Chapter 7 －Moving beyond linearity

Wenjing Liao
School of Mathematics
Georgia Institute of Technology

Math 4803
Fall 2019

Outline

(1) 7.1-Polynomial regression
(2) 7.2 - Step functions
(3) 7.3 - Basis functions
4) 7.4-Splines
(5) 7.5 - Smoothing splines
(6) Multidimensional splines

Polynomial regression

Linear function: $y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$
Polynomial function:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\beta_{3} x_{i}^{3}+\ldots+\beta_{d} x_{i}^{d}+\epsilon_{i},
$$

Logistic regression using polynomials:

$$
\operatorname{Pr}\left(y_{i}>250 \mid x_{i}\right)=\frac{\exp \left(\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\ldots+\beta_{d} x_{i}^{d}\right)}{1+\exp \left(\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\ldots+\beta_{d} x_{i}^{d}\right)} .
$$

Example

FIGURE 7.1. The Wage data. Left: The solid blue curve is a degree-4 polynomial of wage (in thousands of dollars) as a function of age, fit by least squares. The dotted curves indicate an estimated 95% confidence interval. Right: We model the binary event wage>250 using logistic regression, again with a degree-4 polynomial. The fitted posterior probability of wage exceeding $\$ 250,000$ is shown in blue, along with an estimated 95% confidence interval.

Outline

(1) 7.1 - Polynomial regression
(2) 7.2 - Step functions
(3) 7.3-Basis functions
(4) 7.4 - Splines
(5) 7.5 - Smoothing splines
(6) Multidimensional splines

Regression using indicator functions

Indicator functions:

$$
\begin{array}{ll}
C_{0}(X) & =I\left(X<c_{1}\right) \\
C_{1}(X) & =I\left(c_{1} \leq X<c_{2}\right) \\
C_{2}(X) & =I\left(c_{2} \leq X<c_{3}\right) \\
& \vdots \\
& \\
C_{K-1}(X) & =I\left(c_{K-1} \leq X<c_{K}\right) \\
C_{K}(X) & =I\left(c_{K} \leq X\right)
\end{array}
$$

Regression:

$$
y_{i}=\beta_{0}+\beta_{1} C_{1}\left(x_{i}\right)+\beta_{2} C_{2}\left(x_{i}\right)+\ldots+\beta_{K} C_{K}\left(x_{i}\right)+\epsilon_{i}
$$

Logistic regression:

$$
\operatorname{Pr}\left(y_{i}>250 \mid x_{i}\right)=\frac{\exp \left(\beta_{0}+\beta_{1} C_{1}\left(x_{i}\right)+\ldots+\beta_{K} C_{K}\left(x_{i}\right)\right)}{1+\exp \left(\beta_{0}+\beta_{1} C_{1}\left(x_{i}\right)+\ldots+\beta_{K} C_{K}\left(x_{i}\right)\right)}
$$

Example

FIGURE 7.2. The Wage data. Left: The solid curve displays the fitted value from a least squares regression of wage (in thousands of dollars) using step functions of age. The dotted curves indicate an estimated 95% confidence interval. Right: We model the binary event wage>250 using logistic regression, again using step functions of age. The fitted posterior probability of wage exceeding $\$ 250,000$ is shown, along with an estimated 95% confidence interval.

Outline

(1) 7.1-Polynomial regression
(2) 7.2 - Step functions
(3) 7.3 - Basis functions
4) 7.4-Splines
(5) 7.5-Smoothing splines

6 Multidimensional splines

Regression using basis functions

Basis functions: $b_{1}(\cdot), \ldots, b_{K}(\cdot)$

Regression using basis functions:

$$
y_{i}=\beta_{0}+\beta_{1} b_{1}\left(x_{i}\right)+\beta_{2} b_{2}\left(x_{i}\right)+\beta_{3} b_{3}\left(x_{i}\right)+\ldots+\beta_{K} b_{K}\left(x_{i}\right)+\epsilon_{i} .
$$

Popular basis:

- Polynomials
- Fourier basis
- Wavelet basis
- Splines

Outline

(1) 7.1-Polynomial regression
(2) 7.2 - Step functions
(3) 7.3 - Basis functions
4. 7.4 - Splines
(5) 7.5 - Smoothing splines
(6) Multidimensional splines

