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Predict the log salary of a baseball player
304 8. Tree-Based Methods
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FIGURE 8.1. For the Hitters data, a regression tree for predicting the log
salary of a baseball player, based on the number of years that he has played in
the major leagues and the number of hits that he made in the previous year. At a
given internal node, the label (of the form Xj < tk) indicates the left-hand branch
emanating from that split, and the right-hand branch corresponds to Xj ≥ tk.
For instance, the split at the top of the tree results in two large branches. The
left-hand branch corresponds to Years<4.5, and the right-hand branch corresponds
to Years>=4.5. The tree has two internal nodes and three terminal nodes, or
leaves. The number in each leaf is the mean of the response for the observations
that fall there.

8.1.1 Regression Trees

In order to motivate regression trees, we begin with a simple example.
regression
tree

Predicting Baseball Players’ Salaries Using Regression Trees

We use the Hitters data set to predict a baseball player’s Salary based on
Years (the number of years that he has played in the major leagues) and
Hits (the number of hits that he made in the previous year). We first remove
observations that are missing Salary values, and log-transform Salary so
that its distribution has more of a typical bell-shape. (Recall that Salary

is measured in thousands of dollars.)
Figure 8.1 shows a regression tree fit to this data. It consists of a series

of splitting rules, starting at the top of the tree. The top split assigns
observations having Years<4.5 to the left branch.1 The predicted salary

1Both Years and Hits are integers in these data; the tree() function in R labels
the splits at the midpoint between two adjacent values.
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Regions of partition
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FIGURE 8.2. The three-region partition for the Hitters data set from the
regression tree illustrated in Figure 8.1.

for these players is given by the mean response value for the players in
the data set with Years<4.5. For such players, the mean log salary is 5.107,
and so we make a prediction of e5.107 thousands of dollars, i.e. $165,174, for
these players. Players with Years>=4.5 are assigned to the right branch, and
then that group is further subdivided by Hits. Overall, the tree stratifies
or segments the players into three regions of predictor space: players who
have played for four or fewer years, players who have played for five or more
years and who made fewer than 118 hits last year, and players who have
played for five or more years and who made at least 118 hits last year. These
three regions can be written as R1 ={X | Years<4.5}, R2 ={X | Years>=4.5,
Hits<117.5}, and R3 ={X | Years>=4.5, Hits>=117.5}. Figure 8.2 illustrates
the regions as a function of Years and Hits. The predicted salaries for these
three groups are $1,000×e5.107 =$165,174, $1,000×e5.999 =$402,834, and
$1,000×e6.740 =$845,346 respectively.

In keeping with the tree analogy, the regions R1, R2, and R3 are known
as terminal nodes or leaves of the tree. As is the case for Figure 8.1, decision

terminal
node

leaf

trees are typically drawn upside down, in the sense that the leaves are at
the bottom of the tree. The points along the tree where the predictor space
is split are referred to as internal nodes. In Figure 8.1, the two internal

internal node
nodes are indicated by the text Years<4.5 and Hits<117.5. We refer to the
segments of the trees that connect the nodes as branches.

branch
We might interpret the regression tree displayed in Figure 8.1 as follows:

Years is the most important factor in determining Salary, and players with
less experience earn lower salaries than more experienced players. Given
that a player is less experienced, the number of hits that he made in the
previous year seems to play little role in his salary. But among players who

R1 = {X |Years < 4.5}, Ŷ = $1, 000× e5.107 = 165, 174
R2 = {X |Years ≥ 4.5, Hits < 117.5}, Ŷ = $1, 000× e5.999 = 402, 834
R3 = {X |Years ≥ 4.5, Hits ≥ 117.5}, Ŷ = $1, 000× e6.740 = 845, 346
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Prediction via stratification of the feature space

306 8. Tree-Based Methods

have been in the major leagues for five or more years, the number of hits
made in the previous year does affect salary, and players who made more
hits last year tend to have higher salaries. The regression tree shown in
Figure 8.1 is likely an over-simplification of the true relationship between
Hits, Years, and Salary. However, it has advantages over other types of
regression models (such as those seen in Chapters 3 and 6): it is easier to
interpret, and has a nice graphical representation.

Prediction via Stratification of the Feature Space

We now discuss the process of building a regression tree. Roughly speaking,
there are two steps.

1. We divide the predictor space—that is, the set of possible values for
X1, X2, . . . , Xp—into J distinct and non-overlapping regions,
R1, R2, . . . , RJ .

2. For every observation that falls into the region Rj , we make the same
prediction, which is simply the mean of the response values for the
training observations in Rj .

For instance, suppose that in Step 1 we obtain two regions, R1 and R2,
and that the response mean of the training observations in the first region
is 10, while the response mean of the training observations in the second
region is 20. Then for a given observation X = x, if x ∈ R1 we will predict
a value of 10, and if x ∈ R2 we will predict a value of 20.

