( 2 , - 1 )  + p ( 3 , - 1 ) ,  

SO 

2Xl + x2 ~ X. (5.2) 

Our next inequality requires an easy lemma. 

LEMMA 5.1. 

p(2, 3) ~< p(1, 3) + p(1,4). 

Proof We give an injection from the set A of linear extensions counted by 
L(2, 3) to the union of the sets AI and A2 of linear extensions counted by L(1,3) 
and L(1,4) respectively. 

For a linear extension A in A, there is exactly one element w with x < w < y 
in ),. If zllw in P ,  then swap x and w to obtain a linear extension in A1. If not, 
then  tly in P,  so we may swap w and y to obtain a linear extension in A2. The 
map described is clearly an injection. [] 

Similarly we have p(3, 2) ~< p(3, 1)+ p(4, 1), and adding the two inequalities, we 
have: 

z5 ~ x4 + x6. (5.3) 

Since the sum of all probability is one, we have 

X -t- 951 -t- x2 + x 3 + x4 -{- x5 + x6 ~ 1. (5.4) 

The final inequality we need comes from Theorem 3.2. Observe that p(1,2) x 
p(2, 1) ~< (p(1,2) + p(2, 1)) 2/4,  so that 

xlx3 <~ x2/4. (5.5) 

We claim that, subject to the inequalities (5.1)-(5.5), and the requirement that 
all the variables are non-negative, the minimum value of X is (5 - x/~)/5. 

First, adding (5.3) and (5.4) gives: 

X-I-Xl-k-x2-l-x3 + 2 x 5  ~< 1. (5.6) 

Now we derive two simpler inequalities from (5.1) and (5.6); first we take 
2 × (5.1) + (5.6) and get 

7 ~< 9X + 7x 1 + 3x 2 -k 3x3, (5.7) 
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then we take 4x(5.6)+(5.1) and note that x5 >/0, to obtain 

2x2 q- 2x3 ~< X. (5.8) 

Now we set Yl = xl /X,  Y2 ---- x 2 / X ,  Y3 : x 3 / X  in (5.5), (5.2), (5.8) and 
(5.7), and find that 

YlY3 ~ Y2/4, (5.9) 

2yl + Y2 ~ 1, (5.10) 

2y2 -1- 2y3 ~< 1, (5.1 I) 

7 ~< X(9 + 7yl + 3y2 + 3y3). (5.12) 

To minimise X subject to (5.9)-(5.12) is equivalent to maximising 7yl + 3y2 + 
3g3 subject to (5.9)-(5.11). (Again, it is understood that all variables are non- 
negative.) 

It is easy to see that, at the optimum, we have equality in (5.9). Indeed, if we 
do not, then it is possible to increase Yl by some e > 0, and decrease Y2 by 2e, 
remaining feasible and increasing the objective. Also, we must have equality in 
(5.10), since otherwise we can increase Y2 by some e > 0, and decrease Y3 by 
c, keeping the objective fixed, remaining feasible, and breaking the equality in 
(5.9). Thus we may substitute Y2 = 1 - 2yl and 

(1 - 2yl) 2 1 
1 +Yl  

Y3 - -  4 y l  4 y l  

to reduce the problem to that of maximising 4yl + 3/(4yl) subject to - 2 y l  + 
1/(2yl) ~< 1 and Yl <~ 1/2. The first constraint works out to Yl >~ (x/5 - 1)/4. 
The objective function is concave, so the maximum is obtained at one of the two 
endpoints of the range: it turns out to be larger at the lower end, where it takes 
the value (7v~  - 1)/4. Substituting back into (5.12) gives 

3 5  + 5 - 
7 ~ < X  4 , i.e., X > ~ - - - - ~ ,  

as claimed. 

6. T h e o r e m  2 .4  - C a s e  C 

The final case we have left to consider is Case C, where x, y, z form a three- 
element chain in P,  with h(x) <~ h(y) <. h(z) ~ h(x) + 2. For this case, we use 
the methods of Kahn and Saks [13], as set out in Section 2. 
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LEMMA 6.1. I f  x and z are incomparable elements o f  a poser P, with h(z) <~ 
h(x) + 2, then Prob (x > z) >/3/22.  

