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Polynomial regression

Linear function: yi = β0 + β1xi + εi

Polynomial function:

266 7. Moving Beyond Linearity

• Regression splines are more flexible than polynomials and step
functions, and in fact are an extension of the two. They involve di-
viding the range of X into K distinct regions. Within each region,
a polynomial function is fit to the data. However, these polynomials
are constrained so that they join smoothly at the region boundaries,
or knots . Provided that the interval is divided into enough regions,
this can produce an extremely flexible fit.

• Smoothing splines are similar to regression splines, but arise in a
slightly different situation. Smoothing splines result from minimizing
a residual sum of squares criterion subject to a smoothness penalty.

• Local regression is similar to splines, but differs in an important way.
The regions are allowed to overlap, and indeed they do so in a very
smooth way.

• Generalized additive models allow us to extend the methods above to
deal with multiple predictors.

In Sections 7.1–7.6, we present a number of approaches for modeling the
relationship between a response Y and a single predictor X in a flexible
way. In Section 7.7, we show that these approaches can be seamlessly inte-
grated in order to model a response Y as a function of several predictors
X1, . . . , Xp.

7.1 Polynomial Regression

Historically, the standard way to extend linear regression to settings in
which the relationship between the predictors and the response is non-
linear has been to replace the standard linear model

yi = β0 + β1xi + ϵi

with a polynomial function

yi = β0 + β1xi + β2x
2
i + β3x

3
i + . . . + βdx

d
i + ϵi, (7.1)

where ϵi is the error term. This approach is known as polynomial regression,
polynomial
regressionand in fact we saw an example of this method in Section 3.3.2. For large

enough degree d, a polynomial regression allows us to produce an extremely
non-linear curve. Notice that the coefficients in (7.1) can be easily estimated
using least squares linear regression because this is just a standard linear
model with predictors xi, x

2
i , x

3
i , . . . , x

d
i . Generally speaking, it is unusual

to use d greater than 3 or 4 because for large values of d, the polynomial
curve can become overly flexible and can take on some very strange shapes.
This is especially true near the boundary of the X variable.

Logistic regression using polynomials:
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at each reference point x0, and we plot the fitted curve, as well as twice
the standard error on either side of the fitted curve. We plot twice the
standard error because, for normally distributed error terms, this quantity
corresponds to an approximate 95% confidence interval.

It seems like the wages in Figure 7.1 are from two distinct populations:
there appears to be a high earners group earning more than $250,000 per
annum, as well as a low earners group. We can treat wage as a binary
variable by splitting it into these two groups. Logistic regression can then
be used to predict this binary response, using polynomial functions of age
as predictors. In other words, we fit the model

Pr(yi > 250|xi) =
exp(β0 + β1xi + β2x

2
i + . . . + βdx

d
i )

1 + exp(β0 + β1xi + β2x2
i + . . . + βdxd

i )
. (7.3)

The result is shown in the right-hand panel of Figure 7.1. The gray marks
on the top and bottom of the panel indicate the ages of the high earners
and the low earners. The solid blue curve indicates the fitted probabilities
of being a high earner, as a function of age. The estimated 95% confidence
interval is shown as well. We see that here the confidence intervals are fairly
wide, especially on the right-hand side. Although the sample size for this
data set is substantial (n = 3,000), there are only 79 high earners, which
results in a high variance in the estimated coefficients and consequently
wide confidence intervals.

7.2 Step Functions

Using polynomial functions of the features as predictors in a linear model
imposes a global structure on the non-linear function of X . We can instead
use step functions in order to avoid imposing such a global structure. Here

step function
we break the range of X into bins, and fit a different constant in each bin.
This amounts to converting a continuous variable into an ordered categorical
variable.

ordered
categorical
variable

In greater detail, we create cutpoints c1, c2, . . . , cK in the range of X ,
and then construct K + 1 new variables

C0(X) = I(X < c1),
C1(X) = I(c1 ≤ X < c2),
C2(X) = I(c2 ≤ X < c3),

...
CK−1(X) = I(cK−1 ≤ X < cK),
CK(X) = I(cK ≤ X),

(7.4)

where I(·) is an indicator function that returns a 1 if the condition is true,
indicator
functionand returns a 0 otherwise. For example, I(cK ≤ X) equals 1 if cK ≤ X , and
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FIGURE 7.1. The Wage data. Left: The solid blue curve is a degree-4 polynomial
of wage (in thousands of dollars) as a function of age, fit by least squares. The
dotted curves indicate an estimated 95% confidence interval. Right: We model the
binary event wage>250 using logistic regression, again with a degree-4 polynomial.
The fitted posterior probability of wage exceeding $250,000 is shown in blue, along
with an estimated 95% confidence interval.

The left-hand panel in Figure 7.1 is a plot of wage against age for the
Wage data set, which contains income and demographic information for
males who reside in the central Atlantic region of the United States. We
see the results of fitting a degree-4 polynomial using least squares (solid
blue curve). Even though this is a linear regression model like any other,
the individual coefficients are not of particular interest. Instead, we look at
the entire fitted function across a grid of 62 values for age from 18 to 80 in
order to understand the relationship between age and wage.

In Figure 7.1, a pair of dotted curves accompanies the fit; these are (2×)
standard error curves. Let’s see how these arise. Suppose we have computed
the fit at a particular value of age, x0:

f̂(x0) = β̂0 + β̂1x0 + β̂2x
2
0 + β̂3x

3
0 + β̂4x

4
0. (7.2)

What is the variance of the fit, i.e. Varf̂(x0)? Least squares returns variance

estimates for each of the fitted coefficients β̂j, as well as the covariances
between pairs of coefficient estimates. We can use these to compute the
estimated variance of f̂(x0).

1 The estimated pointwise standard error of

f̂(x0) is the square-root of this variance. This computation is repeated

1If Ĉ is the 5 × 5 covariance matrix of the β̂j , and if ℓT
0 = (1, x0, x2

0, x3
0, x4

0), then

Var[f̂(x0)] = ℓT
0 Ĉℓ0.
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Regression using indicator functions

Indicator functions:

268 7. Moving Beyond Linearity

at each reference point x0, and we plot the fitted curve, as well as twice
the standard error on either side of the fitted curve. We plot twice the
standard error because, for normally distributed error terms, this quantity
corresponds to an approximate 95% confidence interval.

It seems like the wages in Figure 7.1 are from two distinct populations:
there appears to be a high earners group earning more than $250,000 per
annum, as well as a low earners group. We can treat wage as a binary
variable by splitting it into these two groups. Logistic regression can then
be used to predict this binary response, using polynomial functions of age
as predictors. In other words, we fit the model

Pr(yi > 250|xi) =
exp(β0 + β1xi + β2x

2
i + . . . + βdx

d
i )

1 + exp(β0 + β1xi + β2x2
i + . . . + βdxd

i )
. (7.3)

The result is shown in the right-hand panel of Figure 7.1. The gray marks
on the top and bottom of the panel indicate the ages of the high earners
and the low earners. The solid blue curve indicates the fitted probabilities
of being a high earner, as a function of age. The estimated 95% confidence
interval is shown as well. We see that here the confidence intervals are fairly
wide, especially on the right-hand side. Although the sample size for this
data set is substantial (n = 3,000), there are only 79 high earners, which
results in a high variance in the estimated coefficients and consequently
wide confidence intervals.

