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Introduction

Interest in finite partially ordered sets has been heightened in recent years by a
steady stream of theorems combining clever ad hoc arguments with powerful tech-
niques from other areas of mathematics. In this chapter, we present a sampling of
results exhibiting these characteristics. In those instances where we do not present
a complete proof, we outline enough of the general contours of the argument to
allow the reader to supply the missing details with little difficulty. We also outline
anticipated research directions in the combinatorics of partially ordered sets, and
we discuss briefly some of the most interesting open problems in this field.

Since this Handbook contains chapters on Extremal Set Theory and Enumer-
ation, we have limited our discussion to results on general partially ordered sets.
Still some difficult choices had to be made concerning results to be included —
especially in view of our emphasis on proof techniques. West's survey articles (West
1982, 1985) offer more of a catalogue of theorems in the area and have extensive
bibliographies. Also, we recommend the recent books by Anderson (1987), Fish-
burn (1986), Stanley (1986), and Trotter (1992) as well as the conference volumes
(Rival 1982, 1985) for additional material on partially ordered sets and related
topics.

1. Notation and terminology

Formally, a partially ordered set is a pair (X,P) where X is a set, and P is a
reflexive, antisymmetric, and transitive binary relation on X. The set X is called
the ground set and P is called a partial order. Throughout this chapter, we use the
short form poset for a partially ordered set. Many researchers choose to drop the
adjective “partially” and use ordered set to mean a poset. A poset (X, P) is finite
if the ground set X is finite. In this chapter, we will be concerned primarily with
finite posets.

In some settings, we find it convenient to use a single symbol such as P to denote
a poset (X, P). This notation is particularly handy when both the ground set X
and the partial order P remain fixed. In other settings, especially when we have
several partial orders on the same ground set, we will use the ordered pair notation
for posets.

The notations (x,y) € P, xPy,x <yin P,and y > x in P are used interchange-
ably. The notation x <y in P means x <y in P and x # y. Distinct points x,y
are comparable when either x <y or y < x in P. Otherwise, we say x and y are
incomparable and write x||y in P. When using a single symbol like P for a poset,
we will write x < y in P, x|y in P, etc.

A poset P = (X, P) is a chain (also a totally ordered set or a linearly ordered
set) if each pair of distinct points is comparable. We will use the symbols R, @,
Z and N to denote the reals, rationals, integers and positive integers, respectively.
Each of these posets is a chain.

Dually, P = (X, P) is an antichain if each pair of distinct points is incomparable.
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{a, b, c}

{a, b}

{b, ¢}
X5

/N

Figure 1.1.

If Y C X and Q is the restriction of P to Y, then the poset Q = (Y, Q) is called
a subposet of (X,P). A subset Y C X is also called a chain (antichain) if the
subposet (Y, Q) is a chain (antichain). The height of a poset is the maximum
cardinality of a chain, and the width is the maximum cardinality of an antichain.

When P = (X, P) and Q = (Y, Q) are posets, a map f:X — Y is called an
embedding (of P into Q) if x| < x, in P <= f(x1) < f(x2) in Q. An embedding
f:X — Y is an isomorphism when f(X) =Y. In this chapter, we prefer not to
distinguish between isomorphic posets and to write P = Q to indicate that the
two posets are isomorphic. Similarly we say that P is contained in Q (alsoPisa
subposet of Q) when there exists an embedding of P in Q.

We say y covers x in P and write x <: y in P when there is no z for which both
x < z and z < y in P. The cover graph associated with the poset P = (X, P) is the
graph G = (X, E) whose edge set E consists of the pairs xy for which x <: y in P.
A drawing of the cover graph G = (X, E) in the Euclidean plane is called a Hasse
diagram (or order diagram) of the poset P = (X, P) if x is lower in the plane than
y whenever x <:y in P.

Here are some frequently encountered examples of posets. Any family of sets
is partially ordered by set inclusion; a set of positive integers is partially or-
dered by division; and a subset of R” is partially ordered by (ay,az,...,an) <
(b1,ba,...,by) <> a; <b; in R for i =1,2,...,n. In fig. 1.1, we show particular
instances of these examples. Each has height 4, and their respective widths are 3,
2, and 4.

If P and Q are partial orders on the same ground set X, Q is called an extension
of P when P C Q. The partial order Q is called a linear extension of P if Q is an
extension of P and (X, Q) is a chain.

When P = (X, P) is a poset, an element x € X is called a maximal (minimal)
element if there is no y € X for which x < y in P (y < x in P). The set of maximal
(minimal) elements is denoted MAX(X, P) (MIN(X, P)). The subsets MAX(X, P)
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and MIN(X, P) always determine antichains, although neither may be as large as
the width of (X, P).

When Y C X, the set {z € X: y <z in P for every y € Y} is called the set of
upper bounds for Y. Note that this set may be empty. When the set of upper
bounds of Y is nonempty and has a least element, this unique point is called the
least upper bound of Y and is denoted L.u.b.(Y). Dually, the greatest lower bound
(if it exists) of Y is denoted g.1.b.(Y).

A poset P = (X, P) is called a lattice when each nonempty subset Y C X has
both a least upper bound and a greatest lower bound. When P = (X, P) is a lattice
and x,y € X, we write x Vy for Lub.{x,y} and x Ay for g.1.b.{x,y}. The binary
operations V (join) and A (meet) are commutative and associative. The lattice is
distributive if x A(y Vz) = (xAy)V(xAz) forall x,y,z € X.

When P and Q are posets, the disjoint sum of P and Q, denoted P +Q, is
obtained by taking the union of disjoint copies of the two posets with no compara-
bilities between the points in one and points in the other. A poset is disconnected
if it is the disjoint sum of two proper subposets; otherwise it is connected. The
maximal connected subposets of a disconnected poset are components.

The cartesian product of P = (X,P) and Q = (Y, Q), denoted P x Q, consists
of the ordered pairs (x,y) where x € X and y € Y with partial ordering (x1,y1) <
(x2,y2) < x1 < xp in P and y; < y; in Q. The cartesian product of n copies of P
is denoted P".

Given posets P = (X,P) and Q =(Y,Q), a function f:X — Y is an order
preserving (or monotone) map from P to Q if x; <x; in P = f(x;) < f(x2) in
Q. The set of all order preserving maps from P to Q is partially ordered by
fi < 2 <= fi(x) < fo(x) in Q for every x € X. This poset is denoted Q"

Throughout the chapter, we use k to denote a k-elementchain 0 <1 <2 <--- <
k — 1. The poset 2" is isomorphic to the set of subsets of an n-element set partially
ordered by inclusion. A poset P is a distributive lattice if and only if there is a
poset Q so that P is isomorphic to 22 [see chapter 3 in Birkhoff (1973)].

When P = (X,P) is a poset and F = {P, = (Y,,Q,): x € X} is a family of
posets indexed by the ground set of P, the lexicographic sum of & over P is the
poset whose ground set is {(x,y): x € X,y € Y,}. The partial ordering is defined
by (x1,y1) < (x2,y2) <= (x; <xzin P) or (x; = x, and y; < y; in Oy,). A lexico-
graphic sum is nontrivial if | X| > 2 and if at least one Y satisfies |Y,| > 2. A poset
P is decomposable if it is isomorphic to a nontrivial lexicographic sum; otherwise
P is indecomposable. Note that the disjoint sum of two posets is a lexicographic
sum over a 2-element antichain.

2. Dilworth’s theorem and the Greene—Kleitman theorem

Dilworth’s decomposition theorem (Dilworth 1950) has played an important role
in motivating research in posets, as evidenced by results discussed in this section
as well as in sections 3, 6, 7 and 8. Also, Dilworth’s theorem surfaces in a variety
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of extremal problems (see, for example, Duffus et al. 1991). There are several
elementary proofs; the one we present is patterned after Perles (1963).

Theorem 2.1. If P =(X,P) is a poset of width n, then there exists a partition
X =CiuCyU---UC, where each C; is a chain.

Proof. We proceed by induction on |X| and note that the result is trivial when
|X| = 1. Assume validity when |X| < k and consider a poset P with |X| = k. We
may assume that the width n of P is larger than 1.

Choose x € MAX(P) and y € MIN(P) with y < x. Let Q be the poset obtained
by removing x and y from P. If the width of Q is less than n, then we can partition
Q into fewer than n chains which together with the chain {x, y} form a partition
of X into (at most) n chains. So we may assume that Q has width n. Thus y < x
in P. Choose an n-element antichain A = {ay, 4y, ...,a,} in Q.

Thenlet U = {u € X: u > a;forsomeq; € A} and D = {d € X: d < a; for some
a; € A}. Evidently x € U — D and y € D — U. Thus there are chain partitions U =
CluCyu---UCjand D = C{ U CJU---UC,. We may label these chains so that
a; € C/NC! for i=1,2,...,n. Then C; = C/UC/ is a chain for each i and the
desired partition is X = C,UC, U ---UC,. O

In introductory combinatorics texts, Dilworth’s theorem is grouped with other
max-min theorems having a common theme: P. Hall’s marriage theorem, the
Konig-Egervary theorem, Menger’s theorem, and the max flow—min cut theorem
for network flows. This last result most clearly captures the linear programming
core common to all. (See chapters 2 and 3 by Frank and Pulleyblank for additional
material.)

Dilworth’s theorem has a trivial dual version for antichains.

Theorem 2.2. If P = (X,P) is a poset of height n, then there exists a partition
X=AUA,U---UA, where each A; is an antichain.

Proof. Set A, = MAX(P). Thereafter set A;,; = MAX(P;) where P; is the sub-
poset obtained by removing the antichains A;, A,...,4; from P. O

The first major result in this chapter is an important generalization of Dilworth’s
chain partitioning theorem due to Greene and Kleitman (1976). The proof we give
here is patterned after algorithmic proofs given by Saks (1979) and Perfect (1984).
An alternative proof using network flows is given in this volume in chapter 2.

We need some preliminary notation and terminology. Let P = (X,P) be a
poset and k a positive integer. A subset S C X is called a Sperner k-family if
S does not contain a chain of (k +1)-elements. The maximum cardinality of
a Sperner k-family is denoted d;(P). When € = {C;,C,,...,C,} is a family of
chains forming a partition of X, we define ¢, (%) = Y i_, min{k, |C;|}. If S is any
Sperner k-family and € = {C, C;,...,C;} is any chain partition of X, we note
that |S N C;| < min{k, |C;|}. Thus |S| < ex(€), so that d;(P) < e, (€). The chain
partition € is said to be k-saturated if d,(P) = e, (€).

We also need a prelimi
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We also need a preliminary lemma whose elementary proof is omitted. Let /4 (P)
denote the set of all maximum antichains of P. Define a partial order on ./ (P) by
A < B < for every a € A, there exists b € B with a < b.

Lemma 2.3. The set M(P) of maximum antichains of a poset P = (X,P) has a
unique greatest element.

With this background, here is the Greene—Kleitman theorem.

Theorem 2.4. Let P be a poset and k a positive integer. Then there exists a chain
partition € of P which is simultaneously k-saturated and (k + 1)-saturated, i.e.,
di(P) = e, (€) and dy.1(P) = 4,1 (6).

Proof. We first show that d, (P x k) = d,(P) for every k > 1. Let A be a maximum
antichain in P x k, and let A; = {x € X: (x,i) € A}. Then each A, is an antichain
inP,sothesetS = Aj UA, U---U A, is a Sperner k-family. Furthermore, |S| = |A|
since A; NA; =0 when i # j. Thus d; (P x k) < di(P).

Conversely, let S be a maximum Sperner k-family in P. Partition S into &
antichains by setting A; = MAX(S) and A;;; = MAX(S — (A UA, U---UA))).

“Then A ={(a,i): a € A;} is an antichain in P x k with |A| =|S|. This shows

dl (P X k) > dk(P) Thus d] (P X k) = dk(P)

For the remainder of the proof, we fix a positive integer k. Then we make several
definitions concerning chain partitions of P x (k +1). When € = {C;,C;,...,C}
is a chain partition of P x (k + 1), we let M (€) = {MAX(C;): 1 <i < t}. We say
y covers x in € if there is some C; € € so that y covers x in the chain C;. When
S CPx(k+1), the set {x € X: (x,i) € S for some i} is called the projection of S
on P. For each i, the subset S N (P x {i}) is called level i of S. The projection on
P of level i of M (%) is denoted by M;(6).

A chain partition € of P x (k + 1) is special if the following two conditions hold:

(i) Mo(€) D M(€) D My(€) > --- D My_1(€);
(ii) If x € M (€) — M;_1(%), then (x, k) covers (x,k—1) in €.

A special chain partition of P x k+ 1 is very special if it also satisfics the fol-
lowing two conditions:

(iii) Exactly di,q(P) — d,(P) of the chains in € are subsets of level 0; and

(iv) |6| =di1(P x (k+1)).

When € is special, it follows from the second condition in this definition that
M (6) = N (6€) UN,(€) where Ni(€) = M, (€) N M;_1(€). If x € N,(6), then
(x,k) covers (x,k — 1) in 6.