Proof  This follows from Lemmas 2.2 and 2.3. Indeed, any sequence satisfying 
(2.1)-(2.6) with B = 3/22 has height at least that of the packed sequence with 
parameters B = 3/22 and g = 1. This sequence is given by bt = al = 3/22, 
a 2 = 6/22, a3 = 8/22, a 4 = 2/22, with a height of 2. [] 

LEMMA 6.2. I f  x, y, z are as given, then 

1 
Prob (hA(x) - hA(y) >~ 2) + Prob (hA(y) - hA(z) >/ 2) >~ -iT" 

Proof  Note that the number of linear extensions of P in which z, y, x occur 
consecutively in that increasing order is equal to the number with y, z, x consec- 
utively in that order, and also equal to the number with z, x, y consecutively in 
that order. Thus the probability that z, y, x occur consecutively in that order is 
at most one third of the probability that x > z. 

Now observe that, if a linear extension )~ of P has z < x, but does not 
feature z, y, x consecutively in that order, then either hA(z) - ha(y) >7 2 or 
hA(y) - hA(z) ~> 2 (or both). So we have 

Prob (hA(x) - hA(y) >/2) + Prob (hA(y) - ha(z) >~ 2) 

>/Prob (ha(x) - ha(y) ~> 2 or hA(y) - hA(z) >/2) 

2 1 
>~ 7Prob (z > z) >~ ]7' J 

with the final inequality following from Lemma 6.1. [] 

From now on, we consider the two pairs (x, y) and (y, z). We will continue to 
use the notation ai to denote Prob (h;~(y) - hA(x) = i), and similarly for b~; we 

' = Prob (hA(z) - hA(y) = i), and b~ = Prob (hA(y) - introduce the notation a~ 
hA(y) = z). We set, as before, B = ~ b ~  and e = b l / B ;  we define also 
B '  = ~ b~ and ¢' = b'l /B' .  Lemma 6.2 tells us that 

1 
13(1 - e) + B'(1 - e') ~> i-i-" (6.1) 

Suppose that B + B '  = Prob (x > y) + Prob (y > z) = (5 - v/5)/5. 
Our plan is to incorporate the extra constraint (6.1) into the Kahn-Saks analysis 

for the sequences corresponding to the two pairs, and deduce that the heights of 
({a~}, {bi}) and ({a~}, {b~}) sum to more than 2. To this end, Lemma 2.2 tells 
us that we may assume the sequences are packed. The following lemma thus 
implies the result for Case C. 
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LEMMA 6.3. / f 0  < B ~< B '  ~< 1/3, B + B '  = (5 - x/5)/5, and B(1 - e) + 
B'(1 - c') >~ t /11,  then H(B,e) + H(B',c') > 2. 

Proof We break the analysis into three cases. 
(a) First, let us assume that B ~> 3/10, and that 1 + 2e + 2e 2 ~< 10/3, which 

implies that e < 0.7 < 1/x/~. By Lemma 2.3, we have H(B,c) + H(Bt, d) >~ 
H(B, co)+H(B', 1), where 1/B = 1+2c0+2c  2. Note that 0.618 _~ ( x / 5 - 1 ) / 2  ~< 
eo ~< 0.7. 

For (B, e) satisfying Case (ii), k = 1, we have 

H ( B ,  c) - 5 B (4e2 + 5e + 2) 
2 zc 

+ B(1 - c) - B (1 - e)2 5 l l B  

2 g 

Thus we obtain 

H(B, eo) + H(B', I) = 5 _ 112a2(B + B')  + B "1 ( co)(2co 1) 

z cO 

11 5 - x/5 (1 - e0)(2e0 - 1) 
= 5  - - +  

2 5 Co(1 + 2e0 + 2e2)" 

This function is minimised in the range [0 .618 . . . ,0 .7 ]  at the lower endpoint, 
when it is equal to (10 + 9 t /5 ) /15  --- 2.0083. 

(b) Our second case is where B is any value in the feasible range [0.219 . . . .  
1/3], and (1 + 2c)(1 + e) ~< 1/B, i.e., ~ is at or below the lower boundary of 
Case (i) with k = 2. Then, by Lemma 2.3, H(B,c) + H(B',c') >~ H(B, el) + 
H(B ~, 1), where (1 + 2el)(1 + el)  = 1/B, so certainly el > /1 /2 .  