7.2 Step Functions

Using polynomial functions of the features as predictors in a linear model
imposes a global structure on the non-linear function of X . We can instead
use step functions in order to avoid imposing such a global structure. Here

step function
we break the range of X into bins, and fit a different constant in each bin.
This amounts to converting a continuous variable into an ordered categorical
variable.

ordered
categorical
variable

In greater detail, we create cutpoints c1, c2, . . . , cK in the range of X ,
and then construct K + 1 new variables

C0(X) = I(X < c1),
C1(X) = I(c1 ≤ X < c2),
C2(X) = I(c2 ≤ X < c3),

...
CK−1(X) = I(cK−1 ≤ X < cK),
CK(X) = I(cK ≤ X),

(7.4)

where I(·) is an indicator function that returns a 1 if the condition is true,
indicator
functionand returns a 0 otherwise. For example, I(cK ≤ X) equals 1 if cK ≤ X , and

Regression:

7.2 Step Functions 269
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FIGURE 7.2. The Wage data. Left: The solid curve displays the fitted value from
a least squares regression of wage (in thousands of dollars) using step functions
of age. The dotted curves indicate an estimated 95 % confidence interval. Right:
We model the binary event wage>250 using logistic regression, again using step
functions of age. The fitted posterior probability of wage exceeding $250,000 is
shown, along with an estimated 95 % confidence interval.

equals 0 otherwise. These are sometimes called dummy variables. Notice
that for any value of X , C0(X) + C1(X) + . . . + CK(X) = 1, since X must
be in exactly one of the K + 1 intervals. We then use least squares to fit a
linear model using C1(X), C2(X), . . . , CK(X) as predictors2:

yi = β0 + β1C1(xi) + β2C2(xi) + . . . + βKCK(xi) + ϵi. (7.5)

For a given value of X , at most one of C1, C2, . . . , CK can be non-zero.
Note that when X < c1, all of the predictors in (7.5) are zero, so β0 can
be interpreted as the mean value of Y for X < c1. By comparison, (7.5)
predicts a response of β0+βj for cj ≤ X < cj+1, so βj represents the average
increase in the response for X in cj ≤ X < cj+1 relative to X < c1.

An example of fitting step functions to the Wage data from Figure 7.1 is
shown in the left-hand panel of Figure 7.2. We also fit the logistic regression
model

2We exclude C0(X) as a predictor in (7.5) because it is redundant with the intercept.
This is similar to the fact that we need only two dummy variables to code a qualitative
variable with three levels, provided that the model will contain an intercept. The decision
to exclude C0(X) instead of some other Ck(X) in (7.5) is arbitrary. Alternatively, we
could include C0(X), C1(X), . . . , CK(X), and exclude the intercept.

Logistic regression:

270 7. Moving Beyond Linearity

Pr(yi > 250|xi) =
exp(β0 + β1C1(xi) + . . . + βKCK(xi))

1 + exp(β0 + β1C1(xi) + . . . + βKCK(xi))
(7.6)

in order to predict the probability that an individual is a high earner on the
basis of age. The right-hand panel of Figure 7.2 displays the fitted posterior
probabilities obtained using this approach.

Unfortunately, unless there are natural breakpoints in the predictors,
piecewise-constant functions can miss the action. For example, in the left-
hand panel of Figure 7.2, the first bin clearly misses the increasing trend
of wage with age. Nevertheless, step function approaches are very popular
in biostatistics and epidemiology, among other disciplines. For example,
5-year age groups are often used to define the bins.

7.3 Basis Functions

Polynomial and piecewise-constant regression models are in fact special
cases of a basis function approach. The idea is to have at hand a fam-

basis
functionily of functions or transformations that can be applied to a variable X :

b1(X), b2(X), . . . , bK(X). Instead of fitting a linear model in X , we fit the
model

yi = β0 + β1b1(xi) + β2b2(xi) + β3b3(xi) + . . . + βKbK(xi) + ϵi. (7.7)

Note that the basis functions b1(·), b2(·), . . . , bK(·) are fixed and known.
(In other words, we choose the functions ahead of time.) For polynomial
regression, the basis functions are bj(xi) = xj

i , and for piecewise constant
functions they are bj(xi) = I(cj ≤ xi < cj+1). We can think of (7.7) as
a standard linear model with predictors b1(xi), b2(xi), . . . , bK(xi). Hence,
we can use least squares to estimate the unknown regression coefficients
in (7.7). Importantly, this means that all of the inference tools for linear
models that are discussed in Chapter 3, such as standard errors for the
coefficient estimates and F-statistics for the model’s overall significance,
are available in this setting.

Thus far we have considered the use of polynomial functions and piece-
wise constant functions for our basis functions; however, many alternatives
are possible. For instance, we can use wavelets or Fourier series to construct
basis functions. In the next section, we investigate a very common choice
for a basis function: regression splines.

regression
spline
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FIGURE 7.2. The Wage data. Left: The solid curve displays the fitted value from
a least squares regression of wage (in thousands of dollars) using step functions
of age. The dotted curves indicate an estimated 95 % confidence interval. Right:
We model the binary event wage>250 using logistic regression, again using step
functions of age. The fitted posterior probability of wage exceeding $250,000 is
shown, along with an estimated 95 % confidence interval.

equals 0 otherwise. These are sometimes called dummy variables. Notice
that for any value of X , C0(X) + C1(X) + . . . + CK(X) = 1, since X must
be in exactly one of the K + 1 intervals. We then use least squares to fit a
linear model using C1(X), C2(X), . . . , CK(X) as predictors2:

yi = β0 + β1C1(xi) + β2C2(xi) + . . . + βKCK(xi) + ϵi. (7.5)

For a given value of X , at most one of C1, C2, . . . , CK can be non-zero.
Note that when X < c1, all of the predictors in (7.5) are zero, so β0 can
be interpreted as the mean value of Y for X < c1. By comparison, (7.5)
predicts a response of β0+βj for cj ≤ X < cj+1, so βj represents the average
increase in the response for X in cj ≤ X < cj+1 relative to X < c1.

An example of fitting step functions to the Wage data from Figure 7.1 is
shown in the left-hand panel of Figure 7.2. We also fit the logistic regression
model

2We exclude C0(X) as a predictor in (7.5) because it is redundant with the intercept.
This is similar to the fact that we need only two dummy variables to code a qualitative
variable with three levels, provided that the model will contain an intercept. The decision
to exclude C0(X) instead of some other Ck(X) in (7.5) is arbitrary. Alternatively, we
could include C0(X), C1(X), . . . , CK(X), and exclude the intercept.

7 / 33



Outline

1 7.1 – Polynomial regression

2 7.2 – Step functions

3 7.3 – Basis functions

4 7.4 – Splines

5 7.5 – Smoothing splines

6 Multidimensional splines

8 / 33



Regression using basis functions

Basis functions: b1(·), . . . , bK (·)
Regression using basis functions:

270 7. Moving Beyond Linearity

Pr(yi > 250|xi) =
exp(β0 + β1C1(xi) + . . . + βKCK(xi))

1 + exp(β0 + β1C1(xi) + . . . + βKCK(xi))
(7.6)

in order to predict the probability that an individual is a high earner on the
basis of age. The right-hand panel of Figure 7.2 displays the fitted posterior
probabilities obtained using this approach.

Unfortunately, unless there are natural breakpoints in the predictors,
piecewise-constant functions can miss the action. For example, in the left-
hand panel of Figure 7.2, the first bin clearly misses the increasing trend
of wage with age. Nevertheless, step function approaches are very popular
in biostatistics and epidemiology, among other disciplines. For example,
5-year age groups are often used to define the bins.

7.3 Basis Functions

Polynomial and piecewise-constant regression models are in fact special
cases of a basis function approach. The idea is to have at hand a fam-

basis
functionily of functions or transformations that can be applied to a variable X :

b1(X), b2(X), . . . , bK(X). Instead of fitting a linear model in X , we fit the
model

yi = β0 + β1b1(xi) + β2b2(xi) + β3b3(xi) + . . . + βKbK(xi) + ϵi. (7.7)

Note that the basis functions b1(·), b2(·), . . . , bK(·) are fixed and known.
(In other words, we choose the functions ahead of time.) For polynomial
regression, the basis functions are bj(xi) = xj

i , and for piecewise constant
functions they are bj(xi) = I(cj ≤ xi < cj+1). We can think of (7.7) as
a standard linear model with predictors b1(xi), b2(xi), . . . , bK(xi). Hence,
we can use least squares to estimate the unknown regression coefficients
in (7.7). Importantly, this means that all of the inference tools for linear
models that are discussed in Chapter 3, such as standard errors for the
coefficient estimates and F-statistics for the model’s overall significance,
are available in this setting.