We now elaborate on Step 1 above. How do we construct the regions
R1, . . . , RJ? In theory, the regions could have any shape. However, we
choose to divide the predictor space into high-dimensional rectangles, or
boxes, for simplicity and for ease of interpretation of the resulting predic-
tive model. The goal is to find boxes R1, . . . , RJ that minimize the RSS,
given by

J∑

j=1

∑

i∈Rj

(yi − ŷRj
)2, (8.1)

where ŷRj
is the mean response for the training observations within the

jth box. Unfortunately, it is computationally infeasible to consider every
possible partition of the feature space into J boxes. For this reason, we take
a top-down, greedy approach that is known as recursive binary splitting. The

recursive
binary
splitting

approach is top-down because it begins at the top of the tree (at which point
all observations belong to a single region) and then successively splits the
predictor space; each split is indicated via two new branches further down
on the tree. It is greedy because at each step of the tree-building process,
the best split is made at that particular step, rather than looking ahead
and picking a split that will lead to a better tree in some future step.

How to construct the regions R1, . . . ,RJ?
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splitting

approach is top-down because it begins at the top of the tree (at which point
all observations belong to a single region) and then successively splits the
predictor space; each split is indicated via two new branches further down
on the tree. It is greedy because at each step of the tree-building process,
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where ŷRj
is the mean response for the training data within the jth box.

The optimization above is computationally infeasible.

Instead we take a top-down, greedy approach that known as recursive
binary splitting.
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Recursive binary splitting

1 Define the pair of half planes

8.1 The Basics of Decision Trees 307

In order to perform recursive binary splitting, we first select the pre-
dictor Xj and the cutpoint s such that splitting the predictor space into
the regions {X |Xj < s} and {X |Xj ≥ s} leads to the greatest possible
reduction in RSS. (The notation {X |Xj < s} means the region of predictor
space in which Xj takes on a value less than s.) That is, we consider all
predictors X1, . . . , Xp, and all possible values of the cutpoint s for each of
the predictors, and then choose the predictor and cutpoint such that the
resulting tree has the lowest RSS. In greater detail, for any j and s, we
define the pair of half-planes

R1(j, s) = {X |Xj < s} and R2(j, s) = {X |Xj ≥ s}, (8.2)

and we seek the value of j and s that minimize the equation

∑

i: xi∈R1(j,s)

(yi − ŷR1
)2 +

∑

i: xi∈R2(j,s)

(yi − ŷR2
)2, (8.3)

where ŷR1
is the mean response for the training observations in R1(j, s),

and ŷR2
is the mean response for the training observations in R2(j, s).

Finding the values of j and s that minimize (8.3) can be done quite quickly,
especially when the number of features p is not too large.

Next, we repeat the process, looking for the best predictor and best
cutpoint in order to split the data further so as to minimize the RSS within
each of the resulting regions. However, this time, instead of splitting the
entire predictor space, we split one of the two previously identified regions.
We now have three regions. Again, we look to split one of these three regions
further, so as to minimize the RSS. The process continues until a stopping
criterion is reached; for instance, we may continue until no region contains
more than five observations.

Once the regions R1, . . . , RJ have been created, we predict the response
for a given test observation using the mean of the training observations in
the region to which that test observation belongs.

A five-region example of this approach is shown in Figure 8.3.

Tree Pruning

The process described above may produce good predictions on the training
set, but is likely to overfit the data, leading to poor test set performance.
This is because the resulting tree might be too complex. A smaller tree
with fewer splits (that is, fewer regions R1, . . . , RJ ) might lead to lower
variance and better interpretation at the cost of a little bias. One possible
alternative to the process described above is to build the tree only so long
as the decrease in the RSS due to each split exceeds some (high) threshold.
This strategy will result in smaller trees, but is too short-sighted since a
seemingly worthless split early on in the tree might be followed by a very
good split—that is, a split that leads to a large reduction in RSS later on.

2 Seek the value of j and s that minimizes the equation
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is the mean response for the training observations in R2(j, s).

Finding the values of j and s that minimize (8.3) can be done quite quickly,
especially when the number of features p is not too large.

Next, we repeat the process, looking for the best predictor and best
cutpoint in order to split the data further so as to minimize the RSS within
each of the resulting regions. However, this time, instead of splitting the
entire predictor space, we split one of the two previously identified regions.
We now have three regions. Again, we look to split one of these three regions
further, so as to minimize the RSS. The process continues until a stopping
criterion is reached; for instance, we may continue until no region contains
more than five observations.

Once the regions R1, . . . , RJ have been created, we predict the response
for a given test observation using the mean of the training observations in
the region to which that test observation belongs.

A five-region example of this approach is shown in Figure 8.3.

Tree Pruning

The process described above may produce good predictions on the training
set, but is likely to overfit the data, leading to poor test set performance.
This is because the resulting tree might be too complex. A smaller tree
with fewer splits (that is, fewer regions R1, . . . , RJ ) might lead to lower
variance and better interpretation at the cost of a little bias. One possible
alternative to the process described above is to build the tree only so long
as the decrease in the RSS due to each split exceeds some (high) threshold.
This strategy will result in smaller trees, but is too short-sighted since a
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where ŷR1 is the mean response for the training data in R1(j , s), and
ŷR2 is the mean response for the training data in R2(j , s)

Repeat this process, looking for the best predictor and best cutpoint in
order to split the data further so as to minimize the RSS within each of
the resulting regions.
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FIGURE 8.3. Top Left: A partition of two-dimensional feature space that could
not result from recursive binary splitting. Top Right: The output of recursive
binary splitting on a two-dimensional example. Bottom Left: A tree corresponding
to the partition in the top right panel. Bottom Right: A perspective plot of the
prediction surface corresponding to that tree.