Now 

1 ( ( 1 + c 1 ) 3  ~ )  
H ( B ,  e l ) -  H(B, 1) = ~ - B 

c1 

1 2 -  5c1 + 6c 2 + 2c~ 

2 2e1(1 + q ) (1  + 2el ) '  

and this expression is at least t / 1 2  in the range 1/2 ~< cl <~ 1. Since H(B, 1) + 
H(B t, 1) = 5 - 11(5 - x/~)/5 --~ 1.960, we are done here. 

(c) The remaining case is when neither the (B, e) sequence nor the (B ~, d )  
sequence fall into one of the above two cases. Note that both sequences :must 
then satisfy either Case (ii) with k = 1 or Case (i) with k = 2. 

Our aim is to show that the quantity 

H(B, e) - H(B, 1) 
m ( B , c )  = 

t3(1 - e) 
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is at least 1/2. This will then imply that 

1 (/3(1 - c) +/3 ' (1  - c')) H(/3, e) + H(/3', e') > H(/3, 1) + H(/3', 1) + 

> ~ 5 - 1 1  5 ' / 5  + ~ _ 2 . 0 0 5 1 ,  

which will complete the proof. 

Suppose first that the (/3, e) sequence comes under Case (ii), k = I. If c ~< 
0.69, then /3 />  1/ ( t  + 2e + 2c 2) > 0.3, and the (B, e) sequence was covered by 
Case (a). Thus e ~> 0.69. Then, from an earlier calculation, we have that 

H(/3, e) = H(/3, 1) + /3 (1  - e) - / 3  
(1 - e )  2 

c 

so M(/3, e) = 2 - l / e  ~> 2 - 1/0.69 > 1/2, as desired. 

Now suppose that the (/3, e) sequence comes under Case (i), k = 2. If t3 >~ 
3/10, then the sequence again comes under (a) above, so we may assume that 

/3 <~ 3/10.  Now 

3 -- B ( 1  + g ) 3 / g  -- (S --  1 1 / 3 ) / 2  
M(/3,e) = 

B(1 - e) 

1 (1 + e ) 3 / e -  11/2 

2/3(1 - e) 1 - e 

Thus, for each fixed e, M(B, e) is decreasing in/3. So, to prove that M(/3, e) is at 
least 1/2, we may assume that/3 is as large as possible. Increasing/3, remaining 
inside the case, we arrive at a point where either (i) B = 1/(1 + 2e + 2e2), and 
e >~ 0.69, which is on the boundary between the two cases, so we know that 
M(B,e)  > 1/2, or (ii) /3 = 3/10, and e ~< 0.7, when one may verify directly 
that M(3/10 ,  e) > 1/2. 

This completes the proof, rq 

We have now completed the proof of Theorem 2.4, and hence of Theorem 1.3. 
The calculation in this case is not designed to give the best possible bounds, 
and it seems to be just a matter of luck that the extra bound (6.1) gives enough 
improvement. We suspect that, if z, y, z are as given, then one of Prob (z > y) 
and Prob(y  > z) will be significantly larger than (5 - v/5)/10 _~ 0.2764. An 
infinite example in [2] shows that they may both be as small as (13 + v/]-7)/68 ~_ 
0.3106. 
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7. Extension to the Infinite Case 

In this section, we discuss in greater detail a class of partially ordered sets for 
which there is a natural way to extend the definition of Prob (x, y) when the 
ground set is infinite. For this class, the 1/3-2/3 conjecture fails. But our 
Theorem 1.3 remains valid and is best possible. 

Recall that a poset P is thin if there is some fixed k such that every element is 
incomparable with at most k others. It is also convenient to impose the condition 
that P be locally finite, i.e., that each set {z: x < z < y}, for x , y  E P, is finite. 
These conditions imply that P is countable, and that, for any pair x, y of elements, 
the number of elements between x and y in a linear extension of P is bounded. 