Thus far we have considered the use of polynomial functions and piece-
wise constant functions for our basis functions; however, many alternatives
are possible. For instance, we can use wavelets or Fourier series to construct
basis functions. In the next section, we investigate a very common choice
for a basis function: regression splines.

regression
spline

Popular basis:
Polynomials

Fourier basis

Wavelet basis

Splines
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7.4.1 – Piecewise polynomials

Cubic polynomial:

7.4 Regression Splines 271

7.4 Regression Splines

Now we discuss a flexible class of basis functions that extends upon the
polynomial regression and piecewise constant regression approaches that
we have just seen.

7.4.1 Piecewise Polynomials

Instead of fitting a high-degree polynomial over the entire range of X , piece-
wise polynomial regression involves fitting separate low-degree polynomials

piecewise
polynomial
regression

over different regions of X . For example, a piecewise cubic polynomial works
by fitting a cubic regression model of the form

yi = β0 + β1xi + β2x
2
i + β3x

3
i + ϵi, (7.8)

where the coefficients β0, β1, β2, and β3 differ in different parts of the range
of X . The points where the coefficients change are called knots.

knot
For example, a piecewise cubic with no knots is just a standard cubic

polynomial, as in (7.1) with d = 3. A piecewise cubic polynomial with a
single knot at a point c takes the form

yi =

{
β01 + β11xi + β21x

2
i + β31x

3
i + ϵi if xi < c;

β02 + β12xi + β22x
2
i + β32x

3
i + ϵi if xi ≥ c.

In other words, we fit two different polynomial functions to the data, one
on the subset of the observations with xi < c, and one on the subset of
the observations with xi ≥ c. The first polynomial function has coefficients
β01, β11, β21, β31, and the second has coefficients β02, β12, β22, β32. Each of
these polynomial functions can be fit using least squares applied to simple
functions of the original predictor.

Using more knots leads to a more flexible piecewise polynomial. In gen-
eral, if we place K different knots throughout the range of X , then we
will end up fitting K + 1 different cubic polynomials. Note that we do not
need to use a cubic polynomial. For example, we can instead fit piecewise
linear functions. In fact, our piecewise constant functions of Section 7.2 are
piecewise polynomials of degree 0!

The top left panel of Figure 7.3 shows a piecewise cubic polynomial fit to
a subset of the Wage data, with a single knot at age=50. We immediately see
a problem: the function is discontinuous and looks ridiculous! Since each
polynomial has four parameters, we are using a total of eight degrees of
freedom in fitting this piecewise polynomial model.

degrees of
freedom

7.4.2 Constraints and Splines

The top left panel of Figure 7.3 looks wrong because the fitted curve is just
too flexible. To remedy this problem, we can fit a piecewise polynomial

Piecewise polynomial with a single knot at c:

7.4 Regression Splines 271

7.4 Regression Splines

Now we discuss a flexible class of basis functions that extends upon the
polynomial regression and piecewise constant regression approaches that
we have just seen.

7.4.1 Piecewise Polynomials

Instead of fitting a high-degree polynomial over the entire range of X , piece-
wise polynomial regression involves fitting separate low-degree polynomials

piecewise
polynomial
regression

over different regions of X . For example, a piecewise cubic polynomial works
by fitting a cubic regression model of the form

yi = β0 + β1xi + β2x
2
i + β3x

3
i + ϵi, (7.8)

where the coefficients β0, β1, β2, and β3 differ in different parts of the range
of X . The points where the coefficients change are called knots.

knot
For example, a piecewise cubic with no knots is just a standard cubic

polynomial, as in (7.1) with d = 3. A piecewise cubic polynomial with a
single knot at a point c takes the form

yi =

{
β01 + β11xi + β21x

2
i + β31x

3
i + ϵi if xi < c;

β02 + β12xi + β22x
2
i + β32x

3
i + ϵi if xi ≥ c.

In other words, we fit two different polynomial functions to the data, one
on the subset of the observations with xi < c, and one on the subset of
the observations with xi ≥ c. The first polynomial function has coefficients
β01, β11, β21, β31, and the second has coefficients β02, β12, β22, β32. Each of
these polynomial functions can be fit using least squares applied to simple
functions of the original predictor.

Using more knots leads to a more flexible piecewise polynomial. In gen-
eral, if we place K different knots throughout the range of X , then we
will end up fitting K + 1 different cubic polynomials. Note that we do not
need to use a cubic polynomial. For example, we can instead fit piecewise
linear functions. In fact, our piecewise constant functions of Section 7.2 are
piecewise polynomials of degree 0!

The top left panel of Figure 7.3 shows a piecewise cubic polynomial fit to
a subset of the Wage data, with a single knot at age=50. We immediately see
a problem: the function is discontinuous and looks ridiculous! Since each
polynomial has four parameters, we are using a total of eight degrees of
freedom in fitting this piecewise polynomial model.

degrees of
freedom

7.4.2 Constraints and Splines

The top left panel of Figure 7.3 looks wrong because the fitted curve is just
too flexible. To remedy this problem, we can fit a piecewise polynomial

Constraints:

f̂ is continuous

f̂ ′, f̂ ′′, ... are continuous
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FIGURE 7.3. Various piecewise polynomials are fit to a subset of the Wage

data, with a knot at age=50. Top Left: The cubic polynomials are unconstrained.
Top Right: The cubic polynomials are constrained to be continuous at age=50.
Bottom Left: The cubic polynomials are constrained to be continuous, and to
have continuous first and second derivatives. Bottom Right: A linear spline is
shown, which is constrained to be continuous.

under the constraint that the fitted curve must be continuous. In other
words, there cannot be a jump when age=50. The top right plot in Figure 7.3
shows the resulting fit. This looks better than the top left plot, but the V-
shaped join looks unnatural.

In the lower left plot, we have added two additional constraints: now both
the first and second derivatives of the piecewise polynomials are continuous

derivative
at age=50. In other words, we are requiring that the piecewise polynomial
be not only continuous when age=50, but also very smooth. Each constraint
that we impose on the piecewise cubic polynomials effectively frees up one
degree of freedom, by reducing the complexity of the resulting piecewise
polynomial fit. So in the top left plot, we are using eight degrees of free-
dom, but in the bottom left plot we imposed three constraints (continuity,
continuity of the first derivative, and continuity of the second derivative)
and so are left with five degrees of freedom. The curve in the bottom left
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FIGURE 5.1. The top left panel shows a piecewise constant function fit to some
artificial data. The broken vertical lines indicate the positions of the two knots
ξ1 and ξ2. The blue curve represents the true function, from which the data were
generated with Gaussian noise. The remaining two panels show piecewise lin-
ear functions fit to the same data—the top right unrestricted, and the lower left
restricted to be continuous at the knots. The lower right panel shows a piecewise–
linear basis function, h3(X) = (X − ξ1)+, continuous at ξ1. The black points
indicate the sample evaluations h3(xi), i = 1, . . . , N . 13 / 33
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FIGURE 5.2. A series of piecewise-cubic polynomials, with increasing orders of
continuity.

increasing orders of continuity at the knots. The function in the lower
right panel is continuous, and has continuous first and second derivatives
at the knots. It is known as a cubic spline. Enforcing one more order of
continuity would lead to a global cubic polynomial. It is not hard to show
(Exercise 5.1) that the following basis represents a cubic spline with knots
at ξ1 and ξ2:

h1(X) = 1, h3(X) = X2, h5(X) = (X − ξ1)3+,

h2(X) = X, h4(X) = X3, h6(X) = (X − ξ2)3+.
(5.3)

There are six basis functions corresponding to a six-dimensional linear space
of functions. A quick check confirms the parameter count: (3 regions)×(4
parameters per region) −(2 knots)×(3 constraints per knot)= 6.
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7.4.1 – The spline basis representation

General model: Fit a piecewise degree d polynomial under the constraint
that its first d − 1 derivatives are continuous

Cubic spline: K knots at ξ1, . . . , ξK
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plot is called a cubic spline.3 In general, a cubic spline with K knots uses
cubic spline

a total of 4 + K degrees of freedom.
In Figure 7.3, the lower right plot is a linear spline, which is continuous

linear spline
at age=50. The general definition of a degree-d spline is that it is a piecewise
degree-d polynomial, with continuity in derivatives up to degree d − 1 at
each knot. Therefore, a linear spline is obtained by fitting a line in each
region of the predictor space defined by the knots, requiring continuity at
each knot.