We now show that the theorem follows whenever P x (k+1) has a very spe-
cial chain partition. To see this, let 6. = {C1,Cs,...,C;} be a very special
chain partition of P x (k +1) where t = dy(P x (k+1)). Set s = d;,,(P) — di(P).
We assume that Cy, Cy, ..., C are subsets of level 0. For each j =1,2,...,t, let
D ={(x,i): (x,i+1) € C;}. Of course, Dy, D,,..., Dy are all empty. Let €, be
the collection of all nonempty D;’s. Then €, is a chain partition of P x k and
| 6] <t —s=d(P)=d(PxKk). Thus |€,| = di(P). Furthermore, it is easy to
see that € is a special chain partition of P x k.




440 W.T. Trotter

Now level k£ in P x (k+ 1) forms a copy of P and the |M;(%6;,,)| chains in €,
which intersect level k determine a chain partition of P which we denote by €.
We show that € is both k-saturated and (k + 1)-saturated.

Now let j € {k,k +1}. Then

-1
d;(P) = e1(6)) = |M(€))| = > |Mi(%))|

i=0
= (j = DIM;—2(6)] + [M;1(6))|
= (J = DIM; 2(€)| + |M;_1(€;) N M;_2(€;)| + [N2(€))]
2 jIM;_1(6;) N M;_2(€))| + |N2(6;)]
= JIN1(€;)| + IN2(€))

>3 " min{j, |E[}

Ec¥
= ¢;(%) > d;(P).

Thus € is both k-saturated and (k + 1)-saturated as claimed. To complete the proof,
we need only show the existence of a very special chain partition of P x (k +1).
Sett = dj,1(P) = d(P x (k+1)). Of all partitions of P(k + 1) into ¢ chains, choose
one having as many chains as possible as subsets of level 0. Call this partition
€ = {Cy,C,,...,C} and label the chains in € so that Cy, C,,. .., C; are subsets of
level O but Cy,(, Cyia, . . ., C; are not. Since the last 1 — s chains in € cover a copy of
P x k, we know t — 5 > di(P x k) = d;(P), so s < di,(P) — d,,(P). We show that
s = dy1(P) — di(P). Suppose to the contrary that s < d;_,(P) — d;(P).

LetQ=Px (k+1)— (C;UCU---UCy). Clearly, the width of Q is t — 5. Let
A be the unique greatest element in the poset 4 (Q) of maximum antichains in Q.
A contains at least dy,((P) — d,(P) — s elements from level 0 since the width of
the top k levels is only d; (P). Choose an element ag € A which comes from level
0. Without loss of generality ag € Cy,1. Let Q' = Q — {c € Cy,1: ¢ < ap}.

We claim that the width of Q' is less than ¢ — s, for if Q' contains a (¢t — s)-
element antichain B, then B contains an element b with ay <b in Q x (k+1).
This contradicts our choice of A. It follows that we can partition Y'into ¢t — s — 1
chains which together with Cy, Cs, ..., Csand {c € Cy,1: ¢ < ap} form a partition of
P x (k+1) into ¢ chains. In this partition, there are s + 1 chains which are subsets
of level 0. The contradiction shows s = d;_{(P) — d,(P).

We now proceed to transform € into a very special partition by a series of
operations called insertions and switches. At this moment € satisfies properties
(iii) and (iv), and both operations preserve these properties.

We first perform a series of insertions. Choose points (x, i), (y,/) so that (x,i)
covers (y,j)in € and i > j. If i #j+1 or x # y, remove (y,j + 1) from the chain
to which it currently belongs and insert it in the chain containing (x,i) and (y, j).
Repeat until no further insertions are possible.

Next, we perform a seri
M (%€) so that either: (1) |
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Next, we perform a series of switches. For an integer j > 1, locate a point (x, j) €
M (%) so that either: (1) j < k and (x,j — 1) € M(%); or (2) j = k and (x, j) does
not cover (x,j—1)in 4, and (x,j - 1) ¢ M(%€).

Let (y,i) be the point covering (x,j— 1) and let C be the chain containing
(v,i+1). Let C” consist of those points in € which are less than (y,i+1) and
let C" = C — C’'. Then let D be the chain containing (x, j) and set D' = D U C”.
Replace C and D in € by C’ and D'. Repeat until no further switches are possible.

It is obvious that the series of insertions must stop, but it takes a moment’s
reflection to see that this is also true for the series of switches. For j = 1,2,...,k, let
v; count the number of points x € X for which (x, j) covers (y,i) in € and (x,j — 1)
covers (y,i — 1) in 4. Each time we perform a switch, the vector (vq,v2,...,vx)
increases lexicographically. Since v; < | X| for each j, the procedure stops. O

This theorem has many significant applications. The following corollary follows
easily, but we know of no simple proof avoiding the use of Theorem 2.4.

Corollary 2.5. Let P be a finite poset. Then for each k > 1, di(P) —d;,_{(P) >

dis1 (P) — di(P).

3. Kierstead’s chain partitioning theorem

In this section we outline the proof of a theorem of Kierstead (1981) which asserts
that for each n > 1, there is a t = #(n) for which there exists an on-line algorithm
which will partition any poset P of width at most » into ¢ chains. By an on-line
partition, we mean that the poset and the partition are constructed one point at a
time. An adversary (infinitely clever) constructs the poset and we must devise the
partition. At each round, the adversary presents the new point and describes its
comparabilities and incomparabilities to all preceding points. We must then add
the new point to one of the sets making up the partition. Both players’ moves are
permanent.

As a warm-up, we first present the on-line version of the dual to Dilworth’s
theorem. The result is an unpublished theorem of Schmerl, although a short proof
is given in Kierstead (1986).

Theorem 3.1. For each n > 1, there exists an algorithm which will construct an
on-line partition of a poset of height at most n into n(n + 1) /2 antichains.

Proof. When the new point x is added to the poset, let r = r(x) be the maximum
number of points in a chain having x as least element, and let s = s(x) be the
maximum number of points in a chain having x as greatest element. Assign x to
the set A(r,s). Clearly, each A(r,s) is an antichain. Since r +s — 1 < n, there are
n(n+1)/2 such sets. [

Szemerédi produced a simple argument to show that Theorem 3.1 is best pos-
sible, and we invite the reader to reconstruct his proof. Full details are given in
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Kierstead (1986). As a first step, show that there exists a strategy for constructing
a poset P of height at most n which will force any opponent producing an on-line
partition into antichains to use at least n(xn + 1)/2 antichains in covering P and at
least n antichains in covering MAX(P).

Here is Kierstead’s on-line chain partitioning theorem (Kierstead 1981).

Theorem 3.2. For each n > 1, there exists an algorithm which will construct an
on-line partition of a poset of width at most n into (5" — 1) /4 chains.

Proof. The argument proceeds by induction on » with the case n = 1 being trivial.
The heart of the argument is the case n = 2 where we have to partition a width-2
poset into 6 chains.

We first construct a greedy chain C;. As a new point enters the poset, we insert
it in C; whenever it is comparable to all other points previously placed in Cj.
Thus for every x € X — Cy, there is a nonempty set I(x) of points from C; which
are incomparable to x. Although /(x) may grow with time, it is always a set of
consecutive points from C;. When x,y € X — Cy, we write I(x) < I(y) when u < v
for every u € I(x) and every v € I(y). Note that if x and y are incomparable points
in X — Cy, then the following condition holds:

(K). When the latter of x and y enters, either

I(x) <I(y) or I(y) < I(x).

In fact, when n = 2, the qualifying phrase “when the latter of x and y enters”
can be dropped since I(x) NI(y) = @ whenever x || y. Regardless, we choose the
weaker statement since it is crucial to the inductive step.

We define a partial order, called the %-order, on X — C; as follows. When the
new point x enters, we set x * y if

1) x<yin P~ Cy, or

(2) x ||y and I(x) < I(y).

Similarly, we set y * x if

B)y<xinP—-Cy, or

4) x || y and I(y) < I(x).

With this definition, it is straightforward to verify that (X — Cy, «) is a chain, i.e.,
* is a linear extension of the original partial order on X — C;. Next, we define an
equivalence relation on P — C;. Just as is the case with the x-order, the definition
of this equivalence relation is on-line. The relation will satisfy:

(a) each equivalence class is a set of consecutive elements of X — C; in the
x-order, and

(b) if x and y are consecutive elements belonging to the same equivalence class,
then I(x) N1I(y) # 0.

When a new point x enters X — C;, we put x in the same equivalence class as
yif x <:yin * and I(x) N I(y) # 0. If no such y exists, we put x in the same class
as z if z <: x in * and I(x) N I(z) # 0. If neither of these results in the assignment
of x to an existing class, start a new equivalence class whose only element (at this
moment) is x.

Note that if x enters be
same class, then I(x) N I(
be preserved when x is ac
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whose proof we leave as

Claim. If Sy and S, are
other equivalence classes |

Once the chain is verifie
ing an on-line partition X
the union of equivalence c
chain have at least two of
a new class for a point x,
four classes — two above :

To obtain the general r
a greedy chain C; just as
* is an extension of the ¢
n — 1. When the new poir
However, we also set x

(1") there exists u € X -

(2') there exists v € X -

It is easy to see that tl
insure that * is transitive.
gously. With these observ
n—1,forif A = {ay,a,,..
IfxeCiandx || a; fori-
that there is a strategy fc
which is a chain in the *-
the algorithm described f
chains in P. The theorem

It is apparently a very
bound in Theorem 3.2 ac
of 6, but Felsner (1995) h
that the techniques used t
to produce a lower boun
is probably a very weak 1
there is an algorithm whi
n° chains for some absolt

Recently, Kierstead et
there exists a function fr
tain 7" as an induced sut
vertices, then G can be
comparability graph doe:
there exists a function g :



 strategy for constructing
nent producing an on-line
ains in covering P and at

- (Kierstead 1981).

n which will construct an
1)/4 chains.

1€ case n = 1 being trivial.
ave to partition a width-2

nters the poset, we insert
previously placed in Cj.
 of points from C; which
ime, it is always a set of
e I(x) <I(y) whenu <v
y are incomparable points

latter of x and y enters”
egardless, we choose the

C, as follows. When the

X — Cy,*) is a chain, i.e.,
— Cy. Next, we define an
he x-order, the definition
atisfy:

>ments of X — C; in the

e same equivalence class,

ame equivalence class as
’e put x in the same class
results in the assignment
0se only element (at this

Partially ordered sets 443

Note that if x enters between two consecutive points y and z belonging to the
same class, then I(x) NI(y) # 0 # I(x) N I(z). This insures that property (b) will
be preserved when x is added to this class.

To complete the proof of the width-2 case, we need to verify the following claim
whose proof we leave as an exercise.

Claim. If S; and S, are equivalence classes of X — C, and there are at least two
other equivalence classes between them in the x-order, then S; U S, is a chain in P.

Once the chain is verified, we may use it to devise a simple strategy for construct-
ing an on-line partition X — C; = C, U C3 U--- U Cq. Each of these five chains is
the union of equivalence classes, and any two classes which are subsets of the same
chain have at least two other classes between them in the *-order. When we start
a new class for a point x, we assign it to a chain which does not contain any of the
four classes — two above x and two below x in the *-order.

To obtain the general result when the width of P is n > 3, start by constructing
a greedy chain C; just as before. Then define a partial order * on X — C; so that
* is an extension of the original order on X — C; and the width of (X — Cy, %) is
n — 1. When the new point x enters X — Cy, we set x * y if either (1) or (2) holds.
However, we also set x * y if:

(1') there exists u € X — Cy so that x < u in P and u * y, or

(2') there exists v € X — C; so that x xv and v < y in P.

It is easy to see that this more general definition of * is necessary in order to
insure that * is transitive. The definition of when y * x must be expanded analo-
gously. With these observations, it is clear that the width of (X — Cy, #) is at most
n—1,forif A = {ay,a,...,an} is an antichain in (X — Cy, %), then (", I(a;) # 0.
IfxeCiandx || a; fori=1,2,...,m, then {x} UA is an antichain in P. It follows
that there is a strategy for partitioning X — C; into (5"~! —1)/4 subsets each of
which is a chain in the x-order. Observe that a *-chain satisfies property (K), and
the algorithm described for the width-2 case will then partition a *-chain into five
chains in P. The theorem follows since (5" —1)/4=1+5(5""1—-1)/4. O

It is apparently a very difficult problem to determine just how good the upper
bound in Theorem 3.2 actually is. For n = 2, Theorem 3.2 gives an upper bound
of 6, but Felsner (1995) has just shown that the correct answer is 5. Saks observed
that the techniques used to show that Theorem 3.1 is best possible can be dualized
to produce a lower bound of the form n(n +1)/2 for Theorem 3.2. This bound
is probably a very weak result, and it would be interesting to determine whether
there is an algorithm which will partition on-line a poset of width at most » into
n° chains for some absolute constant c.

Recently, Kierstead et al. (1994) have shown that for every radius-two tree T,
there exists a function fr :N — N, so that if G is any graph which does not con-
tain T as an induced subgraph and does not contain a complete subgraph on k
vertices, then G can be colored on-line with fr(k) colors. The complement of a
comparability graph does not contain the subdivision of Kj 3, so it follows that
there exists a function g : N — N so that a comparability graph with independence
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number 7 can be partitioned on-line into g(n) complete subgraphs. This result does
not follow from a straightforward extension of the ideas presented in this section.
The difficulty is that the argument presented here makes specific use of the order
relation between points—not just the information as to which pairs of points are
comparable.