Let P be an infinite, thin, locally finite poset on a ground-set X, containing 
elements x, y, z, and let X oc ( n)n=l be a sequence of finite subsets of X satisfying: 
(1) i f u ,  v E Xn a n d u  < w < v i n P ,  t h e n w  E Xn, (2) Xi C_ Xj  f o r i  ~<j, 
(3) Un~=I Xn = X.  For n E N, let Pn be the partial order obtained by restricting 
P to X~. It is proved by Brightwell [2] that, for any event A depending only 
on finitely many basic events of the form a < b, the probability of A in Pn 
converges to a limit, which is by definition the probability of ~4 in P.  

We fix an infinite, thin, locally finite poset P,  and a sequence of subposets 
P~ with ground-sets Xn, as above. We clearly cannot define the average height 
of an element, but we can define the average height difference h(x, y) of two 
elements x and y to be the limit of h(y) - h(x) in Pn, as n --+ cx~. It was proved 
in [2] that there necessarily exists a pair x, y with 0 ~< h(x, y) ~< 1, and a similar 
proof establishes that there is a triple x, y, z with h(x, y) >1 O, h(y, z) ) O, and 
h(x, z) <. 2. 

Fix such a triple x, y, z in P and, for n sufficiently large that Xn contains x, y 
and z, let pn(i, j)  be the probability that hx(y) - h;~(x) = i and h;~(z) - hx(y) = 
j in a random linear extension A of Pn. Then each pn.(i, j)  tends to a limit 
p(i, j),  which is the corresponding probability in P.  Furthermore, if we have an 
inequality relating various of the p(i, j),  and perhaps also some average height 
differences, that is valid for all finite posets, then the inequality will carry over to 
the limit. In particular, Theorem 3.1 is valid, and so are all the other inequalities 
used in Sections 4-6 to derive the bounds on B + B I. 

Thus all our proofs carry over into the infinite case, and Theorem 2.4, suitably 
restated in terms of average height differences, is valid for infinite, thin, locally 
finite posets. Thus 5(P) <~ (5 - v~) /10  for every locally finite thin poset P.  

Finally, we can remove the condition of local finiteness, and obtain Theo- 
rem 1.4, readily enough, as follows. Every thin poset P has the structure of a 
family (Pi)i~I of locally finite thin posets, indexed by a totally ordered set I, 
such that if i < j in I,  then every element of Pi is below every element of Pj 
in P.  Then Prob(x < y) in P,  for xlly, is defined as Prob(x < y) in the Pi 
containing x and y. If P is not a chain, then one of the Pi is not a chain, and 
we may find a balancing pair in that poset. 
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8. Application to Sorting 

The original motivation for studying balancing pairs in posets was the connection 
with sorting. Suppose we are to find an unknown linear extension of a finite 
partially ordered set P by making comparisons of pairs of elements of P.  Thus, 
at each stage, we may choose some pair of elements x and y, and ask whether 
x < y in the unknown linear extension. Let S(P) denote the number of rounds 
required to find the linear extension, in the worst case. Thus S(P) is the number 
of comparisons required to sort the elements, starting from the knowledge of 
the relations given by P. The fundamental problem was to answer whether 
S(P) = O(log L(P)), i.e., is it always possible to determine an unknown linear 
extension of P with O(logL(P)) rounds (questions). Theorem 1.2 implies a 
positive answer to this question (as does any result that shows 5o > 0). 

Indeed, at each step one can choose a pair (x,y) such that 3/11 ~< Prob(x > 
y) ~< 8/11, and ask whether x is above y. Whatever the answer, the number 
of possible linear extensions is reduced by a factor of at most 8/11 in this 
round. Therefore the number of rounds required to identify the linear extension 
is at most - logL(P)/log 8/11. Thus logL(P)/log(ll/8) '-- 3.1401ogL(P) 
rounds suffice, and Theorem 1.3 improves this to log L(P)/log((5 - x/~)/2) -~ 
3.091 log L(P). Later in this section, we will strengthen this a bit more. 