Therefore, a better strategy is to grow a very large tree T0, and then
prune it back in order to obtain a subtree. How do we determine the best prune

subtreeway to prune the tree? Intuitively, our goal is to select a subtree that
leads to the lowest test error rate. Given a subtree, we can estimate its
test error using cross-validation or the validation set approach. However,
estimating the cross-validation error for every possible subtree would be too
cumbersome, since there is an extremely large number of possible subtrees.
Instead, we need a way to select a small set of subtrees for consideration.

Cost complexity pruning—also known as weakest link pruning—gives us
cost
complexity
pruning

weakest link
pruning

a way to do just this. Rather than considering every possible subtree, we
consider a sequence of trees indexed by a nonnegative tuning parameter α.
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Tree pruning

Pruning is to avoid overfitting to the training data.

How to prune the tree? – select a subtree that leads to the lowest
test error.

Cost complexity pruning: For each tuning parameter α > 0, find a
subtree T ⊂ T0 such that

8.1 The Basics of Decision Trees 309

Algorithm 8.1 Building a Regression Tree

1. Use recursive binary splitting to grow a large tree on the training
data, stopping only when each terminal node has fewer than some
minimum number of observations.

2. Apply cost complexity pruning to the large tree in order to obtain a
sequence of best subtrees, as a function of α.

3. Use K-fold cross-validation to choose α. That is, divide the training
observations into K folds. For each k = 1, . . . , K:

(a) Repeat Steps 1 and 2 on all but the kth fold of the training data.

(b) Evaluate the mean squared prediction error on the data in the
left-out kth fold, as a function of α.

Average the results for each value of α, and pick α to minimize the
average error.

4. Return the subtree from Step 2 that corresponds to the chosen value
of α.

For each value of α there corresponds a subtree T ⊂ T0 such that

|T |∑

m=1

∑

i: xi∈Rm

(yi − ŷRm)2 + α|T | (8.4)

is as small as possible. Here |T | indicates the number of terminal nodes
of the tree T , Rm is the rectangle (i.e. the subset of predictor space) cor-
responding to the mth terminal node, and ŷRm is the predicted response
associated with Rm—that is, the mean of the training observations in Rm.
The tuning parameter α controls a trade-off between the subtree’s com-
plexity and its fit to the training data. When α = 0, then the subtree T
will simply equal T0, because then (8.4) just measures the training error.
However, as α increases, there is a price to pay for having a tree with
many terminal nodes, and so the quantity (8.4) will tend to be minimized
for a smaller subtree. Equation 8.4 is reminiscent of the lasso (6.7) from
Chapter 6, in which a similar formulation was used in order to control the
complexity of a linear model.

It turns out that as we increase α from zero in (8.4), branches get pruned
from the tree in a nested and predictable fashion, so obtaining the whole
sequence of subtrees as a function of α is easy. We can select a value of
α using a validation set or using cross-validation. We then return to the
full data set and obtain the subtree corresponding to α. This process is
summarized in Algorithm 8.1.

is as small as possible. Here |T | indicates the number of terminal nodes in
T , and Rm is the rectangle corresponding to the mth terminal node.

When α = 0, T = T0;

As α increases, the minimizer tend to be a smaller subtree.
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Building a regression tree
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Example: the unpruned tree for the Hitters data310 8. Tree-Based Methods

|
Years < 4.5
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7.289

FIGURE 8.4. Regression tree analysis for the Hitters data. The unpruned tree
that results from top-down greedy splitting on the training data is shown.

Figures 8.4 and 8.5 display the results of fitting and pruning a regression
tree on the Hitters data, using nine of the features. First, we randomly
divided the data set in half, yielding 132 observations in the training set
and 131 observations in the test set. We then built a large regression tree
on the training data and varied α in (8.4) in order to create subtrees with
different numbers of terminal nodes. Finally, we performed six-fold cross-
validation in order to estimate the cross-validated MSE of the trees as
a function of α. (We chose to perform six-fold cross-validation because
132 is an exact multiple of six.) The unpruned regression tree is shown
in Figure 8.4. The green curve in Figure 8.5 shows the CV error as a
function of the number of leaves,2 while the orange curve indicates the
test error. Also shown are standard error bars around the estimated errors.
For reference, the training error curve is shown in black. The CV error
is a reasonable approximation of the test error: the CV error takes on its

2Although CV error is computed as a function of α, it is convenient to display the
result as a function of |T |, the number of leaves; this is based on the relationship between
α and |T | in the original tree grown to all the training data.
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Pruning

132 observations for training and 131 observations for test;

Build a large tree on training data and prune the tree with varied α;

Perform six-fold cross validation as a function of α.
8.1 The Basics of Decision Trees 311
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FIGURE 8.5. Regression tree analysis for the Hitters data. The training,
cross-validation, and test MSE are shown as a function of the number of termi-
nal nodes in the pruned tree. Standard error bands are displayed. The minimum
cross-validation error occurs at a tree size of three.

minimum for a three-node tree, while the test error also dips down at the
three-node tree (though it takes on its lowest value at the ten-node tree).
The pruned tree containing three terminal nodes is shown in Figure 8.1.