7.4.1 - Piecewise polynomials

Cubic polynomial:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\beta_{3} x_{i}^{3}+\epsilon_{i},
$$

Piecewise polynomial with a single knot at c :

$$
y_{i}= \begin{cases}\beta_{01}+\beta_{11} x_{i}+\beta_{21} x_{i}^{2}+\beta_{31} x_{i}^{3}+\epsilon_{i} & \text { if } x_{i}<c ; \\ \beta_{02}+\beta_{12} x_{i}+\beta_{22} x_{i}^{2}+\beta_{32} x_{i}^{3}+\epsilon_{i} & \text { if } x_{i} \geq c\end{cases}
$$

Constraints:

- \hat{f} is continuous
- $\hat{f}^{\prime}, \hat{f}^{\prime \prime}, \ldots$ are continuous

Example

FIGURE 7.3. Various piecewise polynomials are fit to a subset of the Wage data, with a knot at age=50. Top Left: The cubic polynomials are unconstrained. Top Right: The cubic polynomials are constrained to be continuous at age=50. Bottom Left: The cubic polynomials are constrained to be continuous, and to have continuous first and second derivatives. Bottom Right: A linear spline is shown, which is constrained to be continuous.

Piecewise linear

Piecewise Constant

Continuous Piecewise Linear

Piecewise Linear

Piecewise-linear Basis Function

FIGURE 5.1. The top left panel shows a piecewise constant function fit to some artificial data. The broken vertical lines indicate the positions of the two knots ξ_{1} and ξ_{2}. The blue curve represents the true function, from which the data were generated with Gaussian noise. The remaining two panels show piecewise linear functions fit to the same data-the top right unrestricted, and the lower left restricted to be continuous at the knots. The lower right panel shows a piecewiselinear basis function, $h_{3}(X)=\left(X-\xi_{1}\right)_{+}$, continuous at ξ_{1}. The black points indicate the sample evaluations $h_{3}\left(x_{i}\right), i=1, \ldots, N$.

Piecewise cubic polynomials

FIGURE 5.2. A series of piecewise-cubic polynomials, with increasing orders of continuity.

7.4.1 - The spline basis representation

General model: Fit a piecewise degree d polynomial under the constraint that its first $d-1$ derivatives are continuous

Cubic spline: K knots at ξ_{1}, \ldots, ξ_{K}

$$
y_{i}=\beta_{0}+\beta_{1} b_{1}\left(x_{i}\right)+\beta_{2} b_{2}\left(x_{i}\right)+\cdots+\beta_{K+3} b_{K+3}\left(x_{i}\right)+\epsilon_{i},
$$

Truncated power basis:

$$
h(x, \xi)=(x-\xi)_{+}^{3}=\left\{\begin{array}{cl}
(x-\xi)^{3} & \text { if } x>\xi \\
0 & \text { otherwise }
\end{array}\right.
$$

Basis functions for cubic spline:

$$
1, X, X^{2}, X^{3}, h\left(x, \xi_{1}\right), h\left(x, \xi_{2}\right), \ldots, h\left(x, \xi_{K}\right)
$$

Coefficients: $\beta_{0}, \ldots, \beta_{K+3}$, degree of freedom $=K+4$

Natural cubic spline

Natural cubic spline: is a regression spline with additional boundary constraints: for example, the function is linear at the boundary

Degree of freedom: K

Example:

FIGURE 7.4. A cubic spline and a natural cubic spline, with three knots, fit to a subset of the Wage data.

7.4.4 - Choosing the number and locations of the knots

Questions:

- Where should we place the knots? - Adaptive methods
- How many knots should we use, or equivalently how many degrees of freedom should our spline contain? - Cross validation

FIGURE 7.6. Ten-fold cross-validated mean squared errors for selecting the degrees of freedom when fitting splines to the Wage data. The response is wage and the predictor age. Left: A natural cubic spline. Right: A cubic spline.

7.4.5 - Spline and polynomial regression

- Splines are more flexible and stable
- Polynomials may have the Runge phenomenon.

