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Chapter 8

Integral Operators

In our development of metrics, norms, inner products, and operator theory in
Chapters 1–7 we only tangentially considered topics that involved the use of
Lebesgue measure, such as the Lebesgue spaces Lp(E). In this extra chapter
we will study integral operators, which are particular types of operators on
Lp(E). These results require the use of the use of Lebesgue measure and
the Lebesgue integral, and we will assume in this chapter that the reader is
familiar with the theory of Lebesgue measure and the Lebesgue integral. A
brief review of Lebesgue measure and integral can be found on the author’s
website for this text:

http://people.math.gatech.edu/∼heil/metricnote

Throughout this chapter, a “measurable set” will mean a Lebesgue measur-
able set, a “measurable function” will mean a Lebesgue measurable function,
and all integrals will be Lebesgue integrals.

8.1 Integral Operators

Integral operators are an important special class of linear operators that
act on function spaces. We will define these operators and explore some of
their properties. As the integral in question will not always exist, we make a
“formal” definition of an integral operator. Following mathematical tradition,
a formal statement often means an entirely informal statement. In particular,
here it means that integral need not make sense for some f, and for those f

we simply leave Lkf undefined.

Definition 8.1.1 (Integral Operator). Let k be a fixed measurable func-
tion on R2. The integral operator Lk with kernel k is formally defined by

Lkf(x) =

∫ ∞

−∞

k(x, y) f(y) dy. (8.1)
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358 8 Integral Operators

That is, if f is a measurable function on R, then Lkf is the function defined
by equation (8.1), as long as this integral is well-defined for a.e. x ∈ R.

Otherwise Lkf is not defined. ♦

The use of the word kernel in this definition should not be confused with
its other meaning as the nullspace of an operator. It should always be clear
from context which meaning of “kernel” is intended.

Remark 8.1.2. An integral operator is a natural generalization of the ordinary
matrix-vector product. To see this, let A be an m×n matrix with entries aij

and let u be a vector in C
n. Then Au ∈ C

m, and its components are

(Au)i =

n
∑

j=1

aij uj, i = 1, . . . , m.

Thus, the function values k(x, y) are entirely analogous to the entries aij of
the matrix A, and the values Lkf(x) are analogous to the entries (Au)i. ♦

As an illustration, we will look at integral operators whose kernels take
the especially simple form given in the following definition.

Definition 8.1.3. Given two functions g, h whose domain is the real line,
the tensor product of g and h is the function g ⊗ h on R2 defined by

(g ⊗ h)(x, y) = g(x)h(y), x, y ∈ R. ♦ (8.2)

Sometimes the complex conjugate is omitted in the definition of a tensor
product g ⊗ h, or the complex conjugate is placed on g instead of h. It will
be most convenient for our purposes to place the complex conjugate on the
function h.

Example 8.1.4 (Tensor Product Kernels). Given functions g, h ∈ L2(R), let
k = g ⊗ h. If f ∈ L2(R), then the inner product 〈f, h〉 is well-defined and
Lkf is

Lkf(x) =

∫ ∞

−∞

g(x)h(y) f(y) dy = g(x)

∫ ∞

−∞

f(y)h(y)dy = 〈f, h〉 g(x).

That is, Lkf = 〈f, h〉 g, so Lk maps every vector in L2(R) to a scalar multiple
of g. If g = 0 or h = 0 then Lk is the zero operator; otherwise the range of Lk

is the one-dimensional subspace spanned by g. In either case Lk is a bounded
map of L2(R) into itself, because

‖Lkf‖2 = |〈f, h〉| ‖g‖2 ≤ ‖f‖2 ‖h‖2 ‖g‖2 = C ‖f‖2,

where C = ‖h‖2 ‖g‖2 < ∞. ♦

We often identify a tensor product function k = g ⊗ h with the integral
operator Lk = Lg⊗h whose kernel is k = g ⊗ h in the following way.
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Notation 8.1.5. Given g and h in L2(R), we let the symbols g ⊗ h denote
either the tensor product function given in equation (8.2), or the operator
whose rule is

(g ⊗ h)(f) = 〈f, h〉 g, f ∈ L2(R). (8.3)

It is usually clear from context whether g ⊗ h is meant to denote a function
or an operator. ♦

We extend this notation to arbitrary Hilbert spaces by replacing L2(R)
with H in equation (8.3). That is, if g, h are vectors in a Hilbert space H,

then we define g ⊗ h to be the operator

(g ⊗ h)(f) = 〈f, h〉 g, f ∈ H.

We call g ⊗ h the tensor product of g and h. If g is a unit vector, then g ⊗ g

is the orthogonal projection of H onto span{g}.