4. Sperner’s lemma and the cross cut conjecture

A poset P is said to be ranked if every maximal chain in P has the same number
of points. When P is ranked and x € X, we let r(x) be the largest so that there
exists a chain of i points having x as its least element. The value r(x) is called the
rank of x, and the antichains A; = {x: r(x) =i} are called ranks. The poset P is
said to be a Sperner poset if the width of P equals the maximum cardinality of its
ranks. The following now classic result is due to Sperner (1928).

Theorem 4.1. For each n > 1, 2" is a Sperner poset. In particular, the width of 2"
is ([n’}Z J) (cf. chapter 24).

Proof. We consider 2" as the set of all subsets of {1,2,...,n} ordered by inclusion.
It is easy to see that the maximum cardinality of a rank of 2" is the binomial
coefficient (ln'/‘2 J)' Also there are n! maximal chains in 2". Now suppose the width

of 2" ist, and let &f = {A, A, ..., A/} be a maximum antichainin 2". If A € & and
|A| = k, then there are k!(n — k)! maximal chains in 2" which contain A. It follows
that 31, k;'(n — k;)! < n! where k; = |A;|. Thus t/ () < S kil(n — k) /n! <
1, so that ¢ < ([n’}Z j) as claimed. [0

An enormous amount of research has been done on generalizations of this el-
ementary result, and we encourage the reader to consult chapter 24 or the book
Anderson (1987) which concentrates on this subject. Also, chapter 32 contains an
important result from Sperner theory. In view of our space limitations, we include
here only an outline of the theorem of Canfield (1978) which asserts that suffi-
ciently large partition lattices are not Sperner posets. The argument we give is
patterned after the argument given subsequently by Shearer (1979).

The partition lattice 11, is the poset whose elements are the partitions (into
equivalence classes) of the set {1,2,...,n}. InI1,, we set m < m, <= each class in
1 is a subset of a class in 7r,. Partition lattices are natural combinatorial objects and
have been studied extensively both in combinatorial mathematics and in related
areas. For example, an important theorem in lattice theory due to Pudlak and Tuma
(1980) asserts that every lattice is a sublattice of a partition lattice. The problem of
investigating the Sperner property for partition lattices was popularized by Rota.

The rank sizes of the partition lattice II,, are the Stirling numbers of the sec-
ond kind S(n, k) for k =0,1,2,...,n. These numbers form a unimodal sequence
achieving maximum value when k = k,, ~ n/logn. If = € Il,, and 7 has k; classes
of size i for each i, then 7 is called a partition of type 1X12k23%s ... phn,

The following lemma is an easy exercise.
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Lemma 4.2. The number of partitions in 11, of type 1¥12k2 . .. gkn jg
nt/ANK Y% () kg ey - - KL
Here is Canfield’s (1978) solution to Rota’s conjecture.

Theorem 4.3. If n is sufficiently large, the partition lattice 11, is not a Sperner
poset.

Proof. We actually prove a slightly weaker result. We show that for certain large
values of n, the partition lattice I, is not a Sperner poset. It is a relatively straight-
forward extension to obtain the general result. Let % consist of all partitions of
type m" (2m)"2(3m)" where hy +hy +h; =k + 1, and k = k,, is chosen to maxi-
mize the Stirling number S(n, k). Note that mh; + 2mh, + 3mh; = n. Furthermore,
hi, hy, and hj satisfy:

h = [5(k+1)—2n/m— 0]/3,
hy=[n/m— (k+1)+26]/3,
hy=[n/m—(k+1)—60]/3.

The value 6 is taken from {—1,0,+1} so that each A; is an integer. However, for
the time being m is unspecified, although we assume that m divides ».

Any partition into k classes which is comparable to a partition in % must belong
to one of the following six types:

Type 1:  m"~2(2m)"*1 (3m)"

Type 2:  m"~1(2m)"~1(3m)"+!
Type 3: m" ' (2m)"2(3m)" " (4m)!
Type 4 m" 2m)"22(3m)" (4m)!
Type 5: m" (2m)"=="'(3m) =1 (5m)"
Type 6:  m™ (2m)"(3m)" 2 (6m)’

We will show that for sufficiently large n, there are fewer than |2| partitions of
these six types. The remaining partitions into & classes together with the partitions
in 2 will than form an antichain of more than S(n, k) elements which shows that
IT, is not a Sperner poset.

By Lemma 4.2, the ratio of the number of partitions of Type 1 divided by the
number of partitions in P is Ay (h; — 1)/(hy + 1)(2,;"). Then it is an easy (although
tedious) calculation to show that if we set m = |n/1.06k |, then this ratio goes to 0
as n tends to infinity. An analogous computation shows that for this value of m, the
ratio of the number of partitions of Type i divided by the number of partitions in P
goes to 0 for each of the other five types. It may be shown that when n > 4 x 10°,
all six ratios are sufficiently small that their sum is less than 1 and the theorem
follows. @O
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Some progress has been made in reducing the value of n for which it can be
shown that IT, is not a Sperner poset. Jichang and Kleitman (1984) have lowered
the estimate to 3.4 x 10°. However, the enormity of these estimates and the width
of the corresponding partition lattices are striking testimony to the adage well
known to researchers in combinatorical mathematics: Woe be to those who make
conclusions based on detailed examinations of small examples. Sometimes we are
startled to learn just how large small can be.

5. Linear extensions and correlation

Let P be a poset, and let € denote the set of all linear extensions of P. It is natural
to consider the elements of € as equally likely outcomes in a finite probability
space. When x and y are distinct points in P, we let Prob[x < y| denote the prob-
ability of the event consisting of all linear extensions in which x < y. Observe that
Prob[x < y] is the ratio of the number of linear extensions with x < y divided by
|€]. Note that Probjx <y]=1<=x <y in P, and Problx <y] =0y <xin
P.

Similarly, if x, y, z are three distinct points in P, we let Prob[x < y|x < z] denote
the conditional probability that in a random selection of a linear extension, the
relation x < y holds given that x < z holds. In 1980, Rival and Sands made the
following conjecture, which quickly became known as the xyz-conjecture.

Conjecture 5.1. If x,y, z are distinct points in a poset P, then
Problx < y] < Prob[x < y|x < z].

It is easy to see that the xyz-conjecture holds except possibly when {x,y,z}
is a three-element antichain. In this case, Rival and Sands conjectured that the
inequality in Conjecture 5.1 was strict, and this stronger version became known as
the strict xyz-conjecture. The original conjecture was settled in the affirmative by
Shepp (1980, 1982) using the FKG-inequality from statistical mechanics. The strict
xyz-conjecture was proved by Fishburn (1984) using an important generalization
of the FKG-inequality proved by Ahlswede and Daykin (1978), which we call the
AD-inequality.

Although we do not include its proof here, the AD-inequality is a marvelous
device with a growing list of applications in combinatorics. We encourage the
reader to study its elementary proof carefully.

Let P be a distributive lattice with meet and join denoted A and V respectively.
When A and B are subsets of X, welet AAB ={anb:ac€ Aandbc B}and AV
B={avb:acAandbe B} Whenf: X - Rand A C X, letf(A) Y vea f).
Let Ry denote the nonnegative real numbers.

Here is the AD-inequality.

Theorem 5.2. Let P be a distributive lattice and let a, B, v, and & be functions
from X to Ry satisfying:
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(i) a(x)B(y) < y(xAy)d(xVy) forallx,y € X.
Then the following inequality holds for every A, B C X:
(ii) a(A)B(B) < y(A A B)S(AV B).

Corollary 53 (Fortuin et al. 1971). Let P be a distributive lattice and let p.: X —

[0, 1] satisfy:

() px)u(y) < pxAy)uxVy), forallx,y € X.
If f and g are monotonic functions from X to R, then the following inequality

holds:
(1) [(fr)(XO][(gm)(X)] < [r(X)][(fgm) (X)].

Proof. Assume first that f and g map X to Ry. For each x € X, define a(x) =
f)u(x), B(x) = glx)n(x), v(x) = n(x), and 5(x) = f(x)g(x)u(x). Then for an
arbitrary x,y, € X we have:
a(x)B(y) = f()u(x)g(r)ry)
= f(x)gmx)n(y)
S f)g()ux Ay)plx Vy)
SpxAy)fxvy)glevy)ulx Vy)
=y(x Ay)8(x Vy).
Therefore a(X)B(X) < y(X)8(X) as claimed. When the range of f or g includes

negative reals, we increase both functions by some suitably large constant. 0O

A subset S of a poset P is called a down set (up set) if x €S andy <x in P
(x <y in P) always implies y € S.

Corollary 5.4. Let Uy and U, be up sets in a distributive lattice P. Then |U,||U,| <
|Uy 0 Ua| X

Proof. Set a(x) = B(x) = y(x) = 8(x) =1 for every x € X. Observe that U; Vv
Ub=UnUyand Uy AU, CX. 0O

The special case of Corollary 5.4 when P = 2" was first proved by Kleitman
(1966) and in dual form by Seymour (1973).
We close this section by outlining Shepp’s (1982) proof of the xyz-conjecture.

Theorem 5.5. Let P be a poset and let x, y, and z be three distinct points in X.
Then

Prob[x < y] < Problx < y|x < z].

Proof. We assume {x,y,z} is a three-element antichain in P. Let k be a positive
integer, and let Y, denote the set of all order preserving functions from P to
k. Define a partial order P, on Y, by setting f < g in P, <= f(x) > g(x) and




448 W.T. Trotter

f(u) — f(x) < g(u) — g(x) for every u € X. It is straightforward to verify that the
poset (Y, Py) is in fact a distributive lattice.

Now let Uy(k) = {f € Yy f(x) < f(5)} and U(k) = {f € Yi: f(x) < f(2)}.
Then U; (k) and U, (k) are up sets in the distributive lattice (Y, Py). Therefore
UL ()| U2 (k)| < [Ui (k) N Up (k)| Y],
so that:
[U1(k)] _ [Ui(k) 0 Ua(K)|/1Y|
Yl |U2(K)|/[ Y]
However, it is easy to see that as k tends to oo, the left-hand side of this inequality

approaches Prob[x < y] while the right-hand side approaches Prob[x < y|x < z].
O

The reader should note that the truly clever part of this proof is the nonstandard
definition of the partial order P, so that (Y, P) is a distributive lattice having
U,(k) and U,(k) as up sets. Fishburn’s (1984) proof of the strict xyz-inequality
requires two applications of the AD-inequality. Winkler’s (1986) survey article is
a good starting point for an overview of work on correlation.

6. Balancing pairs and the {-% conjecture

The following conjecture is due to Kislitysn (1968), although it was also made
independently by Fredman (1979) and Linial (1984):

Conjecture 6.1 (The %—% conjecture). If P is not a chain, then P contains distinct

points x and y for which 1 < Prob[x > y] < 3.

If true, this conjecture is best possible as is evidenced by the three-point poset
2 +1. Given a poset P = (X, P) which is not a chain, let §(P) denote the largest
positive number for which there exists a pair x,y € X with 8(P) < Prob[x > y] <
1 — 8(P). Using this terminology, we can restate the %—% conjecture as follows.

Conjecture 6.2. If P is not a chain, then 6(P) > 1.

The original motivation for studying balancing pairs in posets was the connection
with sorting. The problem was to answer whether it is always possible to determine
an unknown linear extension of a poset P with O(log?) rounds (questions) where
t is the number of linear extensions of P. The answer would be “yes” if one could
prove that there exists an absolute constant & so that §(P) > &, for any P which
is not a chain.

Linial (1984) has shown that the 3-% conjecture holds for posets of width two.
Fishburn et al. (1992) show that it holds for posets of height at most two. Although
the conjecture remains open for general posets, we present a partial result, due
to Kahn and Saks (1984), which is particularly appealing in view of its nontrivial
application of the Alexandrov-Fenchel inequalities for mixed volumes.
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Theorem 6.3. If P is not a chain, then X contains a distinct pair x,y so that
3 8
71 < Prob[x > y] < 4,

and thus 5(P) > %
Proof. Clearly, we may assume that P does not have a least element. Let €
denote the set of all linear extensions of P and let n = |X|. For each L € &, let
hp:X — n be the order preserving injection determined by L. Let |€| =t and
then define h: X — Ry by h(x) = (3°; .« hp.(x))/t. The value h(x) is the average
height of x among the linear extensions in &. Since no element satisfies A(x) = 0, it
follows that there exist distinct elements x,y € X with 0 < A(y) — h(x) < 1. Note
that such a pair must be incomparable. We will show that ?T < Problx > y] <
%. The argument depends on a series of lemmas which hold for an arbitrary
incomparable pair in P.

Fix an arbitrary incomparable pair x,y € X. For a positive (negative) integer i,
let ¢; be the number of linear extensions of P in which x is below (above) y by
exactly i positions.

Lemmal. ¢ =e_;.
Proof. Since x and y occur consecutively, they may be interchanged. [
Lemma2. ey+e_, <e +e_;.