FIGURE 7.7. On the Wage data set, a natural cubic spline with 15 degrees of freedom is compared to a degree- 15 polynomial. Polynomials can show wild behavior, especially near the tails.

Outline

(1) 7.1 - Polynomial regression
(2) 7.2 - Step functions
(3) 7.3 - Basis functions

4 7.4 - Splines
(5) 7.5 - Smoothing splines
6) Multidimensional splines

Regularization

$$
\operatorname{RSS}(f, \lambda)=\sum_{i=1}^{N}\left\{y_{i}-f\left(x_{i}\right)\right\}^{2}+\lambda \int\left\{f^{\prime \prime}(t)\right\}^{2} d t
$$

λ : a smoothing parameter

- $\lambda=0: f$ can be any function that interpolates the data
- $\lambda=\infty$: will obtain a line such that $f^{\prime \prime}=0$

Solution: See Exercise 5.7 in the book "The elements of statistical learning "

Exercise 5.7 in "The elements of statistical learning "

Ex. 5.7 Derivation of smoothing splines (Green and Silverman, 1994). Suppose that $N \geq 2$, and that g is the natural cubic spline interpolant to the pairs $\left\{x_{i}, z_{i}\right\}_{1}^{\bar{N}}$, with $a<x_{1}<\cdots<x_{N}<b$. This is a natural spline
with a knot at every x_{i}; being an N-dimensional space of functions, we can determine the coefficients such that it interpolates the sequence z_{i} exactly. Let \tilde{g} be any other differentiable function on $[a, b]$ that interpolates the N pairs.
(a) Let $h(x)=\tilde{g}(x)-g(x)$. Use integration by parts and the fact that g is a natural cubic spline to show that

$$
\begin{aligned}
\int_{a}^{b} g^{\prime \prime}(x) h^{\prime \prime}(x) d x & =-\sum_{j=1}^{N-1} g^{\prime \prime \prime}\left(x_{j}^{+}\right)\left\{h\left(x_{j+1}\right)-h\left(x_{j}\right)\right\} \\
& =0
\end{aligned}
$$

(b) Hence show that

$$
\int_{a}^{b} \tilde{g}^{\prime \prime}(t)^{2} d t \geq \int_{a}^{b} g^{\prime \prime}(t)^{2} d t
$$

and that equality can only hold if h is identically zero in $[a, b]$.
(c) Consider the penalized least squares problem

$$
\min _{f}\left[\sum_{i=1}^{N}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \int_{a}^{b} f^{\prime \prime}(t)^{2} d t\right] .
$$

Use (b) to argue that the minimizer must be a cubic spline with knots at each of the x_{i}.

How to find the cubic spline?
Basis expansion:

$$
f(x)=\sum_{j=1}^{N} N_{j}(x) \theta_{j}
$$

Define matrix: $\{\mathbf{N}\}_{i j}=N_{j}\left(x_{i}\right)$ and $\left\{\boldsymbol{\Omega}_{\mathbf{N}}\right\}_{j k}=\int N_{j}^{\prime \prime}(t) N_{k}^{\prime \prime}(t) d t$

$$
\operatorname{RSS}(f, \lambda)=\sum_{i=1}^{N}\left\{y_{i}-f\left(x_{i}\right)\right\}^{2}+\lambda \int\left\{f^{\prime \prime}(t)\right\}^{2} d t
$$

is equivalent to

$$
\operatorname{RSS}(\theta, \lambda)=(\mathbf{y}-\mathbf{N} \theta)^{T}(\mathbf{y}-\mathbf{N} \theta)+\lambda \theta^{T} \boldsymbol{\Omega}_{N} \theta
$$

Solution:

$$
\hat{\theta}=\left(\mathbf{N}^{T} \mathbf{N}+\lambda \boldsymbol{\Omega}_{N}\right)^{-1} \mathbf{N}^{T} \mathbf{y},
$$

Degree of freedom: = the number of coefficients

Example

FIGURE 5.6. The response is the relative change in bone mineral density measured at the spine in adolescents, as a function of age. A separate smoothing spline was fit to the males and females, with $\lambda \approx 0.00022$. This choice corresponds to about 12 degrees of freedom.