In Figure 7.3, there is a single knot at age=50. Of course, we could add
more knots, and impose continuity at each.

7.4.3 The Spline Basis Representation

The regression splines that we just saw in the previous section may have
seemed somewhat complex: how can we fit a piecewise degree-d polynomial
under the constraint that it (and possibly its first d − 1 derivatives) be
continuous? It turns out that we can use the basis model (7.7) to represent
a regression spline. A cubic spline with K knots can be modeled as

yi = β0 + β1b1(xi) + β2b2(xi) + · · · + βK+3bK+3(xi) + ϵi, (7.9)

for an appropriate choice of basis functions b1, b2, . . . , bK+3. The model
(7.9) can then be fit using least squares.

Just as there were several ways to represent polynomials, there are also
many equivalent ways to represent cubic splines using different choices of
basis functions in (7.9). The most direct way to represent a cubic spline
using (7.9) is to start off with a basis for a cubic polynomial—namely,
x, x2, x3—and then add one truncated power basis function per knot.

truncated
power basisA truncated power basis function is defined as

h(x, ξ) = (x− ξ)3+ =

{
(x − ξ)3 if x > ξ

0 otherwise,
(7.10)

where ξ is the knot. One can show that adding a term of the form β4h(x, ξ)
to the model (7.8) for a cubic polynomial will lead to a discontinuity in
only the third derivative at ξ; the function will remain continuous, with
continuous first and second derivatives, at each of the knots.

In other words, in order to fit a cubic spline to a data set with K knots, we
perform least squares regression with an intercept and 3+K predictors, of
the form X, X2, X3, h(X, ξ1), h(X, ξ2), . . . , h(X, ξK), where ξ1, . . . , ξK are
the knots. This amounts to estimating a total of K + 4 regression coeffi-
cients; for this reason, fitting a cubic spline with K knots uses K+4 degrees
of freedom.

3Cubic splines are popular because most human eyes cannot detect the discontinuity
at the knots.

Truncated power basis:
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for an appropriate choice of basis functions b1, b2, . . . , bK+3. The model
(7.9) can then be fit using least squares.

Just as there were several ways to represent polynomials, there are also
many equivalent ways to represent cubic splines using different choices of
basis functions in (7.9). The most direct way to represent a cubic spline
using (7.9) is to start off with a basis for a cubic polynomial—namely,
x, x2, x3—and then add one truncated power basis function per knot.

truncated
power basisA truncated power basis function is defined as

h(x, ξ) = (x− ξ)3+ =

{
(x − ξ)3 if x > ξ

0 otherwise,
(7.10)

where ξ is the knot. One can show that adding a term of the form β4h(x, ξ)
to the model (7.8) for a cubic polynomial will lead to a discontinuity in
only the third derivative at ξ; the function will remain continuous, with
continuous first and second derivatives, at each of the knots.

In other words, in order to fit a cubic spline to a data set with K knots, we
perform least squares regression with an intercept and 3+K predictors, of
the form X, X2, X3, h(X, ξ1), h(X, ξ2), . . . , h(X, ξK), where ξ1, . . . , ξK are
the knots. This amounts to estimating a total of K + 4 regression coeffi-
cients; for this reason, fitting a cubic spline with K knots uses K+4 degrees
of freedom.

3Cubic splines are popular because most human eyes cannot detect the discontinuity
at the knots.

Basis functions for cubic spline:

1,X ,X 2,X 3, h(x , ξ1), h(x , ξ2), . . . , h(x , ξK )

Coefficients: β0, . . . , βK+3, degree of freedom = K + 4
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Natural cubic spline
Natural cubic spline: is a regression spline with additional boundary
constraints: for example, the function is linear at the boundary

Degree of freedom: K

Example:274 7. Moving Beyond Linearity
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FIGURE 7.4. A cubic spline and a natural cubic spline, with three knots, fit to
a subset of the Wage data.

Unfortunately, splines can have high variance at the outer range of the
predictors—that is, when X takes on either a very small or very large
value. Figure 7.4 shows a fit to the Wage data with three knots. We see that
the confidence bands in the boundary region appear fairly wild. A natu-
ral spline is a regression spline with additional boundary constraints: the

natural
splinefunction is required to be linear at the boundary (in the region where X is

smaller than the smallest knot, or larger than the largest knot). This addi-
tional constraint means that natural splines generally produce more stable
estimates at the boundaries. In Figure 7.4, a natural cubic spline is also
displayed as a red line. Note that the corresponding confidence intervals
are narrower.

7.4.4 Choosing the Number and Locations of the Knots

When we fit a spline, where should we place the knots? The regression
spline is most flexible in regions that contain a lot of knots, because in
those regions the polynomial coefficients can change rapidly. Hence, one
option is to place more knots in places where we feel the function might
vary most rapidly, and to place fewer knots where it seems more stable.
While this option can work well, in practice it is common to place knots in
a uniform fashion. One way to do this is to specify the desired degrees of
freedom, and then have the software automatically place the corresponding
number of knots at uniform quantiles of the data.

Figure 7.5 shows an example on the Wage data. As in Figure 7.4, we
have fit a natural cubic spline with three knots, except this time the knot
locations were chosen automatically as the 25th, 50th, and 75th percentiles
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7.4.4 – Choosing the number and locations of the knots

Questions:

Where should we place the knots? – Adaptive methods

How many knots should we use, or equivalently how many degrees of
freedom should our spline contain? – Cross validation

276 7. Moving Beyond Linearity
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FIGURE 7.6. Ten-fold cross-validated mean squared errors for selecting the
degrees of freedom when fitting splines to the Wage data. The response is wage

and the predictor age. Left: A natural cubic spline. Right: A cubic spline.

Figure 7.6 shows ten-fold cross-validated mean squared errors for splines
with various degrees of freedom fit to the Wage data. The left-hand panel
corresponds to a natural spline and the right-hand panel to a cubic spline.
The two methods produce almost identical results, with clear evidence that
a one-degree fit (a linear regression) is not adequate. Both curves flatten
out quickly, and it seems that three degrees of freedom for the natural
spline and four degrees of freedom for the cubic spline are quite adequate.

In Section 7.7 we fit additive spline models simultaneously on several
variables at a time. This could potentially require the selection of degrees
of freedom for each variable. In cases like this we typically adopt a more
pragmatic approach and set the degrees of freedom to a fixed number, say
four, for all terms.

7.4.5 Comparison to Polynomial Regression

Regression splines often give superior results to polynomial regression. This
is because unlike polynomials, which must use a high degree (exponent in
the highest monomial term, e.g. X15) to produce flexible fits, splines intro-
duce flexibility by increasing the number of knots but keeping the degree
fixed. Generally, this approach produces more stable estimates. Splines also
allow us to place more knots, and hence flexibility, over regions where the
function f seems to be changing rapidly, and fewer knots where f appears
more stable. Figure 7.7 compares a natural cubic spline with 15 degrees of
freedom to a degree-15 polynomial on the Wage data set. The extra flexibil-
ity in the polynomial produces undesirable results at the boundaries, while
the natural cubic spline still provides a reasonable fit to the data.
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7.4.5 – Spline and polynomial regression

Splines are more flexible and stable

Polynomials may have the Runge phenomenon.
7.5 Smoothing Splines 277
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FIGURE 7.7. On the Wage data set, a natural cubic spline with 15 degrees
of freedom is compared to a degree-15 polynomial. Polynomials can show wild
behavior, especially near the tails.