Problems

8.1.6. This problem does not involve integral operators, but it does require
the use of Lebesgue measure and integration to determine properties of a
linear operator. Let 1 ≤ p ≤ ∞ be fixed, and assume that φ : R → C is
measurable. We formally define an operator Mφ by Mφf = fφ for measurable
functions f.

(a) Prove that if φ ∈ L∞(R), then Mφ is a bounded linear map from Lp(R)
to Lp(R), and its operator norm is ‖Mφ‖ = ‖φ‖∞.

(b) Show that if fφ ∈ Lp(R) for every f ∈ Lp(R), then φ ∈ L∞(R).

(c) Determine a necessary and sufficient condition on φ that implies that
Mφ : Lp(R) → Lp(R) is injective.

(d) Determine a necessary and sufficient condition on φ that implies that
Mφ : Lp(R) → Lp(R) is surjective.

(e) Show directly that if Mφ is injective but not surjective, then the inverse
mapping M−1

φ : range(Mφ) → Lp(R) is unbounded.

(f) Prove that Mφ : L2(R) → L2(R) is compact if and only if φ = 0 a.e.

8.2 Integral Operators with Square-Integrable Kernels

It is usually not obvious how properties of a kernel k relate to properties of the
integral operator Lk determined by k. We will show that if the kernel k is a
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square-integrable function on R2, then Lk is a bounded mapping on L2(R). In
the proof of this theorem, note that f belongs to L2(R) while k ∈ L2(R2). We
use ‖f‖2 and ‖k‖2 to denote the L2-norms of these functions, the domains R

or R2 being clear from context.

Theorem 8.2.1. If k ∈ L2(R2), then the integral operator Lk given by equa-
tion (8.1) defines a bounded mapping of L2(R) into itself, and its operator
norm satisfies ‖Lk‖ ≤ ‖k‖2.

Proof. Suppose that k belongs to L2(R2), and fix f ∈ L2(R). By Fubini’s
Theorem, the function kx(y) = k(x, y) belongs to L2(R) for a.e. x. For those x,

Lkf(x) =

∫ ∞

−∞

kx(y) f(y) dy =

∫ ∞

−∞

kx(y) f(y)dy = 〈kx, f 〉.

Therefore Lkf(x) is defined for almost every x. We still must show that
Lkf ∈ L2(R) and ‖Lkf‖2 ≤ ‖k‖2 ‖f‖2.

Step 1. Suppose that f and k are both nonnegative a.e. Then k(x, y) f(y)
is nonnegative and measurable on R2, so Lkf(x) =

∫

k(x, y) f(y) dy is a
measurable function of x by Tonelli’s Theorem. We estimate its L2-norm by
applying the Cauchy–Bunyakovski–Schwarz Inequality:

‖Lkf‖2
2 =

∫ ∞

−∞

|Lkf(x)|2 dx

=

∫ ∞

−∞

∣

∣

∣

∣

∫ ∞

−∞

k(x, y) f(y) dy

∣

∣

∣

∣

2

dx

≤

∫ ∞

−∞

(
∫ ∞

−∞

|k(x, y)|2 dy

) (
∫ ∞

−∞

|f(y)|2 dy

)

dx

=

∫ ∞

−∞

∫ ∞

−∞

|k(x, y)|2 dy ‖f‖2
2 dx

= ‖f‖2
2

∫ ∞

−∞

∫ ∞

−∞

|k(x, y)|2 dy dx

= ‖k‖2
2 ‖f‖

2
2 < ∞. (8.4)

Therefore Lkf ∈ L2(R), and ‖Lkf‖2 ≤ ‖k‖2 ‖f‖2.

Step 2. Now let f ∈ L2(R) and k ∈ L2(R2) be arbitrary functions. Write

f = (f+
1 − f−

1 ) + i(f+
2 − f−

2 ) and k = (k+
1 − k−

1 ) + i(k+
2 − k−

2 ),

where each function f±
ℓ and k±

j is nonnegative a.e. By Step 1, each of the

functions Lk±

j
(f±

ℓ ) is measurable and belongs to L2(R). Since Lkf is a finite

linear combination of the sixteen functions Lk±

j
(f±

ℓ ), we conclude that Lkf is
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measurable and belongs to L2(R). Now that we know that Lkf is measurable,
we can repeat the same set of calculations that appear in equation (8.4)
and conclude that ‖Lkf‖2 ≤ ‖k‖2 ‖f‖2. Since this inequality holds for all
f ∈ L2(R), it follows that Lk maps L2(R) boundedly into itself, and its
operator norm satisfies the estimate ‖Lk‖ ≤ ‖k‖2. ⊓⊔

We will give several improvements to Theorem 8.2.1 below. In particular,
Theorem 8.2.3 will show that Lk is a compact operator when k ∈ L2(R2),
and in Theorem 8.4.8 we will prove that an operator on L2(R) is Hilbert–
Schmidt if and only if it can be written as an integral operator whose kernel
is square-integrable.