Proof. Suppose L € & and |h;(y) — hy(x)| = 2. Let u be the unique point be-
tween x and y. If u || x, exchange « and x. If u is comparable with x, then u || y.
In this case, the cyclic permutation (uyx) converts L into an extension in which x
and y are consecutive. The mapping is easily seen to be an injection. [J

Lemma 3. If |i| > 2, then ¢; < ej_1 +€;41.

Proof. Without loss of generality i > 2. Suppose the lemma is false and of all
counterexamples, choose one for which |X| = n is minimum. For this value of #,
we choose P so that the number of comparable pairs is maximum. We first show
that for every incomparable pair u,v € X, one of u and v is greater than or equal
to x and the other is less than or equal to y.

Suppose to the contrary that u || v and that the above statement does not hold.
Let P’ be the poset obtained by adding the relation u < v to the partial order on
X and taking the transitive closure. Also let P” be the poset obtained by adding
v<u InP, we let e; denote the number of linear extensions with x below y by
exactly j positions. Also, let e}’ denote the corresponding number for P”. Then

e; = e; +e] for each j > 1. Since P’ and P” have more comparable pairs than P,
/

we know thate; < e/ | +el,, ande! <e/  + e/ ,so thate; < e;_;+ e, as claimed.

i—1

We next claim that x € MIN(P) and y € MAX(P). For suppose u € MIN(P) and
that u < x. If u <y in P, then n must be comparable with every point in X, i.e.,
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u is the least element of P. In this case, we consider the poset P’ =P — {u} and
the numbers e} defined in the natural way for P’ Since ¢; = e}, we would conclude
e; < e;_1 +¢;11. The contradiction shows x € MIN(P). Dually, y € MAX(P).

These remarks show that X is the union of two chains x = xp < x; < xp < - -+ <
x,and y; <y, <--- <y, <yy =y. Furthermore, no y; is larger than any x; in P.
(See fig. 6.1.)

We now distinguish two cases.

Case 1. i <n—1. Choose L € € with h;(y) — h;(x) = k. If x is not the least
element in L, exchange x with the element immediately under it. If x is the least
element in L, then y is not the greatest. Let z be the element immediately over
x. If x || z, exchange them; otherwise exchange y with the element immediately
over it. This procedure is an injection which transforms L into a linear extension
in which x is below y by either i — 1 or i + 1 positions.

Case 2. i = n — 1. For each subposet Q C P, let ¢(Q) denote the number of linear
extensions of Q. Let Z=P — {x,y}. Then ¢; | =e(Z — {x,}) +e(Z — {»}), &; =
e(Z) and ¢;,; = 0. Now e(Z) = e(Z — {x1}) + e(Z — {y1}) so, to complete the argu-
ment, we need only show that e(Z — {x,}) > e(Z — {x;}). However, this inequality
follows immediately since the mapping x; — x;_; transforms a linear extension of
Z — {x1} into a linear extension of Z — {x, }. This completes the proof of Lemma
3.0

The next lemma is a special case of the Alexandrov-Fenchel inequalities for
mixed volumes. This method was pioneered by Stanley (1981).

Lemma 4. Let Ky and K, be convex subsets of R". For each A with 0 < A < 1, let
Ky ={(1 = A)vg + Avi: vy € Ky, v1 € K }. Let d be the dimension of the affine hull
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of Ky for A € (0,1). Then there exist unique numbers ag,ay, . . .,ay so that for all A,
the d-dimensional volume of K, satisfies:
4 rd
. d—k yk
Vol(K)) = (k)ak(l — A)AFak,
k=0
Furthermore, the sequence ay, ay,ay, . .., a, is logarithmically concave, i.e.,

@ > a_a5,, fork=1,2,...,d-1

Lemma 5. The sequences e|,e,,e3,...,e, and e_n,e_,.1,...,e_; are logarithmi-
cally concave.

Proof. Let RP denote the vector space of all order preserving functions from P
to R. Also let C(P) = {f € R?: 0 < f(x) <1 for all x € P}. For A with 0 < A < 1,
let Ky = {f € C(P): f(y) — f(x) = A}. Note that K, = (1 — A)K + AK,. Also note
that when 0 < A < 1, K has dimension n — 1.

For each L € € with x <y in L, let Ay(L)={fe€ Ky:v<w in L= f(v) <
f(w)}. Then K, is the union of the A,(L)’s taken over all L with x < y in L. Since
the A, (L)’s have disjoint interiors, we see that

Vol(Ky) = ) Vol(Ay(L)).
v in L

Now consider some particular L € € with x <y in L. Suppose L orders X as vy <
vy < -+ <vpq With x =v; and y = v;. Then A, (L) consists of those f € C(P) for
which 0 < f(vo) < f(v1) <+ < f(vp—1) <1 and f(v;) = f(v;) + A. Now consider
the volume preserving mapping defined by:

flui) = flue) — A when k > j;
f(uk) = flvk) = f(v;)  whenj>k>i; and
f) — flur) when [ > k.
Then the image of 4,(L) under this mapping is the set of f € C(P) for which
0< f(vo) < flvr) <--- < f(wi) <fwj) <+ < fwa) <1 =2
and 0 < f(vi) < f(viz1) < --- < f(v;) = A. However, this set is the product of two
simplices and its volume is therefore
(1 — Ay Nii-
m—j+i)! (G—-i-1V
It follows that

Vol(K) =y a-yre A

0gi<jgn—1 | Le¥ (n_j+i)! (j-i—l)!

hy (0)=i

hy =i
B Ze, (1 . A)n«i Ai-l
T G-

izl
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From Lemma 4, we conclude that a; =¢; {/(n —1)!, and thus the sequence
e1,€,€3,... is logarithmically concave. The argument for the other sequence is
dual. [

For the remainder of the proof, we assume that x and y are an incomparable
pair with 0 < h(y) —h(x) < 1. For eachi > 1, we let b; = e;/t and a; = e_; /t. We
then know that the following conditions hold:

(1) a1,a;,as, ... and by, by, b3, . .. are sequences of nonnegative real numbers so
that Zi>1 a; + Ei2l b,' =1.

(2) a = b].

(3) a + b2 <@ +b1.

(4) a; < a;_1+a;4 and b,’ < b,‘,l + le for all i >2.

(5) a,.z 2 A;_104i41 and blz = bi»lbi+1 for all i > 2.

6) If g; =0, then a;,1 =0, for all i > 1.

(7) If b; =0, then b;,; =0, for all { > 1.

It remains only to show that whenever these seven properties are satisfied, we
always have Y, ia; — Y., ib; > 1 whenever }_,., b; < 7. To accomplish this,
we fix a value b = by = ay, and the value B =}, b;. For the pair (b,B), we
determine the unique sequences {a;: i > 1}, {b;: i > 1} satisfying these seven con-
ditions which minimize ) ia; — ) ib;.

The infinite geometric sequence obtained by setting £ = b/B and b; = b(1 —
£)~! is easily seen to maximize ) ib; among all sequences {b;: i > 1} satisfying
by =b, > b, =B, and b,-2 2 b;_1b;, for all i > 2. The argument to minimize ) ia;
is somewhat more complicated. We know a, + b, < ay;+b; =2bsoa, <2b —by =
b(1 + &). Therefore a;,y < (1 + £)a; for every i > 1. On the other hand, set A =
1~ B and for each j > 1, let 5; = A — E{:l a;. Then a;,; <s;. Also aj,; <a;+
aj;p < a; +Sj.1 = aj +5; — aj,q, so that aj.; < (a;+5;)/2. It is then easy to verify
that )" ia; is minimized when there is some k > 1 so that a; = b(1 + £)'~! for all
i=1,2,...,k and either:

Type 1: apy = 8¢, a; =0foralli > k+2; or

Type 2: agy = (si +ax)/2 where s > ay, rp = Sg = (Sg —ar)/2, and a; =0
foralli > k +3.

Set a = ay,1/ax and B = ay.,,/a,. We verify that > ia; — > ib; > 1 for a Type 2
sequence {a;: i > 1}. The reader may enjoy the challenge of handling the Type 1
case —it is somewhat easier. Now for a Type 2 sequence, we know:

l+eza>2l, B=a-—1, and 1

(1+e)* B

a+f= B

1-1/e. (2)
Using the definitions of {a;: i > 1} and {b;: i > 1}, we find that

Zia —Zib- = ke —e—1+&%k(a+B+1)+e(a+2B)

e+el(a+B+1)

The inequality 5 ia; —
k+1

(1 + g)kr < _1_

ke B

This in turn is equivale:

(4% +5¢ +2)(
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The inequality )" ia; — " ib; > 1 is then equivalent (using (1)) to

(1 + &)k 1 &B k1
T\B+——i{—(1+8) . (3)
This in turn is equivalent to

(482 + 58 +2)(1 + g)k-! < 1

2k +1)e S8 @
Now B = 5l — 2; — 1 so the inequality 0 < B < & converts to
Qe+ D)1+ &)1 < % 5)
and
e +2e+ 1)1+ &) ! > % (6)

We may assume & < 2/(2k — 1); otherwise k > 1/¢+ 1 and
(4e? +56+2)(1+ &)k (42 +5+2)(1 + &)k!
Rk+1e 2+2¢
e +1)(1+ &)<
/B.

IN

<
<

We may also assume & > 3/(3k + 1), for if £ < 3/(3k + 1), inequality (5) implies

3 \%1! 18 6 11
— > .
(1+3k+1> [(3k+1)2+3k+1+1 Z3 ™

However, inequality (6) is false for all £ > 1.

To complete the proof, we observe that the left-hand side of inequality (3) is an
increasing function of & when & > 3/(3k + 1). It suffices to test the validity of (3)
at an upper bound for &. When k = 1, the trivial bound & < 1 works. For k > 2,
use the bound ¢ < 2/(2k — 1). This completes the proof. [

In a certain sense, the approach taken by Kahn and Saks cannot be improved.
In fig. 6.2, we show a poset P containing two points x, y satisfying i(y) — h(x) = 1
and Prob[x > y] = 2.

Other proofs bounding §(P) away from zero have been given. Khachiyan (1989)
uses geometric techniques to show 8(P) > 1/e?. Kahn and Linial (1991) provide
a short and elegant argument using the Brunn-Minkowski theorem to show that
8(P) > 1/2e. Friedman (1993) also applies geometric techniques to obtain even
better constants when the poset satisfies certain additional properties. Kahn and
Saks (1984) conjectured that §(P) approaches 1 as the width of P tends to infinity.
Koml6s (1990) provides support for this conjecture by showing that for every
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Figure 6.2.

€ > 0, there exists a function f,(n) = o(n) so that if P = (X, P) is a poset with
|X| = n and at least f,(n) minimal points, then §(P) > 1 — &.

As Kahn and Saks (1984) point out, the value of the constant in Theorem 6.3
could be improved if we could show that there exists a positive absolute constant
y so that if P is not a chain, then it is always possible to find an ordered pair
(x,y) with 0 < A(y) — h(x) < 1 — y. However, nobody has yet been able to settle
whether such a y exists. If it does, then as shown by Saks (1985), it must satisfy
y < 0.133. Even this value would not be enough to prove §(P) > ;. However, it
is of interest to determine the maximum value of |A(y) — h(x)| which allows one
to conclude that % < Prob[x > y] < % Felsner and Trotter (1993) discuss how to
modify the Kahn-Saks proof technique to obtain the next result, which is clearly
best possible.

Theorem 6.4. Let (x,y) be distinct points in a poset P, and suppose that 0 <
h(y) — h(x) < 5. Then § < Prob[x > y] < 2.

Felsner and Trotter (1993) obtain a slight improvement in the Kahn-Saks bound
by considering subposets in which the points are relatively close in average height.

Theorem 6.5. There exists an absolute constant & > 0 so that if P is a poset which
is not a chain, then 8(P) > ¢ + 2.

In developing this theorem, Felsner and Trotter made a correlation conjecture
which is of independent interest. Let x, y and z be distinct points in a poset P =
(X, P). For each i,j € Z , let p(i,) denote the probabilty that h; (y) — hy(x) =i
and Ay (z) —hy(y) =j in a random linear extension L of P. Felsner and Trotter
then made the following cross product conjecture.

Conjecture 6.6. Let x <:y <:z in a poset P = (X, P). Then for all i,j € N,
pE, Np+1,j+1) <pG,j+1)p@+1,j).

Brightwell, Felsner and Trotter (1995) prove the cross product conjecture in the
special case i = j = 1. They then prove the following lower bound.

Theorem 6.7. IfPis afi
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Theorem 6.7. If P is a finite poset which is not a chain then

5-\/5.

8(P) > 10

The results of this section have emphasized existence questions—disregarding
the issue as to how one actually goes about finding an incomparable pair of points
which are balanced. Brightwell and Winkler (1991) showed that the problem of
computing the number of linear extensions of a poset is #P-complete. However,
if one is willing to use randomized algorithms, then a good approximation to the
volume of a polytope can be efficiently computed, so that the theorems presented
here can form the basis for a sorting algorithm.

On the other hand, if we limit our attention to determmlstlc algorithms, then an
alternative approach is necessary. Kahn and Kim (1994) use a concept of entropy
for posets and show the existence of a polynomial-time deterministic algorithm
for sorting in O(log¢) rounds. Their algorithm shows how to efficiently locate
pairs to use in queries so that, regardless of the responses, the determination of
the unknown linear extension is made in O(log¢) rounds. However, at individual
rounds, the pairs need not be balanced in the sense that for a given pair (x,y)
used in the algorithm, Prob[x > y] may be arbitrarily close to zero.