7.5 Smoothing Splines

7.5.1 An Overview of Smoothing Splines

In the last section we discussed regression splines, which we create by spec-
ifying a set of knots, producing a sequence of basis functions, and then
using least squares to estimate the spline coefficients. We now introduce a
somewhat different approach that also produces a spline.

In fitting a smooth curve to a set of data, what we really want to do is
find some function, say g(x), that fits the observed data well: that is, we
want RSS =

∑n
i=1(yi − g(xi))

2 to be small. However, there is a problem
with this approach. If we don’t put any constraints on g(xi), then we can
always make RSS zero simply by choosing g such that it interpolates all
of the yi. Such a function would woefully overfit the data—it would be far
too flexible. What we really want is a function g that makes RSS small,
but that is also smooth.

How might we ensure that g is smooth? There are a number of ways to
do this. A natural approach is to find the function g that minimizes

n∑

i=1

(yi − g(xi))
2 + λ

∫
g′′(t)2dt (7.11)

where λ is a nonnegative tuning parameter. The function g that minimizes
(7.11) is known as a smoothing spline.

smoothing
splineWhat does (7.11) mean? Equation 7.11 takes the “Loss+Penalty” for-

mulation that we encounter in the context of ridge regression and the lasso
in Chapter 6. The term

∑n
i=1(yi − g(xi))

2 is a loss function that encour-
loss function

ages g to fit the data well, and the term λ
∫

g′′(t)2dt is a penalty term
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1 7.1 – Polynomial regression

2 7.2 – Step functions

3 7.3 – Basis functions

4 7.4 – Splines

5 7.5 – Smoothing splines

6 Multidimensional splines
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Regularization

5.4 Smoothing Splines 151

(nonlinear) function of the form x∗ = g(x). The derived features x∗ can
then be used as inputs into any (linear or nonlinear) learning procedure.

For example, for signal or image recognition a popular approach is to first
transform the raw features via a wavelet transform x∗ = HT x (Section 5.9)
and then use the features x∗ as inputs into a neural network (Chapter 11).
Wavelets are effective in capturing discrete jumps or edges, and the neural
network is a powerful tool for constructing nonlinear functions of these
features for predicting the target variable. By using domain knowledge
to construct appropriate features, one can often improve upon a learning
method that has only the raw features x at its disposal.

5.4 Smoothing Splines

Here we discuss a spline basis method that avoids the knot selection prob-
lem completely by using a maximal set of knots. The complexity of the fit
is controlled by regularization. Consider the following problem: among all
functions f(x) with two continuous derivatives, find one that minimizes the
penalized residual sum of squares

RSS(f,λ) =

N∑

i=1

{yi − f(xi)}2 + λ

∫
{f ′′(t)}2dt, (5.9)

where λ is a fixed smoothing parameter. The first term measures closeness
to the data, while the second term penalizes curvature in the function, and
λ establishes a tradeoff between the two. Two special cases are:

λ = 0 : f can be any function that interpolates the data.

λ = ∞ : the simple least squares line fit, since no second derivative can
be tolerated.

These vary from very rough to very smooth, and the hope is that λ ∈ (0,∞)
indexes an interesting class of functions in between.

The criterion (5.9) is defined on an infinite-dimensional function space—
in fact, a Sobolev space of functions for which the second term is defined.
Remarkably, it can be shown that (5.9) has an explicit, finite-dimensional,
unique minimizer which is a natural cubic spline with knots at the unique
values of the xi, i = 1, . . . , N (Exercise 5.7). At face value it seems that
the family is still over-parametrized, since there are as many as N knots,
which implies N degrees of freedom. However, the penalty term translates
to a penalty on the spline coefficients, which are shrunk some of the way
toward the linear fit.

Since the solution is a natural spline, we can write it as

f(x) =
N∑

j=1

Nj(x)θj , (5.10)

λ : a smoothing parameter

λ = 0 : f can be any function that interpolates the data

λ =∞ : will obtain a line such that f ′′ = 0

Solution: See Exercise 5.7 in the book “The elements of statistical
learning ”
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Exercise 5.7 in “The elements of statistical learning ”

Exercises 183

Ex. 5.2 Suppose that Bi,M (x) is an order-M B-spline defined in the Ap-
pendix on page 186 through the sequence (5.77)–(5.78).

(a) Show by induction that Bi,M (x) = 0 for x ̸∈ [τi, τi+M ]. This shows, for
example, that the support of cubic B-splines is at most 5 knots.

(b) Show by induction that Bi,M (x) > 0 for x ∈ (τi, τi+M ). The B-splines
are positive in the interior of their support.

(c) Show by induction that
∑K+M

i=1 Bi,M (x) = 1∀x ∈ [ξ0, ξK+1].

(d) Show that Bi,M is a piecewise polynomial of order M (degree M − 1)
on [ξ0, ξK+1], with breaks only at the knots ξ1, . . . , ξK .

(e) Show that an order-M B-spline basis function is the density function
of a convolution of M uniform random variables.

Ex. 5.3 Write a program to reproduce Figure 5.3 on page 145.

Ex. 5.4 Consider the truncated power series representation for cubic splines
with K interior knots. Let

f(X) =
3∑

j=0

βjX
j +

K∑

k=1

θk(X − ξk)3+. (5.70)

Prove that the natural boundary conditions for natural cubic splines (Sec-
tion 5.2.1) imply the following linear constraints on the coefficients:

β2 = 0,
∑K

k=1 θk = 0,

β3 = 0,
∑K

k=1 ξkθk = 0.
(5.71)

Hence derive the basis (5.4) and (5.5).

Ex. 5.5 Write a program to classify the phoneme data using a quadratic dis-
criminant analysis (Section 4.3). Since there are many correlated features,
you should filter them using a smooth basis of natural cubic splines (Sec-
tion 5.2.3). Decide beforehand on a series of five different choices for the
number and position of the knots, and use tenfold cross-validation to make
the final selection. The phoneme data are available from the book website
www-stat.stanford.edu/ElemStatLearn.

Ex. 5.6 Suppose you wish to fit a periodic function, with a known period T .
Describe how you could modify the truncated power series basis to achieve
this goal.

Ex. 5.7 Derivation of smoothing splines (Green and Silverman, 1994). Sup-
pose that N ≥ 2, and that g is the natural cubic spline interpolant to the
pairs {xi, zi}N

1 , with a < x1 < · · · < xN < b. This is a natural spline184 5. Basis Expansions and Regularization

with a knot at every xi; being an N -dimensional space of functions, we can
determine the coefficients such that it interpolates the sequence zi exactly.
Let g̃ be any other differentiable function on [a, b] that interpolates the N
pairs.

(a) Let h(x) = g̃(x)− g(x). Use integration by parts and the fact that g is
a natural cubic spline to show that

∫ b

a

g′′(x)h′′(x)dx = −
N−1∑

j=1

g′′′(x+
j ){h(xj+1)− h(xj)} (5.72)

= 0.

(b) Hence show that ∫ b

a

g̃′′(t)
2
dt ≥

∫ b

a

g′′(t)
2
dt,

and that equality can only hold if h is identically zero in [a, b].

(c) Consider the penalized least squares problem

min
f

[
N∑

i=1

(yi − f(xi))
2 + λ

∫ b

a

f ′′(t)2dt

]
.

Use (b) to argue that the minimizer must be a cubic spline with knots
at each of the xi.

Ex. 5.8 In the appendix to this chapter we show how the smoothing spline
computations could be more efficiently carried out using a (N + 4) dimen-
sional basis of B-splines. Describe a slightly simpler scheme using a (N +2)
dimensional B-spline basis defined on the N − 2 interior knots.