8.1.2 Classification Trees

A classification tree is very similar to a regression tree, except that it is
classification
treeused to predict a qualitative response rather than a quantitative one. Re-

call that for a regression tree, the predicted response for an observation is
given by the mean response of the training observations that belong to the
same terminal node. In contrast, for a classification tree, we predict that
each observation belongs to the most commonly occurring class of training
observations in the region to which it belongs. In interpreting the results of
a classification tree, we are often interested not only in the class prediction
corresponding to a particular terminal node region, but also in the class
proportions among the training observations that fall into that region.

The task of growing a classification tree is quite similar to the task of
growing a regression tree. Just as in the regression setting, we use recursive
binary splitting to grow a classification tree. However, in the classification
setting, RSS cannot be used as a criterion for making the binary splits.
A natural alternative to RSS is the classification error rate. Since we plan

classification
error rateto assign an observation in a given region to the most commonly occurring

class of training observations in that region, the classification error rate is
simply the fraction of the training observations in that region that do not
belong to the most common class:
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How to predict?

Prediction rule: Each observation belongs to the most commonly
occurring class of training observation in the region to which it belongs.

Classification error rate: the fraction of the training observations in that
region that do not belong to the most common class312 8. Tree-Based Methods

E = 1−max
k

(p̂mk). (8.5)

Here p̂mk represents the proportion of training observations in the mth
region that are from the kth class. However, it turns out that classification
error is not sufficiently sensitive for tree-growing, and in practice two other
measures are preferable.

The Gini index is defined by
Gini index

G =

K∑

k=1

p̂mk(1− p̂mk), (8.6)

a measure of total variance across the K classes. It is not hard to see
that the Gini index takes on a small value if all of the p̂mk’s are close to
zero or one. For this reason the Gini index is referred to as a measure of
node purity—a small value indicates that a node contains predominantly
observations from a single class.

An alternative to the Gini index is entropy, given by entropy

D = −
K∑

k=1

p̂mk log p̂mk. (8.7)

Since 0 ≤ p̂mk ≤ 1, it follows that 0 ≤ −p̂mk log p̂mk. One can show that
the entropy will take on a value near zero if the p̂mk’s are all near
zero or near one. Therefore, like the Gini index, the entropy will take
on a small value if the mth node is pure. In fact, it turns out that the Gini
index and the entropy are quite similar numerically.

When building a classification tree, either the Gini index or the
entropy are typically used to evaluate the quality of a particular split,
since these two approaches are more sensitive to node purity than is the
classification error rate. Any of these three approaches might be used when
pruning the tree, but the classification error rate is preferable if prediction
accuracy of the final pruned tree is the goal.

Figure 8.6 shows an example on the Heart data set. These data con-
tain a binary outcome HD for 303 patients who presented with chest pain.
An outcome value of Yes indicates the presence of heart disease based on
an angiographic test, while No means no heart disease. There are 13 predic-
tors including Age, Sex, Chol (a cholesterol measurement), and other heart
and lung function measurements. Cross-validation results in a tree with six
terminal nodes.

In our discussion thus far, we have assumed that the predictor vari-
ables take on continuous values. However, decision trees can be constructed
even in the presence of qualitative predictor variables. For instance, in the
Heart data, some of the predictors, such as Sex, Thal (Thallium stress test),
and ChestPain, are qualitative. Therefore, a split on one of these variables
amounts to assigning some of the qualitative values to one branch and

where p̂mk represents the proportion of training observations in the mth
region that are from the kth class.

The classification error is not sufficiently sensitive for tree-growing.
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Preferable criterion for the error
Gini index:

312 8. Tree-Based Methods
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Here p̂mk represents the proportion of training observations in the mth
region that are from the kth class. However, it turns out that classification
error is not sufficiently sensitive for tree-growing, and in practice two other
measures are preferable.

The Gini index is defined by
Gini index

G =

K∑

k=1

p̂mk(1− p̂mk), (8.6)

a measure of total variance across the K classes. It is not hard to see
that the Gini index takes on a small value if all of the p̂mk’s are close to
zero or one. For this reason the Gini index is referred to as a measure of
node purity—a small value indicates that a node contains predominantly
observations from a single class.

An alternative to the Gini index is entropy, given by entropy

D = −
K∑

k=1

p̂mk log p̂mk. (8.7)

Since 0 ≤ p̂mk ≤ 1, it follows that 0 ≤ −p̂mk log p̂mk. One can show that
the entropy will take on a value near zero if the p̂mk’s are all near
zero or near one. Therefore, like the Gini index, the entropy will take
on a small value if the mth node is pure. In fact, it turns out that the Gini
index and the entropy are quite similar numerically.

