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Textbook: James, Gareth, Daniela Witten, Trevor Hastie and Robert
Tibshirani, An introduction to statistical learning. Vol. 112, New York:
Springer, 2013
Data sets to explore:
@ Data sets in textbook
o MNIST digit data
@ Characters
o Textures
o Flowers
@ Face data and more face data
More advanced data:
@ ImageNet
@ UCI Machine Learning Repository
o Visual Geometry Group

2/27


http://www-bcf.usc.edu/~gareth/ISL/data.html
http://yann.lecun.com/exdb/mnist/
http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/
http://www.robots.ox.ac.uk/~vgg/research/texclass/
http://www.robots.ox.ac.uk/~vgg/data/flowers/
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
http://www.face-rec.org/databases/
http://www.image-net.org/
http://archive.ics.uci.edu/ml/index.php
http://www.robots.ox.ac.uk/~vgg/data/
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@ Chapter 1: Introduction to basic learning tasks
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Task I:

Numerical prediction

. Introduction
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FIGURE 1.1. Wage data, which contains income survey information for males
from the central Atlantic region of the United States. Left: wage as a function of
age. On average, wage increases with age until about 60 years of age, at which
point it begins to decline. Center: wage as a function of year. There is a slow
but steady increase of approzimately $10,000 in the average wage between 2003
and 2009. Right: Bozplots displaying wage as a function of education, with 1
indicating the lowest level (no high school diploma) and 5 the highest level (an
advanced graduate degree). On average, wage increases with the level of education.
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Numerical prediction

Advertising data
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FIGURE 2.1. The Advertising data set. The plot displays sales, in thousands
of units, as a function of TV, radio, and newspaper budgets, in thousands of
dollars, for 200 different markets. In each plot we show the simple least squares
fit of sales to that variable, as described in Chapter 3. In other words, each blue
line represents a simple model that can be used to predict sales using TV, radio,
and newspaper, respectively.
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Task Il: Categorical prediction

Stock market data
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FIGURE 1.2. Left: Boxplots of the previous day’s percentage change in the S&P
index for the days for which the market increased or decreased, obtained from the
Smarket data. Center and Right: Same as left panel, but the percentage changes
for 2 and 8 days previous are shown.
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Categorical prediction

Gender: Male or Female?

Email spam: Yes or No?

Disease: Yes or No?

Digit: 0,1,2,...,9?

Images: Cat or Dog?
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Task IlI: Clustering

Gene expression
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FIGURE 1.4. Left: Representation of the NCI60 gene expression data set in
a two-dimensional space, Z1 and Za. Each point corresponds to one of the 64
cell lines. There appear to be four groups of cell lines, which we have represented
using different colors. Right: Same as left panel except that we have represented
each of the 14 different types of cancer using a different colored symbol. Cell lines
corresponding to the same cancer type tend to be nearby in the two-dimensional
space.
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Community detection




Outline

© Chapter 2: Basic concepts
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Regression

Model:
Y=Ff(X)+e

where f : RP — R
Given data: {(Xj, Yi)}i=1,..n

Estimator:

Theory: study ||f — ]
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Some terminology

© Supervised versus Unsupervised Learning
» Supervised: For each data X;, there is an associated response or label
Yi-
» Unsupervised: The X;'s do not have associated responses or labels.
» Semi-supervised:

@ Regression versus Classification
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Example
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FIGURE 2.2. The Income data set. Left: The red dots are the observed values
of income (in tens of thousands of dollars) and years of education for 30 indi-
viduals. Right: The blue curve represents the true underlying relationship between
income and years of education, which is generally unknown (but is known in
this case because the data were simulated). The black lines represent the error
associated with each observation. Note that some errors are positive (if an ob-
servation lies above the blue curve) and some are negative (if an observation lies
below the curve). Overall, these errors have approzimately mean zero.
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Example

FIGURE 2.3. The plot displays income as a function of years of education
and seniority in the Income data set. The blue surface represents the true un-
derlying relationship between income and years of education and seniority,
which is known since the data are simulated. The red dots indicate the observed
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Interesting questions

Write X = (Xl,...,Xp)T. Then f(X) = f(X1,...,Xp).
@ Which X; is associated with the response?
@ What is the relation between f(X) and each X;?

o Can the relation between f(X) and X be adequately summarized
using a linear equation, or is the relation more complicated?
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How to estimate 7