Ex. 5.9 Derive the Reinsch form Sλ = (I+λK)−1 for the smoothing spline.

Ex. 5.10 Derive an expression for Var(f̂λ(x0)) and bias(f̂λ(x0)). Using the
example (5.22), create a version of Figure 5.9 where the mean and several

(pointwise) quantiles of f̂λ(x) are shown.

Ex. 5.11 Prove that for a smoothing spline the null space of K is spanned
by functions linear in X.

Ex. 5.12 Characterize the solution to the following problem,

min
f

RSS(f,λ) =

N∑

i=1

wi{yi − f(xi)}2 + λ

∫
{f ′′(t)}2dt, (5.73)

where the wi ≥ 0 are observation weights.
Characterize the solution to the smoothing spline problem (5.9) when

the training data have ties in X.
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How to find the cubic spline?
Basis expansion:

5.4 Smoothing Splines 151

(nonlinear) function of the form x∗ = g(x). The derived features x∗ can
then be used as inputs into any (linear or nonlinear) learning procedure.

For example, for signal or image recognition a popular approach is to first
transform the raw features via a wavelet transform x∗ = HT x (Section 5.9)
and then use the features x∗ as inputs into a neural network (Chapter 11).
Wavelets are effective in capturing discrete jumps or edges, and the neural
network is a powerful tool for constructing nonlinear functions of these
features for predicting the target variable. By using domain knowledge
to construct appropriate features, one can often improve upon a learning
method that has only the raw features x at its disposal.

5.4 Smoothing Splines

Here we discuss a spline basis method that avoids the knot selection prob-
lem completely by using a maximal set of knots. The complexity of the fit
is controlled by regularization. Consider the following problem: among all
functions f(x) with two continuous derivatives, find one that minimizes the
penalized residual sum of squares

RSS(f,λ) =

N∑

i=1

{yi − f(xi)}2 + λ

∫
{f ′′(t)}2dt, (5.9)

where λ is a fixed smoothing parameter. The first term measures closeness
to the data, while the second term penalizes curvature in the function, and
λ establishes a tradeoff between the two. Two special cases are:

λ = 0 : f can be any function that interpolates the data.

λ = ∞ : the simple least squares line fit, since no second derivative can
be tolerated.

These vary from very rough to very smooth, and the hope is that λ ∈ (0,∞)
indexes an interesting class of functions in between.

The criterion (5.9) is defined on an infinite-dimensional function space—
in fact, a Sobolev space of functions for which the second term is defined.
Remarkably, it can be shown that (5.9) has an explicit, finite-dimensional,
unique minimizer which is a natural cubic spline with knots at the unique
values of the xi, i = 1, . . . , N (Exercise 5.7). At face value it seems that
the family is still over-parametrized, since there are as many as N knots,
which implies N degrees of freedom. However, the penalty term translates
to a penalty on the spline coefficients, which are shrunk some of the way
toward the linear fit.

Since the solution is a natural spline, we can write it as

f(x) =
N∑

j=1

Nj(x)θj , (5.10)

Define matrix: {N}ij = Nj(xi ) and {ΩN}jk =
∫
N ′′
j (t)N ′′

k (t)dt
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The criterion (5.9) is defined on an infinite-dimensional function space—
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Remarkably, it can be shown that (5.9) has an explicit, finite-dimensional,
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the family is still over-parametrized, since there are as many as N knots,
which implies N degrees of freedom. However, the penalty term translates
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Since the solution is a natural spline, we can write it as

f(x) =
N∑

j=1

Nj(x)θj , (5.10)

is equivalent to
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FIGURE 5.6. The response is the relative change in bone mineral density mea-
sured at the spine in adolescents, as a function of age. A separate smoothing spline
was fit to the males and females, with λ ≈ 0.00022. This choice corresponds to
about 12 degrees of freedom.

where the Nj(x) are an N -dimensional set of basis functions for repre-
senting this family of natural splines (Section 5.2.1 and Exercise 5.4). The
criterion thus reduces to

RSS(θ,λ) = (y −Nθ)T (y −Nθ) + λθT ΩNθ, (5.11)

where {N}ij = Nj(xi) and {ΩN}jk =
∫

N ′′
j (t)N ′′

k (t)dt. The solution is
easily seen to be

θ̂ = (NT N + λΩN )−1NT y, (5.12)

a generalized ridge regression. The fitted smoothing spline is given by

f̂(x) =
N∑

j=1

Nj(x)θ̂j . (5.13)

Efficient computational techniques for smoothing splines are discussed in
the Appendix to this chapter.

Figure 5.6 shows a smoothing spline fit to some data on bone mineral
density (BMD) in adolescents. The response is relative change in spinal
BMD over two consecutive visits, typically about one year apart. The data
are color coded by gender, and two separate curves were fit. This simple
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FIGURE 5.6. The response is the relative change in bone mineral density mea-
sured at the spine in adolescents, as a function of age. A separate smoothing spline
was fit to the males and females, with λ ≈ 0.00022. This choice corresponds to
about 12 degrees of freedom.

where the Nj(x) are an N -dimensional set of basis functions for repre-
senting this family of natural splines (Section 5.2.1 and Exercise 5.4). The
criterion thus reduces to

RSS(θ,λ) = (y −Nθ)T (y −Nθ) + λθT ΩNθ, (5.11)

where {N}ij = Nj(xi) and {ΩN}jk =
∫

N ′′
j (t)N ′′

k (t)dt. The solution is
easily seen to be

θ̂ = (NT N + λΩN )−1NT y, (5.12)

a generalized ridge regression. The fitted smoothing spline is given by

f̂(x) =
N∑

j=1

Nj(x)θ̂j . (5.13)

Efficient computational techniques for smoothing splines are discussed in
the Appendix to this chapter.

Figure 5.6 shows a smoothing spline fit to some data on bone mineral
density (BMD) in adolescents. The response is relative change in spinal
BMD over two consecutive visits, typically about one year apart. The data
are color coded by gender, and two separate curves were fit. This simple

Degree of freedom: = the number of coefficients
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FIGURE 5.6. The response is the relative change in bone mineral density mea-
sured at the spine in adolescents, as a function of age. A separate smoothing spline
was fit to the males and females, with λ ≈ 0.00022. This choice corresponds to
about 12 degrees of freedom.

where the Nj(x) are an N -dimensional set of basis functions for repre-
senting this family of natural splines (Section 5.2.1 and Exercise 5.4). The
criterion thus reduces to

RSS(θ,λ) = (y −Nθ)T (y −Nθ) + λθT ΩNθ, (5.11)

where {N}ij = Nj(xi) and {ΩN}jk =
∫

N ′′
j (t)N ′′

k (t)dt. The solution is
easily seen to be

θ̂ = (NT N + λΩN )−1NT y, (5.12)

a generalized ridge regression. The fitted smoothing spline is given by

f̂(x) =
N∑

j=1

Nj(x)θ̂j . (5.13)

Efficient computational techniques for smoothing splines are discussed in
the Appendix to this chapter.

Figure 5.6 shows a smoothing spline fit to some data on bone mineral
density (BMD) in adolescents. The response is relative change in spinal
BMD over two consecutive visits, typically about one year apart. The data
are color coded by gender, and two separate curves were fit. This simple
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7.5.2 – Choosing the smoothing parameter λ

f̂ : the N-vector of fitted values f̂ (xi ) at the training points {xi}Ni=1

5.4 Smoothing Splines 153

summary reinforces the evidence in the data that the growth spurt for
females precedes that for males by about two years. In both cases the
smoothing parameter λ was approximately 0.00022; this choice is discussed
in the next section.

5.4.1 Degrees of Freedom and Smoother Matrices

We have not yet indicated how λ is chosen for the smoothing spline. Later
in this chapter we describe automatic methods using techniques such as
cross-validation. In this section we discuss intuitive ways of prespecifying
the amount of smoothing.