When building a classification tree, either the Gini index or the
entropy are typically used to evaluate the quality of a particular split,
since these two approaches are more sensitive to node purity than is the
classification error rate. Any of these three approaches might be used when
pruning the tree, but the classification error rate is preferable if prediction
accuracy of the final pruned tree is the goal.

Figure 8.6 shows an example on the Heart data set. These data con-
tain a binary outcome HD for 303 patients who presented with chest pain.
An outcome value of Yes indicates the presence of heart disease based on
an angiographic test, while No means no heart disease. There are 13 predic-
tors including Age, Sex, Chol (a cholesterol measurement), and other heart
and lung function measurements. Cross-validation results in a tree with six
terminal nodes.

In our discussion thus far, we have assumed that the predictor vari-
ables take on continuous values. However, decision trees can be constructed
even in the presence of qualitative predictor variables. For instance, in the
Heart data, some of the predictors, such as Sex, Thal (Thallium stress test),
and ChestPain, are qualitative. Therefore, a split on one of these variables
amounts to assigning some of the qualitative values to one branch and

It measures the total variance across the K classes.

The Gini index is small if all of the p̂mk ’s are close to 0 or 1 – a small
value indicates that a node contains predominantly observations from
a single class.

Entropy:

312 8. Tree-Based Methods
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(p̂mk). (8.5)
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region that are from the kth class. However, it turns out that classification
error is not sufficiently sensitive for tree-growing, and in practice two other
measures are preferable.

The Gini index is defined by
Gini index

G =

K∑

k=1

p̂mk(1− p̂mk), (8.6)

a measure of total variance across the K classes. It is not hard to see
that the Gini index takes on a small value if all of the p̂mk’s are close to
zero or one. For this reason the Gini index is referred to as a measure of
node purity—a small value indicates that a node contains predominantly
observations from a single class.

An alternative to the Gini index is entropy, given by entropy

D = −
K∑

k=1

p̂mk log p̂mk. (8.7)

Since 0 ≤ p̂mk ≤ 1, it follows that 0 ≤ −p̂mk log p̂mk. One can show that
the entropy will take on a value near zero if the p̂mk’s are all near
zero or near one. Therefore, like the Gini index, the entropy will take
on a small value if the mth node is pure. In fact, it turns out that the Gini
index and the entropy are quite similar numerically.

When building a classification tree, either the Gini index or the
entropy are typically used to evaluate the quality of a particular split,
since these two approaches are more sensitive to node purity than is the
classification error rate. Any of these three approaches might be used when
pruning the tree, but the classification error rate is preferable if prediction
accuracy of the final pruned tree is the goal.

Figure 8.6 shows an example on the Heart data set. These data con-
tain a binary outcome HD for 303 patients who presented with chest pain.
An outcome value of Yes indicates the presence of heart disease based on
an angiographic test, while No means no heart disease. There are 13 predic-
tors including Age, Sex, Chol (a cholesterol measurement), and other heart
and lung function measurements. Cross-validation results in a tree with six
terminal nodes.

In our discussion thus far, we have assumed that the predictor vari-
ables take on continuous values. However, decision trees can be constructed
even in the presence of qualitative predictor variables. For instance, in the
Heart data, some of the predictors, such as Sex, Thal (Thallium stress test),
and ChestPain, are qualitative. Therefore, a split on one of these variables
amounts to assigning some of the qualitative values to one branch and

0 ≤ p̂mk ≤ 1 =⇒ −p̂mk log p̂mk ≥ 0

−p̂mk log p̂mk is small if p̂mk is close to 0 or 1 – the mth node is pure.
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Build a classification tree

Training:

Binary splitting

Evaluate the quality of a particular split by the Gini index or entropy.

Pruning the tree with the Gini index or entropy.

Prediction accuracy on test data: use the classification error rate

An example: Heart data

a binary outcome “HD” for 303 patients

13 predictors including “age”, “sex”, “chol”
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FIGURE 8.6. Heart data. Top: The unpruned tree. Bottom Left: Cross
-validation error, training, and test error, for different sizes of the pruned tree.
Bottom Right: The pruned tree corresponding to the minimal cross-validation
error.

assigning the remaining to the other branch. In Figure 8.6, some of the in-
ternal nodes correspond to splitting qualitative variables. For instance, the
top internal node corresponds to splitting Thal. The text Thal:a indicates
that the left-hand branch coming out of that node consists of observations
with the first value of the Thal variable (normal), and the right-hand node
consists of the remaining observations (fixed or reversible defects). The text
ChestPain:bc two splits down the tree on the left indicates that the left-hand
branch coming out of that node consists of observations with the second
and third values of the ChestPain variable, where the possible values are
typical angina, atypical angina, non-anginal pain, and asymptomatic.
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assigning the remaining to the other branch. In Figure 8.6, some of the in-
ternal nodes correspond to splitting qualitative variables. For instance, the
top internal node corresponds to splitting Thal. The text Thal:a indicates
that the left-hand branch coming out of that node consists of observations
with the first value of the Thal variable (normal), and the right-hand node
consists of the remaining observations (fixed or reversible defects). The text
ChestPain:bc two splits down the tree on the left indicates that the left-hand
branch coming out of that node consists of observations with the second
and third values of the ChestPain variable, where the possible values are
typical angina, atypical angina, non-anginal pain, and asymptomatic.
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8.1.3 - Tree versus linear models