7. Dimension and posets of bounded degree

The dimension of a poset P = (X, P) is the least ¢ for which there exists a fam-
ily R={Ly,L,,...,L,} of linear extensions of P so that P =L, NL,N---N L.
In fact, the dimension of P is the least ¢ for which there exists a family R =
{L1,Ls,...,L;} of linear orders (not necessarily linear extensions of P) on X so
that whenever x £ y in P, there exists at least one i with y < {z: x <z in P} in
L;. The concept of dimension was introduced by Dushnik and Miller (1941).

In section 2, we presented Dilworth’s decomposition theorem, but we did not
give much of an explanation for the role this theorem plays in research on posets—
other than to motivate the Greene—Kleitman theorem. However, Dilworth’s theo-
rem plays a major role in dimension theory. For example, Hiraguchi (1951) used it
to prove that the dimension of a poset never exceeds its width. Hiraguchi (1951)
also proved that the dimension of a poset P = (X, P) is at most |X|/2, provided
|X| > 4. On the other hand, it is still unknown whether every poset P with three
or more points always contains a pair whose removal decreases the dimension at
most one (see Kelly 1984, Reuter 1989, Kierstead and Trotter 1991).

Dilworth’s theorem is critical to dimension-theoretic ineqalities appearing in
Bogart and Trotter (1973), Trotter (1974b, 1975a,c, 1976a). It also plays a major
role in the variants of dimension investigated in Bogart and Trotter (1976a,b),
Kierstead et al. (1987), Kierstead and Trotter (1985, 1989). For additional back-
ground material on dimension, the reader is encouraged to consult the monograph
Trotter (1992) and the survey articles Kelly and Trotter (1982) and Trotter (1982).
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Also, discussions of open problems in dimension theory are given in Trotter (1989,
1992, 1994).

In the remainder of this section, we discuss one important problem for which
there is an interesting partial solution - utilizing the probabilistic method on posets.
Brightwell’s survey article (Brightwell 1993) highlights the recent work in this
rapidly growing area of research.

For integers n > 3, k > 0, define the crown Sfl as the poset of height 2 having
n + k minimal elements a;,a,, ..., a,.; and n + k maximal elements by, b;, ..., by
with a; < b;_1,b;_2,bi_3,...,b;i_..1 for each i (cyclically). Trotter (1974a) showed
that dim(SX) = [2(n + k)/(k +2)]. As noted previously, Hiraguchi (1951) proved
that the dimension of a poset on m points does not exceed m/2, when m > 4,
so the crowns {S2: n >3} show that this inequality is best possible. In fact, the
crown 8. is called the standard example of an n-dimensional poset. However, it
is of interest to investigate conditions which force the dimension of a poset to be
small in comparison to the number of points.

We now proceed to study one such condition which surfaced in the investigation
of crowns. For a point x in a poset P, let deg(x) count the number of points
comparable (but not equal) to x in P. Then let A(P) denote the maximum value of
deg(x) for x € P. Rédl and Trotter proved that if A(P) < k, then dim(P) < 2k? + 2.
For each x € P, let U(x) = {y: x <y in P} and let u = max{|U(x)|: x € P}. Then
u < A(P).

We now present a strengthening of this result due to Fiiredi and Kahn (1986).
Lemmas 7.1, 7.2, 7.5, Corollary 7.4 and Theorem 7.6 all come from that paper.

Lemma 7.1.  dim(P) < 2(u + 1)(log | X|) + 1.

Proof. Let |X|=nandsett = [2(u+1)logn]|. Let L;,L,,..., L, be linear orders
of X chosen at random. Then for each i = 1,2,...,¢ and for each x € P, the prob-
ability that x < y in L; for all y € U(x) is at least 1/(u + 1). Hence the probability
that no L; satisfies x < y in L; for all y € U(x) is at most [1 — 1/(u + 1)} < 1/n%.
Thus the probability that there exists a pair x,y € X with y £ x in X but there is
no L; with x <y in L; for all y € U(x) is less than 1. Thus dim(P) < ¢ as claimed.
O

For integers n, k with 1 <k <n, let dim(1,k;n) denote the dimension of
the poset formed by the 1-element and k-element subsets of {1,2,...,n} or-
dered by inclusion. Then dim(1,k;n) is the least ¢ for which there exist ¢ lin-
ear orders L, L,,...,L; on {1,2,...,n} so that for each (k +1)-element subset
S c {1,2,...,n} and for each x € S, there is at least one L; in which x is the least
element of S. The following lemma follows along the same lines as Lemma 7.1.

Lemma 7.2. For all integers n, k with 1 < k < n, dim(1,k;n) < k*(1 +log(n/k)).

The Fiiredi-Kahn argument also depends on the following result, which is known
as the Lovéasz local lemma (Erd&s and Lovész 1973). Other applications of this
lemma are given in chapter 33 by Spencer.
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Lemma 7.3. Let G be a graph on {1,2,...,m} and let k = A(G) denote the maxi-
mum degree in G. Suppose Ay, A, ..., A, are events in a probability space so that
foreachi=1,2,... ,m:

(1) Prob[A;] < 1/4k, and

(2) A; is jointly independent of the events {A;: ij is not an edge in G}.
Then Prob[/il-fiz . '/im] > 0.

Corollary 7.4. Let b > 500, s = [b/logb], and v = [4.710gb]. Let ¥ be a hyper-
graph whose edges are subsets of sizes at most b from a set X. Suppose further
that no point of X belongs to more than b edges in . Then there is a parti-
tion X = X1 UX,U---U X so that |[HNX;| <v for every edge H € ¥ and every
i=1,2,...,s.

Proof. Let X =X;UX,U---UX; be a random partition of X. We denote by

A(H,i) the event |[H N X;| > v. Then let G be the graph whose vertex set consists

of the pairs (H,i) where H is an edge in % and 1 < i < 5. The edges of G are the

pairs (H,i)(H',i") for which H N H' # (). Therefore A(G) < (1 +b(b —1))s < b°.
However, since |H| < b,

Prob[A(H,i)] = Prob[|H N X;| > v]
<=()6) (-3)"
<SG (-
HOECON

1

ap3”
The conclusion then follows from the Lovész local lemma. []

<

We also need the following lemma whose eclementary proof we leave as an
exercise.

Lemma 7.5. Let a and b be positive integers. Let # be a hypergraph on the vertex
set'Y so that each edge in ¥ has at most a elements and no vertex of Y belongs
to more than b edges. Then there exists a partition Y =Y, UY,U---UY, with
r=(a—1)b+1so that HNY;| <1 forall edges H € % and all i with 1 <i <r.

We are now ready to present the upper bound on dimension established by
Fiiredi and Kahn (1986).

Theorem 7.6. Let P be any poset with A(P) < k. Then
dim(P) < 50k(log k).
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Proof. Let n=|X|. When k < 500, the result follows from the Rodl-Trotter
inequality dim(P) < 2k +2, so we assume k > 500. Let % be the hypergraph
whose vertex set is X and whose edges are the up sets U(x) ={y e X:x <y
in P}. By Corollary 7.4, we obtain a partition X =X; UX, U --UX, where
s = [(k+1)/log(k +1)] so that |U(x) N X;| <v = [4.7Tlog(k + 1)] for everyx € X
and every i =1,2,...,s

Then let #; be the hypergraph obtained by restricting # to X;. Each edge in
#; has size at most v and no point of X; belongs to more than k +1 edges. By
Lemma 7.5, we obtain a partition Xy = X;; UX;; U---UX;, where r = (v — 1)(k +
1) +1 so that |U(x) N X;;| <1 for all x,i, j. Now we know by Lemma 7.2 that

(v~ 1)(k+1)+1))

v+1

d=dim(1,v+1;r) < (v+1)> (1 +log

Let My, M,,...,M, be a family of linear orders on {1,2,...,r} so that for each
(v +1)-element subset S C {1,2,...,r} and each y € S, there is some i with y the
least element of S in M;. For each ij, let N;; be an arbitrary linear order on Xj;
and let N,, denote the dual of N,,, Le., u <vin N,, <=> v < u in Nj;. Finally, for
eachi=1,2,...,sand j =1,2,...,d, we define two linear orders L;; and L;; on
X by

L,‘j = Nim;(1) < NiM;(Z) <L e <K NiM,-(r) <X -X,', and
L;j = NiM,-(l) < NiM,-(Z) <0< NiMI("> <X -X.

In both L;; and L] i the ordering on X — X; is arbitrary. Furthermore, the subscripts
are interpreted so that M; orders {1,2,...,r} by M;(1) < M;(2) < --- < Mj(r).

Now suppose x,y € P with y € x in P. Choose « so that x € Xj,. Set T = {j:
U(y) NnX;; # 0}. Since |T| < v, there is some B for which « is the least element of
T U{a}in Mg. If y & Xj,, then x <y in both L;gz and L Ifye X, thenx <y
in exactly one of L,z and L

This shows that dim(P) < 25d < 50k(logk)? as claimed. 0O

Until recently it was not known whether there exists an absolute constant ¢
so that dim(P) < ck whenever A(P) < k. Note that for each k > 2, the crown
Sy, satisfies A(S),;) =k and dim(S},,) = k + 1. However, Erdés et al. (1991)
have substantially improved this lower bound by investigating the dimension of
a height-two random poset. They define the sample space {2(n,p) as consisting
of all height-two posets containing » minimal points ai,ay, . ..,a, and n maximal
points by, by, ...,b,. For a poset P € 2(n, p), the probability that a; < b; in P is
equal to p (which in general is a function of n). Events corresponding to distinct
" pairs of points in P are independent.

Erdé6s et al. (1991) develop upper and lower bounds on the expected value of
the dimension of a random poset for values of p in the range
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However, taking the particular value p = 1/logn, their results imply that there
exist absolute positive constants &, and 8, so that the following inequalities almost
surely hold for the random poset P:

A(P) < 8n/logn and dim(P) > &n.

This shows that if we define the function f: N — N by “f(k) is the largest positive
integer for which there exists a poset P = (X,P) with A(P) < k and dim(P) <
f(k)”, then there exist absolute positive constants ¢; and ¢, so that

cik(logk) < f(k) < cok(logk)?.

It is probably a very difficult problem to determine the correct exponent on the
logarithmic factor in the preceding inequality. Perhaps the answer will come with
improved bounds on the expected value of the dimension of a random poset in the
sparse case, i.e., for values of p satisfying p < (logn)'*? /n. Other dimension-related
questions for random posets are posed in Erdss et al. (1991); further applications
of dimension-theoretic concepts for random posets are given in Brightwell and
Trotter (1994b).

Many other interesting dimension-theoretic questions center around families of
subsets ordered by inclusion. For example, the proof of Theorem 7.6 requires an es-
timate on the dimension of the poset formed by the 1-element and (log 7)-element
subsets of an n-element set. Lemma 7.2 gives an upper bound of the form c(log )3,
and Kierstead (1995) has just shown a lower bound of the form clog’® n/loglogn.
So some genuinely new idea is needed to determine more accurate estimates for
fK).

Dushnik (1950) developed upper and lower bounds for dim(1, k;7) which result
in an exact formula when k > 2y/n, and Spencer (1972) gave asymptotic results
when k is relatively small in comparison to #. Fiiredi et al. (1991) give the following
asymptotic formula:

dim(1,2 :n) =lglgn + (% +0(1)) lglglgn.

Hurlbert et al. (1994) show that dim(2,n —2;n) =n—1, when n>5; and
Brightwell et al. (1994) show that dim(s, s + k;n) = O(k*logn).

8. Interval orders and semiorders

Let 4 be a collection of closed intervals of R. Define a partial order P on $ by
I <Lin P <= x <yinR forevery x € I, and y € I,. Posets obtained from this
construction are called interval orders. The following theorem of Fishburn (1970)
provides a forbidden subposet characterization of interval orders. We leave the
proof as an exercise.

Theorem 8.1. A poset P is an interval order <> P does not contain 2 + 2.
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A poset P is called a semiorder if there exists a function f: X — Rsothatx <y
in P <= f(y) > f(x) + 1. Evidently, a semiorder is an interval order having a rep-
resentation in which all intervals have length 1. The following theorem due to Scott
and Suppes (1958) provides a forbidden subposet characterization of semiorders.
Again the proof is omitted.

Theorem 8.2. A poset P is a semiorder <= P does not contain either 2 +2 or
3+1

Rather than present the proofs of these two important, but by now well-known,
theorems, we choose instead to discuss some recent work in which interval orders
and semiorders surface in a surprising manner.

Let 2 be a class of posets. We say that the on-line dimension of ? is at most ¢ if
there exists a strategy for constructing a realizer Ly, L,, ..., L, for any poset from
% constructed in an on-line fashion. As was discussed in section 4, the poset-and
the realizer are to be constructed one point at a time. At each step, a new point
is added to the poset. This point is then inserted into each of the existing linear
extensions in a manner such that they remain a realizer.