Parametric methods — linear regression:

f(X) :ﬁo+ﬁ1X1 =+ ... +ﬂpo
Find {f0, 01, ..., 0p} such that
Yir Bo+ b1Xii+ ...+ BpXip

More generally: f(X) is a linear combination of L basis functions
{61(X) }i=1,....L:
f(x) = B191(X) + ...+ Brou(X)

Find {f1,..., 0L} such that

Yim B161(Xi) + ... + Broc(Xi)
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income =& By + 1 X education+ Py X seniority.
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FIGURE 2.4. A linear model fit by least squares to the Income data from Fig-
ure 2.3. The observations are shown in red, and the yellow plane indicates the
least squares fit to the data.
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Non-parametric methods

o Nearest neighbors
o Kernel regression
@ Local linear/polynomial regression

o Partitioning estimates
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Error measurements

Training data: {(X;, Y)}i=1. .nu., — estimator f

Ngrain

Training Error =

N 2

vi - (X))
Ntrain i—1 ( ( )
A test data point: (Xp, Yo)

Prediction error = ’Yo - f(Xo)’

Test data set: {(Xj, Yj)}j=1,...,neest

Mean Squared Error (MSE) =

Ntest P
J_

19/27



The classification setting

Training data: {(X;, Yi)}i=1 where Y; are qualitative

y--oyMtrain

I(Y; # Vi)
=1

Training Error =
Ntrain

A test data point: (Xp, Yp)

Prediction error = I(Yy # \A/o)

Test data set: {(Xj, Yj)}i=1,..,mest

Mean Squared Error (MSE) =

Ntest ._
J_
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Model complexity/flexibility
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FIGURE 2.9. Left: Data simulated from f, shown in black. Three estimates of
f are shown: the linear regression line (orange curve), and two smoothing spline
fits (blue and green curves). Right: Training MSE (grey curve), test MSE (red
curve), and minimum possible test MSE over all methods (dashed line). Squares
represent the training and test MSEs for the three fits shown in the left-hand
panel.
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Model complexity/flexibility
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FIGURE 2.10. Details are as in Figure 2.9, using a different true f that is
much closer to linear. In this setting, linear regression provides a very good fit to
the data.

How to choose a good parameter? — Cross validation

22/27



K-Nearest Neighbors (KNN)

Training data: {(X;, Y:)}i=1,..n
Regression: at Xp,

ZY

IENo

where Ny contains the K points in the training data that are closest to X

Classification: Assume Y € {1,2,...}. At the test obervation Xp,

P(Y =JjIX =X0) = Z
IENQ

KNN classifies Xy to the class with the largest probability.
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KNN Example

FIGURE 2.14. The KNN approach, using K = 3, is illustrated in a simple
situation with siz blue observations and siz orange observations. Left: a test ob-
servation at which a predicted class label is desired is shown as a black cross. The
three closest points to the test observation are identified, and it is predicted that
the test observation belongs to the most commonly-occurring class, in this case
blue. Right: The KNN decision boundary for this example is shown in black. The
blue grid indicates the region in which a test observation will be assigned to the
blue class, and the orange grid indicates the region in which it will be assigned to
the orange class.
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Too small or too large K

K\N K= K\N: K=100

FIGURE 2.16. A comparison of the KNN decision boundaries (solid black
curves) obtained using K = 1 and K = 100 on the data from Figure 2.13. With
K = 1, the decision boundary is overly flexible, while with K = 100 it is not
sufficiently flexible. The Bayes decision boundary is shown as a purple dashed
line.

@ K = 1: training error 0, test error 0.1695
@ K = 100: test error 0.1925
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Proper K = 10

KNN: K=10

FIGURE 2.15. The black curve indicates the KNN decision boundary on the
data from Figure 2.13, using K = 10. The Bayes decision boundary is shown as
a purple dashed line. The KNN and Bayes decision boundaries are very similar.
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It is important to choose a proper K
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FIGURE 2.17. The KNN training error rate (blue, 200 observations) and test
error rate (orange, 5,000 observations) on the data from Figure 2.13, as the
level of flexibility (assessed using 1/K ) increases, or equivalently as the number
of neighbors K decreases. The black dashed line indicates the Bayes error rate.
The jumpiness of the curves is due to the small size of the training data set.
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