A smoothing spline with prechosen λ is an example of a linear smoother
(as in linear operator). This is because the estimated parameters in (5.12)

are a linear combination of the yi. Denote by f̂ the N -vector of fitted values
f̂(xi) at the training predictors xi. Then

f̂ = N(NT N + λΩN )−1NT y

= Sλy. (5.14)

Again the fit is linear in y, and the finite linear operator Sλ is known as
the smoother matrix. One consequence of this linearity is that the recipe
for producing f̂ from y does not depend on y itself; Sλ depends only on
the xi and λ.

Linear operators are familiar in more traditional least squares fitting as
well. Suppose Bξ is a N × M matrix of M cubic-spline basis functions
evaluated at the N training points xi, with knot sequence ξ, and M ≪ N .
Then the vector of fitted spline values is given by

f̂ = Bξ(B
T
ξ Bξ)

−1BT
ξ y

= Hξy. (5.15)

Here the linear operator Hξ is a projection operator, also known as the hat
matrix in statistics. There are some important similarities and differences
between Hξ and Sλ:

• Both are symmetric, positive semidefinite matrices.

• HξHξ = Hξ (idempotent), while SλSλ ≼ Sλ, meaning that the right-
hand side exceeds the left-hand side by a positive semidefinite matrix.
This is a consequence of the shrinking nature of Sλ, which we discuss
further below.

• Hξ has rank M , while Sλ has rank N .

The expression M = trace(Hξ) gives the dimension of the projection space,
which is also the number of basis functions, and hence the number of pa-
rameters involved in the fit. By analogy we define the effective degrees of

Smoother matrix: Sλ
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An example of the smoother matrix
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FIGURE 5.8. The smoother matrix for a smoothing spline is nearly banded,
indicating an equivalent kernel with local support. The left panel represents the
elements of S as an image. The right panel shows the equivalent kernel or weight-
ing function in detail for the indicated rows.
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How to choose λ?
Effective degree of freedom: the sum of diagonals of Sλ

154 5. Basis Expansions and Regularization

freedom of a smoothing spline to be

dfλ = trace(Sλ), (5.16)

the sum of the diagonal elements of Sλ. This very useful definition allows
us a more intuitive way to parameterize the smoothing spline, and indeed
many other smoothers as well, in a consistent fashion. For example, in Fig-
ure 5.6 we specified dfλ = 12 for each of the curves, and the corresponding
λ ≈ 0.00022 was derived numerically by solving trace(Sλ) = 12. There are
many arguments supporting this definition of degrees of freedom, and we
cover some of them here.

Since Sλ is symmetric (and positive semidefinite), it has a real eigen-
decomposition. Before we proceed, it is convenient to rewrite Sλ in the
Reinsch form

Sλ = (I + λK)−1, (5.17)

where K does not depend on λ (Exercise 5.9). Since f̂ = Sλy solves

min
f

(y − f)T (y − f) + λfT Kf , (5.18)

K is known as the penalty matrix, and indeed a quadratic form in K has
a representation in terms of a weighted sum of squared (divided) second
differences. The eigen-decomposition of Sλ is

Sλ =
N∑

k=1

ρk(λ)uku
T
k (5.19)

with

ρk(λ) =
1

1 + λdk
, (5.20)

and dk the corresponding eigenvalue of K. Figure 5.7 (top) shows the re-
sults of applying a cubic smoothing spline to some air pollution data (128
observations). Two fits are given: a smoother fit corresponding to a larger
penalty λ and a rougher fit for a smaller penalty. The lower panels repre-
sent the eigenvalues (lower left) and some eigenvectors (lower right) of the
corresponding smoother matrices. Some of the highlights of the eigenrep-
resentation are the following:

• The eigenvectors are not affected by changes in λ, and hence the whole
family of smoothing splines (for a particular sequence x) indexed by
λ have the same eigenvectors.

• Sλy =
∑N

k=1 ukρk(λ)⟨uk,y⟩, and hence the smoothing spline oper-
ates by decomposing y w.r.t. the (complete) basis {uk}, and differ-
entially shrinking the contributions using ρk(λ). This is to be con-
trasted with a basis-regression method, where the components are

Red: dfλ = 5; Green: dfλ = 11
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FIGURE 5.7. (Top:) Smoothing spline fit of ozone concentration versus Daggot
pressure gradient. The two fits correspond to different values of the smoothing
parameter, chosen to achieve five and eleven effective degrees of freedom, defined
by dfλ = trace(Sλ). (Lower left:) First 25 eigenvalues for the two smoothing-spline
matrices. The first two are exactly 1, and all are ≥ 0. (Lower right:) Third to
sixth eigenvectors of the spline smoother matrices. In each case, uk is plotted
against x, and as such is viewed as a function of x. The rug at the base of the
plots indicate the occurrence of data points. The damped functions represent the
smoothed versions of these functions (using the 5 df smoother).

How to choose λ? Cross validation.
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splines, we have only the penalty parameter λ to select, since the knots are
at all the unique training X’s, and cubic degree is almost always used in
practice.

Selecting the placement and number of knots for regression splines can be
a combinatorially complex task, unless some simplifications are enforced.
The MARS procedure in Chapter 9 uses a greedy algorithm with some
additional approximations to achieve a practical compromise. We will not
discuss this further here.

5.5.1 Fixing the Degrees of Freedom

Since dfλ = trace(Sλ) is monotone in λ for smoothing splines, we can in-
vert the relationship and specify λ by fixing df. In practice this can be
achieved by simple numerical methods. So, for example, in R one can use
smooth.spline(x,y,df=6) to specify the amount of smoothing. This encour-
ages a more traditional mode of model selection, where we might try a cou-
ple of different values of df, and select one based on approximate F -tests,
residual plots and other more subjective criteria. Using df in this way pro-
vides a uniform approach to compare many different smoothing methods.
It is particularly useful in generalized additive models (Chapter 9), where
several smoothing methods can be simultaneously used in one model.

5.5.2 The Bias–Variance Tradeoff

Figure 5.9 shows the effect of the choice of dfλ when using a smoothing
spline on a simple example:

Y = f(X) + ε,

f(X) =
sin(12(X + 0.2))

X + 0.2
,

(5.22)

with X ∼ U [0, 1] and ε ∼ N(0, 1). Our training sample consists of N = 100
pairs xi, yi drawn independently from this model.

The fitted splines for three different values of dfλ are shown. The yellow
shaded region in the figure represents the pointwise standard error of f̂λ,
that is, we have shaded the region between f̂λ(x) ± 2 · se(f̂λ(x)). Since

f̂ = Sλy,

Cov(f̂) = SλCov(y)ST
λ

= SλS
T
λ . (5.23)

The diagonal contains the pointwise variances at the training xi. The bias
is given by

Bias(f̂) = f − E(f̂)

= f − Sλf , (5.24)
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splines, we have only the penalty parameter λ to select, since the knots are
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practice.
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It is particularly useful in generalized additive models (Chapter 9), where
several smoothing methods can be simultaneously used in one model.

5.5.2 The Bias–Variance Tradeoff

Figure 5.9 shows the effect of the choice of dfλ when using a smoothing
spline on a simple example:
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with X ∼ U [0, 1] and ε ∼ N(0, 1). Our training sample consists of N = 100
pairs xi, yi drawn independently from this model.