The reader may enjoy showing that if & is the set of posets of dimension at most
2, then the on-line dimension of 2 is infinite, i.e., for each ¢, there is no algorithm
which will construct on-line realizers of size ¢ for posets from 2.

The members of family {S5: k > 0} of 3-dimensional crowns are called 3-crowns.
The following result is due to Kierstead et al. (1984).

Theorem 8.3.  Let P, denote the class of posets of width at most n which do not
contain any 3-crowns. Then the on-line dimension of P, is at most ((5" — 1)/4)\.

Proof. Sett = (5" —1)/4. Use Kierstead’s theorem (4.2) to construct an on-line
partition of a poset P in 2 into ¢ chains Cy, Cs,..., C,. For each x € X, let C(x)
denote the unique a for which x € C,. Let M be any of the ¢! linear orders on
{1,2,...,t}. We construct on-line a linear extension Ly, of a poset from %,. When
the new point x enters P, let S; ={y e P: x<yinP}land S, ={yeP: x|y in
Pand C(x) < C(y) in M}. If S; U S, =0, insert x at the top of Ly,. If S; US, # 0,
and y is the lowest element of S; U S, in L, insert x immediately under y.

We now show that the set of all ¢! linear extensions of P determined by this pro-
cedure form a realizer of P. To accomplish this, choose an arbitrary incomparable
pair x || y from P. We show that there is at least one M for which x > y in Ly,. In
fact, we will show that x > y in some L,; so that C(y) is the least element in M
and C(x) is the greatest element in M.

A fence F starting up at x and ending at y is a sequence x = Xg, X1, X2,...,X; =
y for which the only comparabilities between these points are xy < x; > x; <
x3 > ---. Note that such a fence starts up from x, = x, but can end either up
or down at x; = y.

Let Y ={1,2,...,t} — {C(x),C(y)}. Define a binary relation Q on Y by
“aQB <= there exist points u,v and a fence F starting up at x and ending at
v so that @« = C(u), B = C(v),u <y and {u,y} || F in P”.
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Claim. If «Qp and yQ$8, then either a Q8 or yQp.

Proof. Choose points u,v and a fence F = {x = x¢, X, X2, ..., x; = v} which wit-
ness aQf. Similarly, choose points w,z and a fence G = {x = up, uy,...,u; =z}
which witness yQ46. Suppose that neither « Q8 nor yQ8. Then u is less than one
or more points in G. Choose the least m so that u < u,,. Then m is odd (and posi-
tive). Similarly, let p be the least integer so that w < x,,. The p is odd and positive.
Then the set H = {x,x{,x3,...,Xp, U1, Uz, ..., Uy} is connected and has x, and uy,
as distinct maximal elements. Let K be a minimum-size connected subposet of H
containing x, and u,,. Then K U {y, u, w} is a 3-crown. The contradiction completes
the proof of the claim. 0O

From its definition, it is clear that Q is irreflexive, i.e., we never have aQa for
any « € Y. By taking 8 = v in the claim, we conclude that either aQy or BQS.
Hence aQ8. This shows Q is transitive, and is therefore a strict partial order on
Y. Furthermore, in view of Theorem 8.1, (Y, Q) is an interval order!

Choose an interval representation of (Y, Q) in which all end points are distinct.
Then let M’ be the linear extension of Q determined by the left end points in this
representation. Form M from M’ by adding C(y) as least element and C(x) as
greatest element. We claim that x > y in Ly,.

Suppose to the contrary that x <y in L. When the latter of these two
points enters the poset, let x =uy < u; <up <--- <uy <ugy =y be the se-

quence of points between x and y in L,. Note that for all i =0,1,2,...,s, either
(u; <ujpy in P) or (u; || usy and C(u;) < C(uiyq) in M). We call any sequence
X = U0, V1,V2,-..,Um, Uny1 =y a blocking chain if

(D vg<vy <+ <Up < VUppyq in Ly

(2) fori =0,1,...,m, either (v; < vy in P) or (v; || viy1 and C(v;) < C(viyy) in
M).

Of all blocking chains, we choose one, say {vo, v1, ..., Um1}, for which m is as
small as possible. For each i =1,2,...,m, let o; = C(v;). The minimality of m
implies that v; || v; and o; > a; in M whenever 0 <i,j <m+1 and |j —i| > 2. It
follows that m is even and that for even i, vi < vy in X. For odd i, v; || v, and
a; < apyq in M. Thus C(¥) < g < @y < Qo3 < Qg < - < g < g < a3 <
ay <o <ap<C(x)in M.

Next we observe that the set ' = {vy, v} is a fence starting up at x and ending
at vy. Also {y,v,} || F. It follows that a, < a; in Q. Choose the largest integer
i so that @, < o; in Q. Suppose first that i is odd. Then o; < a;4; in M, which
implies that the left end point of the interval corresponding to «; is less than the
left end of the interval corresponding to «;,1. However, the inequality @, < ; in
Q implies that the interval for a,, lies entirely to the left of the interval for a;.
This in turn implies a;, < ;41 in @, contradicting our choice of i.

Now suppose that i is even. Choose points u € C,,, z € C,, and a fence
F ={x =2z0,21,22,...,2, = z} starting up at x and ending at z so that « < y and
{u,y} || F.Let ' = MAX{u, v} and let G be a minimum-size connected subposet
of F U {v;,v;;1} so that G contains both x and v;,;. Then G is a fence starting up
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at x and ending at v;,;. Furthermore, {y,u'} | G which implies a, < @;41 in Q.
This is also a contradiction. [

It is mildly irritating that we do not know whether it is necessary to exclude all
3-crowns from the posets in order to have finite on-line dimension. It is certainly
necessary to exclude S, but perhaps this is enough.

We next discuss an extremal problem for interval orders with a surprising con-
nection to hamiltonian circuit problems. It is well known that there exist posets
whose cover graphs have large chromatic number [see KfiZ and Nesetfil (1991),
for example]. It is easy to see that such graphs exist as cover graphs of interval or-
ders. In connection with this topic, Felsner and Trotter (1995) made the following
conjecture.

Conjecture 84. Let n>1, and let t =2". Then there exists a permutation
Ajy,..., A, of the subsets of {1,...,n} so that: :

(1) Ay =0, and

(2) For each i =1,2,...,t —1, either A; C A;;q or A;; C A;. Furthermore,
|AiAAi+1| =1

(3) Foreach i,j =1,2,...,t,if A; CAjand i >j,theni=j+1.

Here is a re-formulation of the preceding conjecture as an extremal problem.

Conjecture 8.5. For cachn > 1,let f(n) = s be the largest integer for which there
exists a sequence By, B, ..., B, of distinct subsets of {1,2,...,n} so that:

(1) By =0, and

(2) foreach { =1,2,...,5 =1, B;y; ¢ B;, and

(3) for each i = 1,2,...,5 —2, Biyp € Bi UBj,1.
Then f(n) =2""'+ [(n+1)/2].

Trotter and Felsner show that f(n) <2"! + [(n+1)/2| and that equality holds
if and only if Conjecture 8.4 is valid. These conjectures are related to the following
(surprisingly difficult) problem.

Conjecture 8.6. Let G denote the comparabilty graph of the poset formed by the
k-element and (k +1)-element subsets of a (2k + 1)-element set partially ordered
by inclusion. Then G has a hamiltonian cycle.

Although Conjecture 8.6 is known to be true for small values of k, most of
the results thus far are negative, i.e., a hamiltonian cycle cannot be formed by
combining certain types of matchings [see Duffus et al. (1988) and Kierstead and
Trotter (1988), for example]. On the other hand, it is shown in Felsner and Trotter
(1995) that there exists a cycle whose size is at least one-fourth of the total number
of vertices. This fraction has subsequently been raised by C. Savage and P. Winkler
(pers. comm).

We next discuss an elementary extremal problem for posets. For integers n,k
with 0 < & < (}), let Q(n, k) denote the class of all posets having » points and
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k comparable pairs. For each poset P € Q(n, k), let ¢(P) count the number of
linear extensions of P. Then set e(n, k) = max{e(P): P € Q(n, k)}. Fishburn and
Trotter (1992) then show that the extremal posets are semiorders.

Theorem 8.7. Every poset P € Q(n, k) with e(P) = e(n, k) is a semiorder.

Proof. LetP be such a poset. We first show that P does not contain 2 + 2. Suppose
to the contrary that the chains u < x and v < y are incomparable. Of all such pairs
of chains, we choose two for which |U (x)| + |U(y)| is minimum. We may therefore
assume that U(x) C U(y). Let P’ be the poset obtained by replacing the relations
z <y by z <x for all z€ D(y)— D(x). Then P’ € Q(n, k). We now show that
e(P') > e(P).

Exchanging x and y maps €(P) — €(P') to &€(P') — €(P). Although the map is
1-1, it is not onto since any linear extension in which y < u < v < x is not in the
image of the map. The contradiction shows P is an interval order.

If P contains a 3-element chain x <y < z with all three points incompara-
ble to w, form P” from P by replacing the relations y < z by w < z for all z €
U(y) — U(w). As before, e(P”) > e(P). The contradiction shows P is a semiorder.

O

At first glance, Theorem 8.7 seems to be very helpful in determining e(n, k),
and some progress is made in Fishburn and Trotter (1992). However, the general
problem remains open.

Recently, P. Winkler (pers. comm.) has proposed another extremal problem in-
volving semiorders. For a poset P = (X, P) and a point x € X, let deg(x) = {y €
X:y<xinP, ory >xin P}|. Then define the flexibility of P, denoted flex(P),
by

flex(P) = Z(deg(x))z.

xeX

Now let n and k be fixed integers with 0 < k < 2)- It is an easy exercise to show
that among all posets containing » points and k& comparable pairs, any poset with
maximum flexibility is a semiorder.

Problem 8.8. For fixed n and k, find all semiorders with n points and k compa-
rable pairs for which the flexibility is maximum.

Problem 8.9. For a poset P = (X, P) with n points and k comparable pairs, let i
be an integer with 0 <i < k and let a; denote the number of permutations (linear
orders, not necessarily linear extensions) of the ground set X so that exactly i of
the k comparable pairs are in the same order as in P. Then S 4 = n!, and

A1 ()

a; = ay_;, foreach i =0,1,...,k. Is the sequence ay, ay, . . ., ag unimodal?

Winkler noted that the sequence need not be log-concave, so the mixed volumes
approach used by Stanley (see the discussion in section 6) will not apply.

The next result is a recent theorem of Brightwell (1989) establishing the 1-2
conjecture for semiorders.

3
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Theorem 8.10. Let P = (X, P) be a semiorder which is not a chain. Then X con-
tains a pair x,y of incomparable points with % < Problx < y] < %

Proof. Suppose the result is false and choose a counterexample with |X| mini-
mum. Define a linear extension L by x < y <= Prob[x < y| > % Let | X| =n and
label the points in X so that x; < x; <--- <Xx,in L.

Since P is a semiorder, there exists a function f: X — Rsothatx <y in P <
f(y) > f(x) +1. We now show that f(x;) < f(x2) <--- < f(xa). Suppose to the
contrary that 1 <i < j < n, but that f(x;) < f(x;). Then x; £ x; in P. However,
x; < xjin L,s0 x; # x; in P. Thus x; || x; in P. However, the inequality f(x;) < f(x:)
implies that u > x; in P whenever u > x; in P. Dually v <x; in P whenever v < x;
in P.

It follows that every L € €(P) with x; < x; in L can be transformed into a linear
extension L' with x; < x; in L' just by interchanging these two points. The mapping
is 1-1 which shows Probl[x; < x;] > 1. Thus Prob[x; < x;] > 2 and x; < x; in L. The
contradiction shows f(x;) < f(xy) < --- < f(x,) as claimed.

We now show that x; || x;;; for all i =1,2,...,n — 1. Suppose to the contrary
that x; < x;;; in P. Then every point of X’ = {x, 2, ..., x;} is less than every point
of X" = {Xis1,Xis1,---,%n}. At least one of P’ and P” is not a chain, and we can

restrict our attention to that subposet to locate x and y. The contradiction shows
x; || xjp1 fori =1,2,...,n—1 as claimed.

We say x; separates x; and x;, from above if x; :> x; and x; || x;;1. Dually we
say x; separates x; and x;,y from below if x; <: x;, and x; || x;. We say x; separates
x; and x;,, if it cither separates them from above or it separates them from below.

If x; separates x; and x;,; {rom above, then x;, < x;in P for k =1,2,...,i. This
implies that x; does not separate x; and x;,; when 1 < k < i. Dually, if x; separates
x; and x;;; from below, then x; does not separate x; and x;,; when i < k < n. So
each x; separates at most one pair from below and at most one pair from above.

However, x; and x, cannot separate pairs from above and x,_; and x, cannot
separate any pair from below. If follows that there are at most 2(n — 4) +4 =2n—4
ordered pairs (i, j) so that x; separates x; and x;,;. Hence there is at least one (in
fact at least two) values of i with 1 < i < n for which there is at most one j so that
x; separates x; and x;,1.

For such a value of i, partition €(P) into three sets by letting €; = {L € €(P):
x; < x;41 in L, and no element separating x; and x;,; is between them in L};
& ={L € €MP): x; <x;yyand L ¢ € },and € = {L € €(P): x;;; < x;in L}. Now
let t = |€(P)|. Then |&;| + |&,| > 2t/3.