Linear regression:

314 8. Tree-Based Methods

Figure 8.6 has a surprising characteristic: some of the splits yield two
terminal nodes that have the same predicted value. For instance, consider
the split RestECG<1 near the bottom right of the unpruned tree. Regardless
of the value of RestECG, a response value of Yes is predicted for those ob-
servations. Why, then, is the split performed at all? The split is performed
because it leads to increased node purity. That is, all 9 of the observations
corresponding to the right-hand leaf have a response value of Yes, whereas
7/11 of those corresponding to the left-hand leaf have a response value of
Yes. Why is node purity important? Suppose that we have a test obser-
vation that belongs to the region given by that right-hand leaf. Then we
can be pretty certain that its response value is Yes. In contrast, if a test
observation belongs to the region given by the left-hand leaf, then its re-
sponse value is probably Yes, but we are much less certain. Even though
the split RestECG<1 does not reduce the classification error, it improves the
Gini index and the entropy, which are more sensitive to node purity.

8.1.3 Trees Versus Linear Models

Regression and classification trees have a very different flavor from the more
classical approaches for regression and classification presented in Chapters 3
and 4. In particular, linear regression assumes a model of the form

f(X) = β0 +

p∑

j=1

Xjβj , (8.8)

whereas regression trees assume a model of the form

f(X) =

M∑

m=1

cm · 1(X∈Rm) (8.9)

where R1, . . . , RM represent a partition of feature space, as in Figure 8.3.
Which model is better? It depends on the problem at hand. If the

relationship between the features and the response is well approximated
by a linear model as in (8.8), then an approach such as linear regression
will likely work well, and will outperform a method such as a regression
tree that does not exploit this linear structure. If instead there is a highly
non-linear and complex relationship between the features and the response
as indicated by model (8.9), then decision trees may outperform classical
approaches. An illustrative example is displayed in Figure 8.7. The rela-
tive performances of tree-based and classical approaches can be assessed by
estimating the test error, using either cross-validation or the validation set
approach (Chapter 5).

Of course, other considerations beyond simply test error may come into
play in selecting a statistical learning method; for instance, in certain set-
tings, prediction using a tree may be preferred for the sake of interpretabil-
ity and visualization.

Linear regression works well if the relation between the response and
the predictors are linear.

Regression tree:

314 8. Tree-Based Methods

Figure 8.6 has a surprising characteristic: some of the splits yield two
terminal nodes that have the same predicted value. For instance, consider
the split RestECG<1 near the bottom right of the unpruned tree. Regardless
of the value of RestECG, a response value of Yes is predicted for those ob-
servations. Why, then, is the split performed at all? The split is performed
because it leads to increased node purity. That is, all 9 of the observations
corresponding to the right-hand leaf have a response value of Yes, whereas
7/11 of those corresponding to the left-hand leaf have a response value of
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the split RestECG<1 does not reduce the classification error, it improves the
Gini index and the entropy, which are more sensitive to node purity.

8.1.3 Trees Versus Linear Models

Regression and classification trees have a very different flavor from the more
classical approaches for regression and classification presented in Chapters 3
and 4. In particular, linear regression assumes a model of the form

f(X) = β0 +

p∑
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Xjβj , (8.8)

whereas regression trees assume a model of the form

f(X) =

M∑
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cm · 1(X∈Rm) (8.9)

where R1, . . . , RM represent a partition of feature space, as in Figure 8.3.
Which model is better? It depends on the problem at hand. If the

relationship between the features and the response is well approximated
by a linear model as in (8.8), then an approach such as linear regression
will likely work well, and will outperform a method such as a regression
tree that does not exploit this linear structure. If instead there is a highly
non-linear and complex relationship between the features and the response
as indicated by model (8.9), then decision trees may outperform classical
approaches. An illustrative example is displayed in Figure 8.7. The rela-
tive performances of tree-based and classical approaches can be assessed by
estimating the test error, using either cross-validation or the validation set
approach (Chapter 5).

Of course, other considerations beyond simply test error may come into
play in selecting a statistical learning method; for instance, in certain set-
tings, prediction using a tree may be preferred for the sake of interpretabil-
ity and visualization.

17 / 25



Example 8.1 The Basics of Decision Trees 315

X1

X
2

X1

X
2

X1

X
2

X1

X
2

−2
−1

0
1

2
−2

−1
0

1
2

−2
−1

0
1

2
−2

−1
0

1
2

−2 −1 0 1 2 −2 −1 0 1 2

−2 −1 0 1 2−2 −1 0 1 2

FIGURE 8.7. Top Row: A two-dimensional classification example in which
the true decision boundary is linear, and is indicated by the shaded regions.
A classical approach that assumes a linear boundary (left) will outperform a de-
cision tree that performs splits parallel to the axes (right). Bottom Row: Here the
true decision boundary is non-linear. Here a linear model is unable to capture
the true decision boundary (left), whereas a decision tree is successful (right).