None of the arguments in [12-14] or this paper yields an efficient algorithm 
for the original sorting problem, since they do not provide an efficient method for 
determing how to locate the balancing pair. In [11], Kahn and J. Kim have taken 
a totally different approach to the sorting problem. Using a concept of entropy 
for posets, they show the existence of a polynomial time algorithm for sorting in 
O(log L(P)) rounds. Their algorithm shows how to efficiently locate pairs to use 
in queries so that, regardless of the responses, the determination of the unknown 
linear extension is made in O(log L(P)) rounds. However, at individual rounds, 
the pairs need not be balanced in the sense that for a given pair (x, y) used in 
the algorithm, Prob (x > y) may be arbitrarily close to zero. We have already 
seen that S(P) <~ -log L(P)/log(1 - 5o) for every poset P,  and elementary 
information theory gives us that S(P) >~ log L(P)/log 2 for every P.  We define 
q50 to be the supremum, over all finite posets P,  of S(P)/log L(P). From our 
previous remarks, we know ¢0 ~< 1/log((5 - v/5)/2) ~ 3.091. So the remainder 
of this section is aimed at improving this further, and also to give a lower bound 
for ¢0. 

A better upper bound follows in a straightforward manner from a slightly closer 
look at Theorem 2.4 and Lemma 2.5. But first we point out that Fredman [9] 
has proved that S(P) <~ log L(P)/log 2 + 21P[, so we are really concerned here 
with posets that are "almost sorted", i.e., that have rather few linear extensions 
compared with [PI !. 

THEOREM 8.1. ¢0 ~< 4 / log  5 _~ 2.485. 
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Proof We have to prove that S(P) ~< 4 log L(P)/log 5 for every finite poset 
P .  Suppose P is a counterexample minimising (say) IP[ + IL(P)[. We note that 
P contains no element comparable with all others, since otherwise P breaks up 
into smaller posets that can be sorted separately. The result is also true for the 
2-element antichain, so we have that P is not a chain, and has at least three 
elements. So we may apply Lemma 2.5, and find three elements x, y, z, not 
forming a chain in P,  such that h(x) <<. h(y) <<. h(z) <~ h(x) + 2. 

Note that, since h(x) <~ h(y), we certainly have Prob (x > y) <~ 2/3. If also 
Prob (x > y) >/ 1/3, then we compare x and y. Whatever the result of the 
comparison, we obtain a new poser p i  with L(P ~) <<. 2L(p) <~ 5-1/4L(p). By 
definition of P ,  we have that S(P') ~< 4 log L(P')/log 5 ~< 4 log L(P)/log 5 - 1, 
and so S(P) ~< 4 log L(P)/log 5, a contradiction. 

Thus Prob(x > y) < 1/3, and similarly Prob(y > z) < 1/3. From Theo- 
rem 2.4, we deduce that xl[y and vllz in P ,  and that Prob(x > y ) +  Prob (y > 
z) >~ (5 - v/5)/5, so Prob (x < y < z) ~< 1 /v~ .  We now make the two compar- 
isons x : y and y : z. We find one of: x > y, y > z, or x < y < z, each of which 
has probability at most 1 /v~ .  Thus, after two comparisons, we obtain a new 
poset P~ with at most L(P)/v~ linear extensions. This leads to a contradiction 
as before. [] 

The reason we gain in the last part of the proof above is, loosely, that although 
the first comparison (say x : g) we make may not be "good enough", if we get 
the "bad" answer, then we know that the comparison y : z will split the set 
of linear extensions very evenly. It seems almost certain that Theorem 8.1 can 
be improved by considering more and more elements that are close in average 
height; however, the analysis is bound to get more complicated, A proof of the 
1/3-2/3 Conjecture would give ¢0 <~ 1/ log(3/2)  ~_ 2.466. 

A lower bound on ¢0 is provided by finite segments of the infinite partial 
order Q defined in Section 7. The restriction Qn of the partial order Q to 
{Xl , . . . ,  xn.} has Fn linear extensions, where Fn denotes the n'th Fibonacci 
number (F1 = 1, F2 = 2). So log L(Qn)/n --+ tog((1 + v~) /2) .  It is easy to see 
that S(Qn) = n - 1, since, in the worst case, all the n - 1 incomparable pairs 
of elements must be compared. Thus we have 

¢0 >~ lira S(Qn)/log Qn = 1 / l og ( ( l  + x/5) /2)  ~- 2.078. 
n --~. oo 

We conjecture that this is in fact the correct value of ¢0, so that large finite 
segments of Q are indeed the "worst" posets to sort. 
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