If |%,| > /3, let j be the unique integer so that x; separates x; and x;,;. Then x;
is between x; and x;,; in every L € &;. If j > i + 1, this implies Prob[x; < x;,1] > %,
and if j < i, it implies Prob[x; < x;] > 1. Both of these implications are false, so
we know |&,| < ¢/3. Thus |%;| > t/3.

Now let L € 4;. Form L' from L by interchanging x; and x;,,. This interchange
is possible since any point between x; and x;,; in L is incomparable with both.
This procedure determines a 1-1 map from €, to ;. However, no such map exists
because || < t/3. The contradiction completes the proof. O
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The connection between semiorders and the %— %— conjecture is even more com-
plex than suggested by the preceding result. Consider the infinite poset P = (X, P),
where X = {x;: i € Z}. Furthermore, we define x; < xjinPifandonlyifi <j—1
in Z. Then P is a width-two semiorder. Also observe that any incomparable pair
in P is of the form (x;, x;,1), for some i € Z. For a positive integer n, let P, denote
the subposet of P determined by the points whose subscripts in absolute value are
at most n. Then it is an easy exercise to show that

Jlim Probxo > x1] = (5 — V5)/10.

Note that (5 —v/5)/10 ~ 0.2764 < % So the %—% conjecture is false for infinite
width-two semiorders, even though it is true for any finite poset which is either a
width-two poset or is a semiorder! Also note that this example shows that the
inequality in Theorem 6.7 is best possible when considering infinite posets of
bounded width. Further results on infinite posets and balanced pairs are given
in the recent papers Brightwell (1988, 1993).

Rabinovitch (1978) showed that the dimension of a semiorder is at most 3, but
that an interval order may have arbitrarily large dimension. Fiiredi et al. (1991)

showed that if P = (X, P) is an interval order of height », then
dim(P) < lglgn + (% + 0(1)) lglglgn.

This inequality is best possible. For an integer n > 2, let I,, denote the canonical
interval order consisting of all intervals with integer end points from {1,2,...,n}.
Then Fiiredi et al. (1991) showed that

dim(I,) = Iglgn + (% + 0(1)) Iglglgn.

This formula is closely related to the asymptotic formula given in section 7 for
the dimension of the poset formed by the 1-element and 2-element subsets of
{1,2,...,n}.

9. Degrees of freedom

Given a family & of sets, a poset P is called an F—inclusion order if there exists
a mapping which assigns to each x € X a set S(x) € ¥ so that x <y in P <
S(x) C S(v). As an example, if & is the collection of all closed intervals of R, then
the F-inclusion orders are exactly the posets with dimension at most 2.

Fishburn and Trotter (1990) studied the class of angle orders. These are the
posets which arise when & is the set of angular regions in the Euclidean plane,
Le., convex regions bounded by two rays emanating from a common point. They
proved that every interval order is an angle order, as is every poset of dimension
at most four. Both results admit elementary proofs, but while the first result may
be mildly surprising, the second is certainly not. In a certain sense, to specify an
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angle requires four coordinates—two to locate the corner point and one for each
ray to specify the angle from [0,27) at which it leaves the corner point.

Fishburn and Trotter conjectured that not all 5-dimensional posets are angle or-
ders, but were only able to prove the existence of a 7-dimensional poset which is not
an angle order. R. Jamison (pers. comm.) settled this conjecture in the affirmative
with an intricate ad hoc argument. However, Alon and Scheinerman (1988) have
produced a much more general result using a powerful theorem of Warren (1968).
We now outline their approach.

For x € R, let sgn(x) = + if x >0 and sgn(x) = — if x <0. For a vector x =
(x1,%2,...,X), sgn(x) denotes the vector (sgn(x;),sgn(x,),...,sgn(x;)). The vector
sgn(x) is called the sign pattern of x and ¢ is the length of the pattern. We say F
has at most k degrees of freedom, and write deg(%) < k, if the following conditions
are satisfied:

(1) there exists a mapping F which assigns to each S € ¥ a k-tuple F(S) =
(5(1),8(2),...,S(k)) from R¥;

(2) there exists a finite set Py, Py, ..., P, of polynomials in 2k variables x1, x5, . . .,
Xor; and

(3) there exists a set J of sign patterns of length ¢ so that for every pair S, T of
sets from F, S C T <= sgn(y(S,T)) € J where y(S, T) is the vector of length ¢
whose jth coordinate is given by P;(S(1),5(2),...,8(k), T(1), T(2),...,T(k)).

To illustrate this definition, let % denote the set of closed disks in R?. With
each set (disk) S, we take (S(1),5(2)) as the coordinates of the center of S and
S(3) as the radius. Take Py = x¢ — x3 and Py = (x5 — x3)? — (x5 — x2)% — (x4 — x1)%.
Then take J = {(+,+)}. Let S and T be disks. Then S C T <= the distance from
the center of S to the center of T plus the radius of § is less than or equal to
T <= sgn(y(S, T)) € J. This shows deg(%) < 3, i.e., ¥ has at most three degrees
of freedom. As a second example, the set &/ of angular regions in R? has at most
four degrees of freedom. Here is Warren’s theorem (Warren 1968).

Theorem 9.1. Let P, P,,...,P; be polynomials in m variables and let d denote the
maximum degree among these polynomials. Then there are at most (4edt /m)™ sign
patterns of the form sgn(P;(x), Py(x),...,P,(x)) where X = (x1,X2,...,Xn) ranges
over R™.

Let P(n, k) denote the number of labelled posets on n points having dimension
at most k. Clearly P(n,k) < (n!)* < n*". Subsequent arguments will require the
following lower bound on P (n,k) due to Alon and Scheinerman (1988). We leave
the proof as an exercise.

Theorem 9.2. The number P (n, k) of labelled posets on n points having dimension
at most k satisfies:

P(n,k) > (n/log pytk-2kn/ logn,

The preceding two results combine easily to prove the following striking result
of Alon and Scheinerman (1988).
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Theorem 9.3. Let & be any family of sets having at most k degrees of freedom.
Then there exists a poset P with dim(P) < k + 1 which is not an F-order.

Proof. Suppose deg(F) < k is witnessed by the set Py, Py, ..., P, of polynomials
and the set J of test patterns. Let d denote the maximum degree of these poly-
nomials. We show that when 7 is sufficiently large, there is a labelled poset on n
points having dimension at most k + 1 which is not an %-order.

When P is a labelled poset on the ground set X = {1,2,...,n} and P is
an F-order, we designate the sets in F corresponding to the points in X by
(81,82,...,8,). Each §; is associated with a vector x; = (x;1, Xy, . . ., Xi). For each
ordered pair (i,j) with 1<i, j<n and i #j, we know i <j in P<=§; C
Sj <= sgn(y(S;,S;)) € J. Recall that the ath coordinate of the vector y(S;, S ) is
Po(Xit, Xizy « oy Xigey X1, Xj2, -+, Xjie)-

Concatenate in lexicographic order the n(n — 1) vectors y(S;,S;) into a single
vector y of length n(n — 1)t. Then sgn(y) is the sign pattern of a vector whose
entries are determined by a family of n(n — 1)t polynomials in nk variables Xig
where 1 <i<nand1<B <k

If (T, T>,...,T,) is another n-tuple of sets from % which yields the same
sign pattern sgn(y) as (S1,S,,...,5,), then these two n-tuples correspond to the
same labelled poset P. By Warren’s theorem, we conclude that there are at most
(4edn(n — 1)t /nk)™ possible sign patterns. However, this number is clearly less
than P(n,k +1) when n is sufficiently large. [

There are a number of perplexing open problems involving the representation of
posets as a family of sets ordered by inclusion. Here are two of the most appealing.
Given a point x in d-dimensional Euclidean space and a positive number r, let
B4(x,r) denote the ball of radius r centered at x, i.e., the set of points at distance
at most r from x. It is customary to call B,(x,r) a d-dimensional sphere. A poset
P = (X, P) is called a d-dimensional sphere order if for each x € X, there exists a
d-dimensional sphere B, so that x <y in P if and only if B, C By, forallx,y € X.

Problem 9.4. If P is a finite poset, does there always exist a positive integer d so
that P is a d-dimensional sphere order?

For historical reasons, a 2-dimensional sphere order is called a circle order,
although it might be better to call it a disk order. Fishburn (1988) proved that
every interval order is a circle order. Also, it is easy to see that every 2-dimensional
poset is a circle order; in fact, we may require that the centers of the circles used
in the representation be collinear. On the other hand, by Theorem 9.3, there exists
a 4-dimensional poset which is not a circle order.

Problem 9.5. If P is a finite poset and dim(P) < 3, is P a circle order?

Problem 9.5 is intriguing because Scheinerman and Weirman (1989) showed that
the countably infinite 3-dimensional poset Z° is not a circle order. On the other
hand, it is a relatively easy exercise to show that if %, is the family of all regular
n-gons in the plane (with bottom side horizontal) and P is any finite poset with
dim(P) < 3, then P is a %,-inclusion order, for all n > 3.
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(a) (b) ©)

Figure 10.1.

10. Dimension and planarity

A poset P is said to be planar if it has a planar Hasse diagram. The poset shown
in fig. 10.1a is nonplanar, but the posets in figs. 10.1b and 10.1c are planar. Note
that the diagram for the last example can be redrawn without edge crossings.

As is well known, a planar poset P having a greatest and least element has
dimension at most 2. Kelly and Rival (1975) provide a forbidden subposet charac-
terization of nonplanar lattices by providing a minimum list & of lattices so that
a lattice P is planar if and only if P contains a lattice from & as a subposet. One
lattice from £ is shown in fig. 10.1a. The lengthy argument for this theorem must
be cleverly organized just so it can be written down on a finite number of pages.
There are several other theorems in dimension theory for posets which exhibit
these same characteristics: Kelly’s (1977) determination of all 3-irreducible posets,
Trotter’s (1981) determination of all 3-interval irreducible posets of height 2, and
Kimble’s (1973) proof that if n >4 and |X| < 2n+1, then dim(P) < n unless P
contains the standard n-dimensional poset So. In fact, Gallai’s (1967) forbidden
subgraph characterization of comparability graphs belongs in this same grouping -
especially in view of its value in obtaining a list of all 3-irreducible posets (see
Trotter 1992, Trotter and Moore 1976).

Planar posets can have dimension exceeding 2: the planar posets in figs. 10.1b
and 10.1c have dimensions 3 and 4 respectively. Trotter and Moore (1977) proved
that a planar poset having either a greatest or least element has dimension at most
3. Kelly (1981) then constructed planar posets of arbitrary dimension by the device
of embedding S° in a planar poset. Kelly’s construction is illustrated in fig. 10.2.

Three interesting problems remain. Do there exist irreducible planar posets of
arbitrarily large dimension? Provide a characterization of planar posets in terms
of forbidden subdiagrams. Develop a fast algorithm which will produce a planar
drawing of the Hasse diagram of a poset if such a drawing exists.

Recently, Schnyder (1989) produced a striking theorem relating dimension
and planarity in a different manner. Let G = (V,E) be an ordinary undirected
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Figure 10.2.

graph. We associate with G a poset P = P(G) of height 2. In P, MIN(P) = V and
MAX(P) = E. Also vertex x is less than edge e in P <= x is an end point of e.
We call P the incidence poset of G. Here is Schnyder’s theorem.

Theorem 10.1. Let G be a graph. Then G is planar <= the dimension of its
incidence poset is at most 3.

Proof. Let P = P(G) be the incidence poset of G. Suppose first that dim(P) < 3.
We show that G is planar. Suppose to the contrary that G is nonplanar. [The
argument we give for this part is patterned after a proof of Babai and Duffus
(1981).]

Choose an embedding of P in R* which associates with each y € V U E a vector
y = (y1,y2,y3) € R® so that u <v in P <= u; <v; in R for i = 1,2,3. For each
y € X UE, let m(y) be the orthogonal projection of y on the plane x; +xz +x3 =0
in R3. Without loss of generality, all points in X U E project to distinct points on
the plane x; + x; + x3 = 0, and these points are in general position.

For each u € X and each e € E containing u as an end point, join 7(z) and
r(e) with a straight line segment. Since G is nonplanar, there exist distinct vertices
u,v € V and distinct edges e, f € E so that u is an end point of e but not of f, v
is an end point of f but not of e, and the line segment 7(u)m(e) crosses the line
segment 7(v)7(f) at a point p interior to both. Let z be the point on the line
segment ue in R? so that 7 (z) = p. Also let w be the point on the line segment vf
in R? so that a(w) = p. Then either z < w in R® or w < z in R®. However, z < w
implies u < z < w < f, which is false since u is not an end point of f. Similarly
w < z implies v < e which is also false. The contradiction shows that G is planar.
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Figure 10.3.

Now suppose that G is planar. We show that P has dimension at most 3. Without
loss of generality, we assume that G is maximal planar. Choose a planar diagram
of G using straight line segments for the edges. This diagram is a triangulation T
of the plane. Each interior region is a triangle, and 7" has three exterior vertices
which we label in clockwise order uy, u;, and us.

