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Approximate training data by a hyperplane

Training data: x1, x2, . . . , xN ∈ Rp

Hyperplane: 14.5 Principal Components, Curves and Surfaces 535

f(λ) = µ + Vqλ, (14.49)

where µ is a location vector in IRp, Vq is a p× q matrix with q orthogonal
unit vectors as columns, and λ is a q vector of parameters. This is the
parametric representation of an affine hyperplane of rank q. Figures 14.20
and 14.21 illustrate for q = 1 and q = 2, respectively. Fitting such a model
to the data by least squares amounts to minimizing the reconstruction error

min
µ,{λi}, Vq

N∑

i=1

∥xi − µ−Vqλi∥2. (14.50)

We can partially optimize for µ and the λi (Exercise 14.7) to obtain

µ̂ = x̄, (14.51)

λ̂i = VT
q (xi − x̄). (14.52)

This leaves us to find the orthogonal matrix Vq:

min
Vq

N∑

i=1

||(xi − x̄)−VqV
T
q (xi − x̄)||2. (14.53)

For convenience we assume that x̄ = 0 (otherwise we simply replace the
observations by their centered versions x̃i = xi − x̄). The p × p matrix
Hq = VqV

T
q is a projection matrix, and maps each point xi onto its rank-

q reconstruction Hqxi, the orthogonal projection of xi onto the subspace
spanned by the columns of Vq. The solution can be expressed as follows.
Stack the (centered) observations into the rows of an N × p matrix X. We
construct the singular value decomposition of X:

X = UDVT . (14.54)

This is a standard decomposition in numerical analysis, and many algo-
rithms exist for its computation (Golub and Van Loan, 1983, for example).
Here U is an N × p orthogonal matrix (UT U = Ip) whose columns uj are
called the left singular vectors; V is a p×p orthogonal matrix (VT V = Ip)
with columns vj called the right singular vectors, and D is a p×p diagonal
matrix, with diagonal elements d1 ≥ d2 ≥ · · · ≥ dp ≥ 0 known as the sin-
gular values. For each rank q, the solution Vq to (14.53) consists of the first
q columns of V. The columns of UD are called the principal components
of X (see Section 3.5.1). The N optimal λ̂i in (14.52) are given by the first
q principal components (the N rows of the N × q matrix UqDq).

The one-dimensional principal component line in IR2 is illustrated in Fig-
ure 14.20. For each data point xi, there is a closest point on the line, given
by ui1d1v1. Here v1 is the direction of the line and λ̂i = ui1d1 measures
distance along the line from the origin. Similarly Figure 14.21 shows the

where ν ∈ Rp, and Vq ∈ Rp×q with orthonormal columns.

Least squares:
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distance along the line from the origin. Similarly Figure 14.21 shows the
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How to solve the least squares?

Step 1: Find µ
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Use SVD
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Example

536 14. Unsupervised Learning

First principal component
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FIGURE 14.21. The best rank-two linear approximation to the half-sphere data.
The right panel shows the projected points with coordinates given by U2D2, the
first two principal components of the data.

two-dimensional principal component surface fit to the half-sphere data
(left panel). The right panel shows the projection of the data onto the
first two principal components. This projection was the basis for the initial
configuration for the SOM method shown earlier. The procedure is quite
successful at separating the clusters. Since the half-sphere is nonlinear, a
nonlinear projection will do a better job, and this is the topic of the next
section.

Principal components have many other nice properties, for example, the
linear combination Xv1 has the highest variance among all linear com-
binations of the features; Xv2 has the highest variance among all linear
combinations satisfying v2 orthogonal to v1, and so on.

Example: Handwritten Digits

Principal components are a useful tool for dimension reduction and com-
pression. We illustrate this feature on the handwritten digits data described
in Chapter 1. Figure 14.22 shows a sample of 130 handwritten 3’s, each a
digitized 16 × 16 grayscale image, from a total of 658 such 3’s. We see
considerable variation in writing styles, character thickness and orienta-
tion. We consider these images as points xi in IR256, and compute their
principal components via the SVD (14.54).

Figure 14.23 shows the first two principal components of these data. For
each of these first two principal components ui1d1 and ui2d2, we computed
the 5%, 25%, 50%, 75% and 95% quantile points, and used them to define
the rectangular grid superimposed on the plot. The circled points indicate
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Handwritten Digits

Data: Grayscale 16× 16, 658 of 3’s
14.5 Principal Components, Curves and Surfaces 537

FIGURE 14.22. A sample of 130 handwritten 3’s shows a variety of writing
styles.

those images close to the vertices of the grid, where the distance measure
focuses mainly on these projected coordinates, but gives some weight to the
components in the orthogonal subspace. The right plot shows the images
corresponding to these circled points. This allows us to visualize the nature
of the first two principal components. We see that the v1 (horizontal move-
ment) mainly accounts for the lengthening of the lower tail of the three,
while v2 (vertical movement) accounts for character thickness. In terms of
the parametrized model (14.49), this two-component model has the form

f̂(λ) = x̄ + λ1v1 + λ2v2

= + λ1 · + λ2 · . (14.55)

Here we have displayed the first two principal component directions, v1

and v2, as images. Although there are a possible 256 principal components,
approximately 50 account for 90% of the variation in the threes, 12 ac-
count for 63%. Figure 14.24 compares the singular values to those obtained
for equivalent uncorrelated data, obtained by randomly scrambling each
column of X. The pixels in a digitized image are inherently correlated,
and since these are all the same digit the correlations are even stronger.
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Singular values of X

538 14. Unsupervised Learning
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FIGURE 14.23. (Left panel:) the first two principal components of the hand-
written threes. The circled points are the closest projected images to the vertices
of a grid, defined by the marginal quantiles of the principal components. (Right
panel:) The images corresponding to the circled points. These show the nature of
the first two principal components.
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• Real Trace
• Randomized Trace

FIGURE 14.24. The 256 singular values for the digitized threes, compared to
those for a randomized version of the data (each column of X was scrambled).
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Representation using two principal components

14.5 Principal Components, Curves and Surfaces 537

FIGURE 14.22. A sample of 130 handwritten 3’s shows a variety of writing
styles.

those images close to the vertices of the grid, where the distance measure
focuses mainly on these projected coordinates, but gives some weight to the
components in the orthogonal subspace. The right plot shows the images
corresponding to these circled points. This allows us to visualize the nature
of the first two principal components. We see that the v1 (horizontal move-
ment) mainly accounts for the lengthening of the lower tail of the three,
while v2 (vertical movement) accounts for character thickness. In terms of
the parametrized model (14.49), this two-component model has the form

f̂(λ) = x̄ + λ1v1 + λ2v2

= + λ1 · + λ2 · . (14.55)

Here we have displayed the first two principal component directions, v1

and v2, as images. Although there are a possible 256 principal components,
approximately 50 account for 90% of the variation in the threes, 12 ac-
count for 63%. Figure 14.24 compares the singular values to those obtained
for equivalent uncorrelated data, obtained by randomly scrambling each
column of X. The pixels in a digitized image are inherently correlated,
and since these are all the same digit the correlations are even stronger.
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