Principal Component Analysis

Wenjing Liao
School of Mathematics
Georgia Institute of Technology

Math 4803
Fall 2019

Approximate training data by a hyperplane

Training data: $x_{1}, x_{2}, \ldots, x_{N} \in \mathbb{R}^{p}$

Hyperplane:

$$
f(\lambda)=\mu+\mathbf{V}_{q} \lambda,
$$

where $\nu \in \mathbb{R}^{p}$, and $V_{q} \in \mathbb{R}^{p \times q}$ with orthonormal columns.
Least squares:

$$
\min _{\mu,\left\{\lambda_{i}\right\}, \mathbf{V}_{q}} \sum_{i=1}^{N}\left\|x_{i}-\mu-\mathbf{V}_{q} \lambda_{i}\right\|^{2}
$$

How to solve the least squares?

Step 1: Find μ

$$
\begin{aligned}
\hat{\mu} & =\bar{x} \\
\hat{\lambda}_{i} & =\mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)
\end{aligned}
$$

Step 1: Find the subspace V_{q}

$$
\min _{\mathbf{V}_{q}} \sum_{i=1}^{N}\left\|\left(x_{i}-\bar{x}\right)-\mathbf{V}_{q} \mathbf{V}_{q}^{T}\left(x_{i}-\bar{x}\right)\right\|^{2}
$$

Use SVD

For convenience we assume that $\bar{x}=0$ (otherwise we simply replace the observations by their centered versions $\tilde{x}_{i}=x_{i}-\bar{x}$). The $p \times p$ matrix $\mathbf{H}_{q}=\mathbf{V}_{q} \mathbf{V}_{q}^{T}$ is a projection matrix, and maps each point x_{i} onto its rankq reconstruction $\mathbf{H}_{q} x_{i}$, the orthogonal projection of x_{i} onto the subspace spanned by the columns of \mathbf{V}_{q}. The solution can be expressed as follows. Stack the (centered) observations into the rows of an $N \times p$ matrix \mathbf{X}. We construct the singular value decomposition of \mathbf{X} :

$$
\begin{equation*}
\mathbf{X}=\mathbf{U D V}^{T} \tag{14.54}
\end{equation*}
$$

This is a standard decomposition in numerical analysis, and many algorithms exist for its computation (Golub and Van Loan, 1983, for example). Here \mathbf{U} is an $N \times p$ orthogonal matrix $\left(\mathbf{U}^{T} \mathbf{U}=\mathbf{I}_{p}\right)$ whose columns \mathbf{u}_{j} are called the left singular vectors; \mathbf{V} is a $p \times p$ orthogonal matrix $\left(\mathbf{V}^{T} \mathbf{V}=\mathbf{I}_{p}\right)$ with columns v_{j} called the right singular vectors, and \mathbf{D} is a $p \times p$ diagonal matrix, with diagonal elements $d_{1} \geq d_{2} \geq \cdots \geq d_{p} \geq 0$ known as the singular values. For each rank q, the solution \mathbf{V}_{q} to (14.53) consists of the first q columns of \mathbf{V}. The columns of $\mathbf{U D}$ are called the principal components of \mathbf{X} (see Section 3.5.1). The N optimal $\hat{\lambda}_{i}$ in (14.52) are given by the first q principal components (the N rows of the $N \times q$ matrix $\mathbf{U}_{q} \mathbf{D}_{q}$).

Example

FIGURE 14.21. The best rank-two linear approximation to the half-sphere data. The right panel shows the projected points with coordinates given by $\mathbf{U}_{2} \mathbf{D}_{2}$, the first two principal components of the data.

Handwritten Digits
Data: Grayscale $16 \times 16,658$ of 3 's

$$
\begin{aligned}
& 3333333333333 \\
& \text { 3333333333333 } \\
& \begin{array}{llll}
3 & 3333333 & 3333 \\
3 & 3 & 3 & 3 \\
3
\end{array} \\
& 333333333333 J \\
& 3333333333333 \\
& \text { 3333333332333 } \\
& 3333333333333 \\
& 333333333333 \\
& 3333333333333
\end{aligned}
$$

Singular values of X

FIGURE 14.24. The 256 singular values for the digitized threes, compared to those for a randomized version of the data (each column of \mathbf{X} was scrambled).

Representation using two principal components

$$
\begin{aligned}
\hat{f}(\lambda) & =\bar{x}+\lambda_{1} v_{1}+\lambda_{2} v_{2} \\
& =3+\lambda_{1} \cdot 3+\lambda_{2} \cdot 3
\end{aligned}
$$

Reference

Section 14.5.1: Trevor Hastie, Robert Tibshirani, The Elements of Statistical Learning, Second Edition.