8.1.4 Advantages and Disadvantages of Trees

Decision trees for regression and classification have a number of advantages
over the more classical approaches seen in Chapters 3 and 4:

▲ Trees are very easy to explain to people. In fact, they are even easier
to explain than linear regression!

▲ Some people believe that decision trees more closely mirror human
decision-making than do the regression and classification approaches
seen in previous chapters.

▲ Trees can be displayed graphically, and are easily interpreted even by
a non-expert (especially if they are small).

▲ Trees can easily handle qualitative predictors without the need to
create dummy variables.
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1 8.1.1 – Regression trees

2 8.1.2 – Classification trees

3 8.2 - Bagging, random forests and boosting
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Basics
High variance: if we split the training data into two parts at random and
fit a tree to both halves, the results could be quite different.

Average: average multiple training results

8.2 Bagging, Random Forests, Boosting 317

given by

f̂avg(x) =
1

B

B∑

b=1

f̂ b(x).

Of course, this is not practical because we generally do not have access
to multiple training sets. Instead, we can bootstrap, by taking repeated
samples from the (single) training data set. In this approach we generate
B different bootstrapped training data sets. We then train our method on
the bth bootstrapped training set in order to get f̂∗b(x), and finally average
all the predictions, to obtain

f̂bag(x) =
1

B

B∑

b=1

f̂∗b(x).

This is called bagging.
While bagging can improve predictions for many regression methods,

it is particularly useful for decision trees. To apply bagging to regression
trees, we simply construct B regression trees using B bootstrapped training
sets, and average the resulting predictions. These trees are grown deep,
and are not pruned. Hence each individual tree has high variance, but
low bias. Averaging these B trees reduces the variance. Bagging has been
demonstrated to give impressive improvements in accuracy by combining
together hundreds or even thousands of trees into a single procedure.

Thus far, we have described the bagging procedure in the regression
context, to predict a quantitative outcome Y . How can bagging be extended
to a classification problem where Y is qualitative? In that situation, there
are a few possible approaches, but the simplest is as follows. For a given test
observation, we can record the class predicted by each of the B trees, and
take a majority vote: the overall prediction is the most commonly occurring

majority
voteclass among the B predictions.

Figure 8.8 shows the results from bagging trees on the Heart data. The
test error rate is shown as a function of B, the number of trees constructed
using bootstrapped training data sets. We see that the bagging test error
rate is slightly lower in this case than the test error rate obtained from a
single tree. The number of trees B is not a critical parameter with bagging;
using a very large value of B will not lead to overfitting. In practice we
use a value of B sufficiently large that the error has settled down. Using
B = 100 is sufficient to achieve good performance in this example.

Out-of-Bag Error Estimation

It turns out that there is a very straightforward way to estimate the test
error of a bagged model, without the need to perform cross-validation or
the validation set approach. Recall that the key to bagging is that trees are
repeatedly fit to bootstrapped subsets of the observations. One can show

where f̂ 1(x), . . . , f̂ B(x) are calculated via B separate training sets.

Bagging:
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given by

f̂avg(x) =
1

B

B∑

b=1

f̂ b(x).

Of course, this is not practical because we generally do not have access
to multiple training sets. Instead, we can bootstrap, by taking repeated
samples from the (single) training data set. In this approach we generate
B different bootstrapped training data sets. We then train our method on
the bth bootstrapped training set in order to get f̂∗b(x), and finally average
all the predictions, to obtain

f̂bag(x) =
1

B

B∑

b=1

f̂∗b(x).

This is called bagging.
While bagging can improve predictions for many regression methods,

it is particularly useful for decision trees. To apply bagging to regression
trees, we simply construct B regression trees using B bootstrapped training
sets, and average the resulting predictions. These trees are grown deep,
and are not pruned. Hence each individual tree has high variance, but
low bias. Averaging these B trees reduces the variance. Bagging has been
demonstrated to give impressive improvements in accuracy by combining
together hundreds or even thousands of trees into a single procedure.

Thus far, we have described the bagging procedure in the regression
context, to predict a quantitative outcome Y . How can bagging be extended
to a classification problem where Y is qualitative? In that situation, there
are a few possible approaches, but the simplest is as follows. For a given test
observation, we can record the class predicted by each of the B trees, and
take a majority vote: the overall prediction is the most commonly occurring

majority
voteclass among the B predictions.

Figure 8.8 shows the results from bagging trees on the Heart data. The
test error rate is shown as a function of B, the number of trees constructed
using bootstrapped training data sets. We see that the bagging test error
rate is slightly lower in this case than the test error rate obtained from a
single tree. The number of trees B is not a critical parameter with bagging;
using a very large value of B will not lead to overfitting. In practice we
use a value of B sufficiently large that the error has settled down. Using
B = 100 is sufficient to achieve good performance in this example.

