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Approximate training data by a hyperplane

Training data: xi,xp,...,xy € RP
Hyperplane:

JO) =+ VA,
where v € RP, and V, € RP*4 with orthonormal columns.

Least squares:
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How to solve the least squares?

Step 1: Find p
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Step 1: Find the subspace Vj
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Use SVD

For convenience we assume that Z = 0 (otherwise we simply replace the
observations by their centered versions #; = x; — Z). The p X p matrix
H, = Vqu is a projection matriz, and maps each point x; onto its rank-
q reconstruction Hgx;, the orthogonal projection of x; onto the subspace
spanned by the columns of V. The solution can be expressed as follows.
Stack the (centered) observations into the rows of an N x p matrix X. We
construct the singular value decomposition of X:

X =UDVT, (14.54)

This is a standard decomposition in numerical analysis, and many algo-
rithms exist for its computation (Golub and Van Loan, 1983, for example).
Here U is an N x p orthogonal matrix (UTU = I,,) whose columns u; are
called the left singular vectors; V is a p x p orthogonal matrix (VI'V = I,)
with columns v; called the right singular vectors, and D is a p X p diagonal
matrix, with diagonal elements d; > dy > --- > d, > 0 known as the sin-
gular values. For each rank g, the solution V to (14.53) consists of the first
q columns of V. The columns of UD are called the principal components
of X (see Section 3.5.1). The N optimal A; in (14.52) are given by the first
¢ principal components (the N rows of the N x ¢ matrix U,Dy).
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Example
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First principal component

FIGURE 14.21. The best rank-two linear approximation to the half-sphere data.
The right panel shows the projected points with coordinates given by UzDa, the
first two principal components of the data.
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Handwritten Digits

Data: Grayscale 16 x 16, 658 of 3's
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FIGURE 14.22. A sample
styles.



Singular values of X
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FIGURE 14.24. The 256 singular values for the digitized threes, compared to
those for a randomized version of the data (each column of X was scrambled).
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Representation using two principal components

fA) = Z+ X v+ Aavg

= B+A1-E+A2-E.
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Section 14.5.1: Trevor Hastie, Robert Tibshirani, The Elements of
Statistical Learning, Second Edition.
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