7.5.2 - Choosing the smoothing parameter λ

$\hat{\mathbf{f}}:$ the N-vector of fitted values $\hat{f}\left(x_{i}\right)$ at the training points $\left\{x_{i}\right\}_{i=1}^{N}$

$$
\begin{aligned}
\hat{\mathbf{f}} & =\mathbf{N}\left(\mathbf{N}^{T} \mathbf{N}+\lambda \boldsymbol{\Omega}_{N}\right)^{-1} \mathbf{N}^{T} \mathbf{y} \\
& =\mathbf{S}_{\lambda} \mathbf{y} .
\end{aligned}
$$

Smoother matrix: \mathbf{S}_{λ}

An example of the smoother matrix

Equivalent Kernels

FIGURE 5.8. The smoother matrix for a smoothing spline is nearly banded, indicating an equivalent kernel with local support. The left panel represents the elements of \mathbf{S} as an image. The right panel shows the equivalent kernel or weighting function in detail for the indicated rows.

How to choose λ ?

Effective degree of freedom: the sum of diagonals of \mathbf{S}_{λ}

$$
\operatorname{df}_{\lambda}=\operatorname{trace}\left(\mathbf{S}_{\lambda}\right),
$$

Red: $d f_{\lambda}=5$; Green: $d f_{\lambda}=11$

Example

$$
\begin{gathered}
Y=f(X)+\varepsilon \\
f(X)=\frac{\sin (12(X+0.2))}{X+0.2}, \\
X \sim U[0,1] \text { and } \varepsilon \sim N(0,1)
\end{gathered}
$$

FIGURE 5.9. The top left panel shows the $\operatorname{EPE}(\lambda)$ and $\mathrm{CV}(\lambda)$ curves for a realization from a nonlinear additive error model (5.22). The remaining panels show the data, the true functions (in purple), and the fitted curves (in green) with yellow shaded $\pm 2 \times$ standard error bands, for three different valuesaf $d f_{\lambda} \cdot \square$

Outline

(1) 7.1 - Polynomial regression
(2) 7.2 - Step functions
(3) 7.3 - Basis functions

4 7.4 - Splines
(5) 7.5 - Smoothing splines
(6) Multidimensional splines

Tensor product basis

2D splines: $X \in \mathbb{R}^{2}$

- Basis functions of coordinate $X_{1}: h_{1, k}\left(X_{1}\right), k=1, \ldots, M_{1}$
- Basis functions of coordinate $X_{2}: h_{2, k}\left(X_{2}\right), k=1, \ldots, M_{2}$

Tensor product basis:

$$
g_{j k}(X)=h_{1 j}\left(X_{1}\right) h_{2 k}\left(X_{2}\right), j=1, \ldots, M_{1}, k=1, \ldots, M_{2}
$$

To represent functions:

$$
g(X)=\sum_{j=1}^{M_{1}} \sum_{k=1}^{M_{2}} \theta_{j k} g_{j k}(X)
$$

FIGURE 5.10. A tensor product basis of B-splines, showing some selected pairs. Each two-dimensional function is the tensor product of the corresponding one dimensional marginals.

Smoothing splines in two dimensions

$$
\begin{gathered}
\min _{f} \sum_{i=1}^{N}\left\{y_{i}-f\left(x_{i}\right)\right\}^{2}+\lambda J[f], \\
J[f]=\iint_{\mathbb{R}^{2}}\left[\left(\frac{\partial^{2} f(x)}{\partial x_{1}^{2}}\right)^{2}+2\left(\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}}\right)^{2}+\left(\frac{\partial^{2} f(x)}{\partial x_{2}^{2}}\right)^{2}\right] d x_{1} d x_{2} .
\end{gathered}
$$

- As $\lambda \rightarrow 0$, the solution approaches an interpolating function
- As $\lambda \rightarrow \infty$, the solution approaches the least squares plane

Reference

Chapter 7: James, Gareth, Daniela Witten, Trevor Hastie and Robert Tibshirani, An introduction to statistical learning. Vol. 112, New York: Springer, 2013

Chapter 5: Trevor Hastie, Robert Tibshirani, The Elements of Statistical Learning, Second Edition.