Out-of-Bag Error Estimation

It turns out that there is a very straightforward way to estimate the test
error of a bagged model, without the need to perform cross-validation or
the validation set approach. Recall that the key to bagging is that trees are
repeatedly fit to bootstrapped subsets of the observations. One can show

where each f̂ ∗b(x) is built on a subset of the training data.

Bagging for classification problems: take a majority vote – the overall
prediction is the most commonly occurring class among the B predictors.
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Variance important measures
320 8. Tree-Based Methods
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FIGURE 8.9. A variable importance plot for the Heart data. Variable impor-
tance is computed using the mean decrease in Gini index, and expressed relative
to the maximum.

trees, most or all of the trees will use this strong predictor in the top split.
Consequently, all of the bagged trees will look quite similar to each other.
Hence the predictions from the bagged trees will be highly correlated. Un-
fortunately, averaging many highly correlated quantities does not lead to
as large of a reduction in variance as averaging many uncorrelated quanti-
ties. In particular, this means that bagging will not lead to a substantial
reduction in variance over a single tree in this setting.

Random forests overcome this problem by forcing each split to consider
only a subset of the predictors. Therefore, on average (p − m)/p of the
splits will not even consider the strong predictor, and so other predictors
will have more of a chance. We can think of this process as decorrelating
the trees, thereby making the average of the resulting trees less variable
and hence more reliable.

The main difference between bagging and random forests is the choice
of predictor subset size m. For instance, if a random forest is built using
m = p, then this amounts simply to bagging. On the Heart data, random
forests using m =

√
p leads to a reduction in both test error and OOB error

over bagging (Figure 8.8).
Using a small value of m in building a random forest will typically be

helpful when we have a large number of correlated predictors. We applied
random forests to a high-dimensional biological data set consisting of ex-
pression measurements of 4,718 genes measured on tissue samples from 349
patients. There are around 20,000 genes in humans, and individual genes
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Random forests

Splitting: Each time a random sample of m predictors is chosen as split
candidates from the full set of p predictors.

m ≈ √p

Improvements:

If there is a strong predictor, all bagged trees will use this strong
predictor at the top split, making all bagged trees high correlated.

Random forests consider m predictors at a time, and the other p −m
ones are not used at all.

Decorrelating the trees
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Choice of m
322 8. Tree-Based Methods
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FIGURE 8.10. Results from random forests for the 15-class gene expression
data set with p = 500 predictors. The test error is displayed as a function of
the number of trees. Each colored line corresponds to a different value of m, the
number of predictors available for splitting at each interior tree node. Random
forests (m < p) lead to a slight improvement over bagging (m = p). A single
classification tree has an error rate of 45.7%.

fitting small trees to the residuals, we slowly improve f̂ in areas where it
does not perform well. The shrinkage parameter λ slows the process down
even further, allowing more and different shaped trees to attack the resid-
uals. In general, statistical learning approaches that learn slowly tend to
perform well. Note that in boosting, unlike in bagging, the construction of
each tree depends strongly on the trees that have already been grown.

We have just described the process of boosting regression trees. Boosting
classification trees proceeds in a similar but slightly more complex way, and
the details are omitted here.

Boosting has three tuning parameters:

1. The number of trees B. Unlike bagging and random forests, boosting
can overfit if B is too large, although this overfitting tends to occur
slowly if at all. We use cross-validation to select B.

2. The shrinkage parameter λ, a small positive number. This controls the
rate at which boosting learns. Typical values are 0.01 or 0.001, and
the right choice can depend on the problem. Very small λ can require
using a very large value of B in order to achieve good performance.

3. The number d of splits in each tree, which controls the complexity
of the boosted ensemble. Often d = 1 works well, in which case each
tree is a stump, consisting of a single split. In this case, the boosted

stump
ensemble is fitting an additive model, since each term involves only a
single variable. More generally d is the interaction depth, and controls

interaction
depth
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FIGURE 8.8. Bagging and random forest results for the Heart data. The test
error (black and orange) is shown as a function of B, the number of bootstrapped
training sets used. Random forests were applied with m =

√
p. The dashed line

indicates the test error resulting from a single classification tree. The green and
blue traces show the OOB error, which in this case is considerably lower.

that on average, each bagged tree makes use of around two-thirds of the
observations.3 The remaining one-third of the observations not used to fit a
given bagged tree are referred to as the out-of-bag (OOB) observations. We

out-of-bag
can predict the response for the ith observation using each of the trees in
which that observation was OOB. This will yield around B/3 predictions
for the ith observation. In order to obtain a single prediction for the ith
observation, we can average these predicted responses (if regression is the
goal) or can take a majority vote (if classification is the goal). This leads
to a single OOB prediction for the ith observation. An OOB prediction
can be obtained in this way for each of the n observations, from which the
overall OOB MSE (for a regression problem) or classification error (for a
classification problem) can be computed. The resulting OOB error is a valid
estimate of the test error for the bagged model, since the response for each
observation is predicted using only the trees that were not fit using that
observation. Figure 8.8 displays the OOB error on the Heart data. It can
be shown that with B sufficiently large, OOB error is virtually equivalent
to leave-one-out cross-validation error. The OOB approach for estimating

3This relates to Exercise 2 of Chapter 5.
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