Now consider a function f which assigns to each angle of each interior triangle
of T a color selected from {1,2,3}. The function f is called a normal coloring of
T '

(1) all angles incident with exterior vertex u; are mapped by f to color i for
i=1,2,3;

(2) at each interior vertex u of T, there is an angle mapped by f to color i for
i=1,2,3;

(3) at each interior vertex u of T, all angles mapped by f to color i are consec-
utive for i = 1,2,3;

(4) at each interior vertex u of T the block of angles mapped by f to color 2
appears immediately after the block of angles mapped by f to color 1; and

(5) for each elementary triangle of T, f assigns the three angles to colors 1, 2,
and 3 in clockwise order.

We illustrate this definition in fig. 10.3 with a normal coloring of a triangulation.

The following claim yields to a straightforward inductive argument and its proof
is left as an exercise.

Claim 1. Every planar triangulation has a normal coloring.

Let C be a cycle in a planar triangulation 7" which has been colored normally.
A vertex x belonging to C is called a Type i vertex on C if all angles incident with
x and interior to C are colored i. When C is exterior triangle, u; is a Type i vertex
on C.
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Claim 2. If Cisacyclein T, then C contains a Type i vertex, for each i =1,2,3.

Proof. Suppose the claim is false. Choose a counterexample C containing the
minimum number of elementary triangles. Clearly C is not the boundary of an
elementary triangle. Now suppose C does not have a Type 1 vertex.

Suppose that C has two nonconsecutive vertices x and y which are adjacent via
an edge e = xy interior to C. Then the region bounded by C can be partitioned
into regions bounded by cycles C’ and C” having e as a common edge. Now C’
and C” both have a Type 1 vertex. If x is a Type 1 vertex for C’ and for C”, then
x is a Type 1 vertex for C. An analogous statement holds for y. We conclude that
one of x and y is a Type 1 vertex for C' and the other is a Type 1 vertex for
C". Consideration of the two elementary triangles sharing the edge shows this is
impossible.

Now let C = {x1,x,,...,x;} and let x; and x;,; be any two consecutive vertices
of C and let z; be the vertex so that x;x;,,z; is an elementary triangle interior to
C. Let C; be the cycle obtained by deleting the edge x;x;,; and adding the edges
x;z; and z;x;,1. Then C; has a Type 1 vertex because it contains fewer elementary
triangles than C. Clearly z; cannot be a Type 1 vertex on C; because z; is an
interior vertex of T.

It follows that one of x; and x;,; is a Type 1 vertex on C;. If x; is Type 1 on C;,
then the angle of triangle x;x;,,z; incident with x; must be colored 3; else x; is Type
1 on C. Thus the angle of x;x;,;z; incident with x;,; is colored 1. This implies that
x4 is not Type 1 for C;. Dually, if x;,; is Type 1 for C;, then the angle of x;x;,12;
incident with x;,; is colored 2, the angle of x;x;.;z; incident with x; is colored 1,
and x; is not Type 1 for C;.

If some vertex x;,; is Type 1 for both C; and C;,;, then x; is Type 1 for C. So
either x; is Type 1 for C; fori =1,2,...,s, or x;,1 is Type 1 for C; fori = 1,2,...,s.
In the first case, there is no Type 2 vertex on Cj; in the second, there is no Type
3 vertex on C,. The contradiction completes the proof. [

Claim 3. Let P; be the binary relation on the set V of vertices of G defined by
xP;y <= there exists an elementary triangle T having x and y as vertices in which

the angle incident at y is colored i. Then the transitive closure Q; = P; is a partial
order on X.

Proof. It suffices to show Q; has no directed cycles. This follows from Claim 2
since a directed cycle in Q; could not have either a Type i+ 1 or a Type i +2
vertex. 0O

For each i =1,2,3, let M; be a linear extension of Q;. Then let L; be any linear
extension of P so that:

(1) The restriction of L; to V is M;.

(2) For each e € E, the M;-largest element of V which is less than e in M; is less
than e in P.

Alternatively, L; is obtained from M; by inserting the elements of E as low
as possible. To complete the proof, it suffices to show that P = L; N L, N Ls. To
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]

A

Figure 10.4.

accomplish this, it is enough to show that for each edge e = xy and each vertex z
not an end point of e, there exists some i so that z > e in L;. This means that we
must find some M; in which z is above both x and y in M;. In fact we show that
there is some i for which z > x and z >y in Q;.

If z is an exterior vertex, say z = u;, then z is the largest element in Q;. Now
suppose z is an interior vertex. Then for each i = 1,2, 3, there is a path S;(z) from
z to the ith exterior vertex u;. The starting point of S;(z) is vy = z. If v; has been
determined, and v; is an interior vertex, then vj,; is the unique vertex so that the
angles at v; on either side of the edge v;v;,; are colored i +1 and i + 2.

The paths S;(z), S2(2), and S3(z) are pairwise disjoint and partition T into three
regions Ry, R;, and R; as shown in fig. 10.5.

If the edge e = xy joins two vertices in the region R;, then z is greater than both
x and y in Q;. This completes the proof. [J

It is well known that the problem of deciding whether a poset P satisfies
dim(P) < 2 belongs to the class P of problems admitting a polynomial-time so-
lution. For fixed ¢ > 3, Yannakakis (1982) proved that the problem of decid-
ing whether a poset P satisfies dim(P) < ¢ is NP-complete. For these reasons,
Schnyder’s theorem (10.3) is all the more striking since it equates a well-known
polynomial-time problem, planarity testing, with an apparently NP-complete prob-
lem, deciding whether a particular poset has dimension at most 3. However, the
poset being tested has a special form. The maximal elements all have degree two
in the comparability graph. Also, it is not known whether it is NP-complete to
answer whether the dimension of a height-two poset is at most 3. The answer is
“yes” for dimension 4 or more.

Schnyder’s theorem has been applied to find efficient algorithms for laying out
a planar graph on a grid (see Kant 1992, Schnyder 1990, Schnyder and Trotter
1995). Recently, Brightwell and Trotter (1994a) have extended Schnyder’s theorem
to arbitrary planar maps.

Theorem 10.2. Let G be a planar multigraph and let D be a drawing of G in
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Figure 10.5.

the plane so that no edges cross. Then let P(D) be the poset consisting of the
vertices, edges and faces of the drawing D partially ordered by inclusion. Then
dim(P(D)) < 4.

The proof of Theorem 10.4 depends on the development of special graph-
theoretic techniques applied to ordinary planar graphs satisfying a property some-
what weaker than 3-connectedness. The argument is inductive and required
Brightwell and Trotter (1993) to first establish the following theorem.

Theorem 10.3. Let M be a convex polytope in R, and let Py, denote the poset
consisting of the vertices, edges and faces of M partially ordered by inclusion. Then

In fact, the proof of Theorem 10.3 yields the even stronger conclusion that the
subposet of Py, determined by the vertices and the faces of M is 4-irreducible.
Theorem 10.3 cannot be extended to yield a bound of the dimension of the face
lattice of a convex polytope in R” for n > 4. This is due to the existence of cyclic
polytopes [see the discussion in Brightwell and Trotter (1993)].

However, Theorem 10.3 can be extended to surfaces of higher genus since it
is easy to prove by induction on n the existence of a function f(n) so that the
dimension of the poset of vertices, edges and faces of a multigraph drawn without
edge crossings on a surface of genus #n has order dimension at most f(n). The
only difficulty encountered in establishing the existence of f(n) is the case n = 0.
Here we know of no elementary proof of any finite bound, although of course
Theorem 10.3 yields an upper bound of 4 in this case.
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11. Regressions and monotone chains

If P= (X, P)is aposet, we call a map f: X — X a regression if f(x) < x for every
x € X. When C ={x; < x, <---<x,} is a k-element chain in P, we say that a
regression f is monotone on C if f(x;) < f(xz) < --- < f(x;). By convention, a
regression is monotonic on any 1-element chain.

For k > 1, there are several interesting conditions on a poset which guarantee
that every regression is monotonic on some k-element chain. Here is an important
example due to Rado (1971).

Theorem 11.1. For every k > 1, there exists an integer ny = ny(k) so that if n > ng
and f is a regression on the subset lattice 2", then f is monotonic on some k-element
chain.

An alternative proof of Theorem 11.1 has been provided by Harzheim (1982) and
this argument extends to a wider class of posets. However, neither argument gives
much information about how large ny must be in terms of k. This is not surprising
in view of the arguments’ dependence on Ramsey-theoretic tools emphasizing
existence.

By way of contrast, we present in this section a sharp result for posets of bounded
width. The result is due to Peck et al. (1984).

Theorem 11.2. Let w and k be positive integers and let P = (X, P) be a poset of
width at most w. If |X| = (w+1)¥"! then every regression is monotonic on some
k-element chain.

Proof. We proceed by induction on k, noting that the case k = 1 is trivial. Now
assume k > 2 and that the theorem holds for smaller values of k. Let P = (X, P)
be any poset of width at most w and let f be any regression on P. We show f is
monotonic on some k-element chain.

For each x € X, let H(x) be the largest ¢ for which there is a z-element chain
X1 <Xxp <--- < x; = x on which f is monotonic. Without loss of generality H (x) <
k—1 for all x € X.

ThenletY ={xe X: Hx) <k—-1},/F ={x € X: Hx) =k —1,f(x) =x} and
M={xeX: Hx)=k-1, f(x) # x}. Evidently, X = Y UF UM is a partition.

Now suppose that F is not an antichain. Choose x,x’ € F with x < x’ in P.
Then choose a (k — 1)-element chain x; < x < --- < x;-; = x on which f is mono-
tonic. Then adding x’ to this chain yields a k-element chain on which f is mono-
tonic since f(x1) < f(x2) < -+ < f(xx_y) = f(x) = x < x' = f(x'). The contradic-
tion shows that F is an antichain and thus |F| < w.

Next suppose that x € M and that H(f(x)) =k — 1. Then we may choose a
(k — 1)-element chain x; < x; < --- < x,_; = f(x) on which f is monotonic. Since
f(x) < x, we may add x to this chain to obtain a k-element chain on which f is
monotonic. The contradiction shows H(f(x)) <k —2 for everyx e M,ie.. k >3
and f(M)CY.
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Now let y € Y. It is easy to see that f(y) also belongs to y. Thus the restriction
of f to Y is a regression. Since this restriction is not monotonic on any chain of
k — 1 points, it follows from the inductive hypothesis that |Y| < (w + 1)¥~2,

Since |X| > (w+ 1D)*' |Y| < (w+1)¥2 and |F| < w, we conclude that

IM| = |X| = [Y]|—|F|

>SwWH+DFT — (w2 —w
=wl[(w+1)F2 1]
> w|Y|

Since the width of P is at most w, it follows that there is some yo € Y for which
the inverse image f~'(yo) is not an antichain. We may then choose distinct points
x, x' € M for which f(x) = f(x') =y, and x < x' in P. As before, we choose a
(k —1)-element chain x; < xp < --- < x4,_; = x on which f is monotonic and add
x' to form the desired k-element chain. 0O

The reader may enjoy the challenge of showing that the inequality |X| > (w +
1)1 in Theorem 11.2 is best possible. The basic idea is to fix w and then construct
a poset Py = (Xj, P;) and a regression f on Py by induction on k. The poset P,
is a w-element antichain, and P, is constructed by placing w disjoint chains, each
containing 1 + (w + 1)~2 points, on top of P,_;. We refer the reader to Peck et
al. (1984) for further details.

There appears to be some intrinsic connection between regressions and arith-
metic progressions. Following Trotter and Winkler (1987), we define an arith-
metic progression in a poset P = (X, P) as a chain x; < x < --- < x, for which
there is a constant d so that there are exactly d points in each of the intervals
{yeX:x; <y <xia}fori=1,2,...,¢t— 1. The following result is due to Trotter
and Winkler (1987).

Theorem 11.3. Let k and w be positive integers and let & > 0. Then there exists
a number ny = no(k,w, &) so that if P = (X, P) is a poset of width at most w and
| X| > no, then for every subset S C X with |S| > €|X|, there is a k-element chain
X1 <Xy < --- < x¢ contained in S which is also a k-term arithmetic progression in
P.

The proof of Theorem 11.3 proceeds by induction on w with the case w = 1 being
a restatement of Szemerédi’s (1975) celebrated theorem on arithmetic progressions
in subsets of N having positive upper density. It is reasonable to conjecture that
for each k > 1, there is some ny = ny(k) so that if L = (X, P) is any distributive
lattice with | X| > ng, then every regression on L is monotonic-on some k-element
chain. This is supported by Theorems 11.1 and 11.2.

Also, we believe that for every k > 1 and every ¢ > 0, there is some ny = ny(k, €)
so that if L = (X, P) is a distributive lattice with |X| > ng and S is any subset of
X with [S| > ¢|X], then S contains a k-term arithmetic progression. It is an easy
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exercise to show that this conjecture holds in the case where L is a subset lattice
of the form 2".

Some modest progress has been made on these conjectures. Alon et al. (1987)
study regressions on up sets in n?, while Kahn and Saks (1988) show that for each
£ > 0, there exists an integer ng so that if L = (X, P) is a distributive lattice and
|X| > ng, then any antichain in L has less than |X| points.
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