The fitted splines for three different values of dfλ are shown. The yellow
shaded region in the figure represents the pointwise standard error of f̂λ,
that is, we have shaded the region between f̂λ(x) ± 2 · se(f̂λ(x)). Since

f̂ = Sλy,
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FIGURE 5.9. The top left panel shows the EPE(λ) and CV(λ) curves for a
realization from a nonlinear additive error model (5.22). The remaining panels
show the data, the true functions (in purple), and the fitted curves (in green) with
yellow shaded ±2× standard error bands, for three different values of dfλ.
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Tensor product basis

2D splines: X ∈ R2

Basis functions of coordinate X1: h1,k(X1), k = 1, . . . ,M1

Basis functions of coordinate X2: h2,k(X2), k = 1, . . . ,M2

Tensor product basis:
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values of x. This means that we can represent f(x) =
∑N

j=1 Nj(x)θj . We
compute the first and second derivatives

∂ℓ(θ)

∂θ
= NT (y − p)− λΩθ, (5.31)

∂2ℓ(θ)

∂θ∂θT
= −NT WN− λΩ, (5.32)

where p is the N -vector with elements p(xi), and W is a diagonal matrix
of weights p(xi)(1− p(xi)). The first derivative (5.31) is nonlinear in θ, so
we need to use an iterative algorithm as in Section 4.4.1. Using Newton–
Raphson as in (4.23) and (4.26) for linear logistic regression, the update
equation can be written

θnew = (NT WN + λΩ)−1NT W
(
Nθold + W−1(y − p)

)

= (NT WN + λΩ)−1NT Wz. (5.33)

We can also express this update in terms of the fitted values

fnew = N(NT WN + λΩ)−1NT W
(
fold + W−1(y − p)

)

= Sλ,wz. (5.34)

Referring back to (5.12) and (5.14), we see that the update fits a weighted
smoothing spline to the working response z (Exercise 5.12).

The form of (5.34) is suggestive. It is tempting to replace Sλ,w by any
nonparametric (weighted) regression operator, and obtain general fami-
lies of nonparametric logistic regression models. Although here x is one-
dimensional, this procedure generalizes naturally to higher-dimensional x.
These extensions are at the heart of generalized additive models, which we
pursue in Chapter 9.

5.7 Multidimensional Splines

So far we have focused on one-dimensional spline models. Each of the ap-
proaches have multidimensional analogs. Suppose X ∈ IR2, and we have
a basis of functions h1k(X1), k = 1, . . . , M1 for representing functions of
coordinate X1, and likewise a set of M2 functions h2k(X2) for coordinate
X2. Then the M1 ×M2 dimensional tensor product basis defined by

gjk(X) = h1j(X1)h2k(X2), j = 1, . . . , M1, k = 1, . . . , M2 (5.35)

can be used for representing a two-dimensional function:

g(X) =

M1∑

j=1

M2∑

k=1

θjkgjk(X). (5.36)

To represent functions:

162 5. Basis Expansions and Regularization

values of x. This means that we can represent f(x) =
∑N

j=1 Nj(x)θj . We
compute the first and second derivatives

∂ℓ(θ)

∂θ
= NT (y − p)− λΩθ, (5.31)

∂2ℓ(θ)

∂θ∂θT
= −NT WN− λΩ, (5.32)

where p is the N -vector with elements p(xi), and W is a diagonal matrix
of weights p(xi)(1− p(xi)). The first derivative (5.31) is nonlinear in θ, so
we need to use an iterative algorithm as in Section 4.4.1. Using Newton–
Raphson as in (4.23) and (4.26) for linear logistic regression, the update
equation can be written

θnew = (NT WN + λΩ)−1NT W
(
Nθold + W−1(y − p)

)

= (NT WN + λΩ)−1NT Wz. (5.33)

We can also express this update in terms of the fitted values

fnew = N(NT WN + λΩ)−1NT W
(
fold + W−1(y − p)

)

= Sλ,wz. (5.34)

Referring back to (5.12) and (5.14), we see that the update fits a weighted
smoothing spline to the working response z (Exercise 5.12).

The form of (5.34) is suggestive. It is tempting to replace Sλ,w by any
nonparametric (weighted) regression operator, and obtain general fami-
lies of nonparametric logistic regression models. Although here x is one-
dimensional, this procedure generalizes naturally to higher-dimensional x.
These extensions are at the heart of generalized additive models, which we
pursue in Chapter 9.

5.7 Multidimensional Splines

So far we have focused on one-dimensional spline models. Each of the ap-
proaches have multidimensional analogs. Suppose X ∈ IR2, and we have
a basis of functions h1k(X1), k = 1, . . . , M1 for representing functions of
coordinate X1, and likewise a set of M2 functions h2k(X2) for coordinate
X2. Then the M1 ×M2 dimensional tensor product basis defined by

gjk(X) = h1j(X1)h2k(X2), j = 1, . . . , M1, k = 1, . . . , M2 (5.35)

can be used for representing a two-dimensional function:

g(X) =

M1∑

j=1

M2∑

k=1

θjkgjk(X). (5.36)

30 / 33



5.7 Multidimensional Splines 163

FIGURE 5.10. A tensor product basis of B-splines, showing some selected pairs.
Each two-dimensional function is the tensor product of the corresponding one
dimensional marginals.

Figure 5.10 illustrates a tensor product basis using B-splines. The coeffi-
cients can be fit by least squares, as before. This can be generalized to d
dimensions, but note that the dimension of the basis grows exponentially
fast—yet another manifestation of the curse of dimensionality. The MARS
procedure discussed in Chapter 9 is a greedy forward algorithm for includ-
ing only those tensor products that are deemed necessary by least squares.

Figure 5.11 illustrates the difference between additive and tensor product
(natural) splines on the simulated classification example from Chapter 2.
A logistic regression model logit[Pr(T |x)] = h(x)T θ is fit to the binary re-

sponse, and the estimated decision boundary is the contour h(x)T θ̂ = 0.
The tensor product basis can achieve more flexibility at the decision bound-
ary, but introduces some spurious structure along the way.
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One-dimensional smoothing splines (via regularization) generalize to high-
er dimensions as well. Suppose we have pairs yi, xi with xi ∈ IRd, and we
seek a d-dimensional regression function f(x). The idea is to set up the
problem

min
f

N∑

i=1

{yi − f(xi)}2 + λJ [f ], (5.37)

where J is an appropriate penalty functional for stabilizing a function f in
IRd. For example, a natural generalization of the one-dimensional roughness
penalty (5.9) for functions on IR2 is

J [f ] =

∫ ∫

IR2

[(∂2f(x)

∂x2
1

)2

+2

(
∂2f(x)

∂x1∂x2

)2

+

(
∂2f(x)

∂x2
2

)2]
dx1dx2. (5.38)

Optimizing (5.37) with this penalty leads to a smooth two-dimensional
surface, known as a thin-plate spline. It shares many properties with the
one-dimensional cubic smoothing spline:

• as λ→ 0, the solution approaches an interpolating function [the one
with smallest penalty (5.38)];

• as λ→∞, the solution approaches the least squares plane;

• for intermediate values of λ, the solution can be represented as a
linear expansion of basis functions, whose coefficients are obtained
by a form of generalized ridge regression.

The solution has the form

f(x) = β0 + βT x +
N∑

j=1

αjhj(x), (5.39)

where hj(x) = ||x − xj ||2 log ||x − xj ||. These hj are examples of radial
basis functions, which are discussed in more detail in the next section. The
coefficients are found by plugging (5.39) into (5.37), which reduces to a
finite-dimensional penalized least squares problem. For the penalty to be
finite, the coefficients αj have to satisfy a set of linear constraints; see
Exercise 5.14.

Thin-plate splines are defined more generally for arbitrary dimension d,
for which an appropriately more general J is used.

There are a number of hybrid approaches that are popular in practice,
both for computational and conceptual simplicity. Unlike one-dimensional
smoothing splines, the computational complexity for thin-plate splines is
O(N3), since there is not in general any sparse structure that can be ex-
ploited. However, as with univariate smoothing splines, we can get away
with substantially less than the N knots prescribed by the solution (5.39).
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Thin-plate splines are defined more generally for arbitrary dimension d,
for which an appropriately more general J is used.

There are a number of hybrid approaches that are popular in practice,
both for computational and conceptual simplicity. Unlike one-dimensional
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O(N3), since there is not in general any sparse structure that can be ex-
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As λ→ 0, the solution approaches an interpolating function

As λ→∞, the solution approaches the least squares plane
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