In order to prove that Lk is compact when k is square-integrable, we first
need the following construction of a convenient orthonormal basis for L2(R2);
the proof is Problem 8.2.4. This construction will also be used later in the
proof of Theorem 8.4.8.

Lemma 8.2.2. Let {en}n∈N be an orthonormal basis for L2(R), and set

emn(x, y) = (em ⊗ en)(x, y) = em(x) en(y), x, y ∈ R.

Then {emn}m,n∈N is an orthonormal basis for L2(R2). ♦

Now we will show that the integral operator Lk is compact when k is in
L2(R2). Using the terminology that we will introduce in Section 8.4, this says
that if k is square-integrable, then Lk is a Hilbert–Schmidt operator.

Theorem 8.2.3. Choose k ∈ L2(R2), and let Lk be the corresponding integral
operator.

(a) Let {emn}m,n∈N be an orthonormal basis for L2(R2) of the type con-
structed in Lemma 8.2.2. Define

kN =

N
∑

m=1

N
∑

n=1

〈k, emn〉 emn.

Then the corresponding integral operator LkN
is bounded and has finite

rank.

(b) Lk − LkN
is the integral operator whose kernel is k − kN , and

‖Lk − LkN
‖ ≤ ‖k − kN‖2.

(c) Lk is a compact operator.

Proof. By Theorem 8.2.1 we know that Lk is bounded and ‖Lk‖ ≤ ‖k‖2. Let
{en}n∈N be any orthonormal basis for L2(R), and define

emn(x, y) = (em ⊗ en)(x, y) = em(x) en(y), x, y ∈ R.
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Then Lemma 8.2.2 establishes that {emn}m,n∈N is an orthonormal basis for
L2(R2). Since k ∈ L2(R2), we therefore have

k =

∞
∑

m=1

∞
∑

n=1

〈k, emn〉 emn,

where this series converges unconditionally in L2(R2). For each N ∈ N define
an approximation to k by setting

kN =

N
∑

m=1

N
∑

n=1

〈k, emn〉 emn.

Note that kN → k in L2-norm. The integral operator

LkN
f(x) =

∫

kN (x, y) f(y) dy, f ∈ L2(R).

is an approximation to Lk. It is bounded since kN ∈ L2(R2). Since the sums
involved are finite, interchanges are allowed in the following calculation:

LkN
f(x) =

∫

kN (x, y) f(y) dy

=

∫ N
∑

m=1

N
∑

n=1

〈k, emn〉 emn(x, y) f(y) dy

=
N

∑

m=1

N
∑

n=1

〈k, emn〉

∫

em(x) en(y) f(y) dy

=

N
∑

m=1

N
∑

n=1

〈k, emn〉 〈f, en〉 em(x).

This is an equality of functions in L2(R), i.e., it holds for almost every x.

Hence LkN
f ∈ span{e1, . . . , eN}, and therefore LkN

has finite rank.
Since k − kN ∈ L2(R2), we know that Lk − LkN

is bounded. Also

‖Lk − LkN
‖ ≤ ‖k − kN‖2 → 0 as N → ∞,

so LkN
→ L in operator norm. Thus L is the limit in operator norm of

operators that have finite rank. Since each LkN
is compact, Corollary 7.5.2

implies that Lk is compact. ⊓⊔
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Problems

8.2.4. Prove Lemma 8.2.2.

8.2.5. Define k(x, y) = e2πi(x−y) for (x, y) ∈ [0, 1]2. Prove that the corre-
sponding integral operator Lk : L2[0, 1] → L2[0, 1] is an orthogonal projec-
tion.

8.2.6. Define L : L2(R2) → B(L2(R)) by L(k) = Lk for k ∈ L2(R2). Prove
that L is linear and continuous.

8.3 Schur’s Test

Theorem 8.2.1 shows that if the kernel k of an integral operator is square-
integral then Lk is bounded. Our next theorem will give a different sufficient
condition on the kernel k that ensures that Lk is a bounded operator on
L2(R). This result is sometimes called Schur’s Test (not to be confused with
Schur’s Lemma, which is an entirely distinct result).

Theorem 8.3.1 (Schur’s Test). Let k be a measurable function on R2 that
satisfies the mixed-norm conditions

C1 = esssup
x∈R

∫ ∞

−∞

|k(x, y)| dy < ∞,

C2 = esssup
y∈R

∫ ∞

−∞

|k(x, y)| dx < ∞.

(8.5)

Then the integral operator Lk defined by equation (8.1) is a bounded mapping
of L2(R) into itself, and its operator norm satisfies ‖Lk‖ ≤ (C1C2)

1/2.

Proof. As in the proof of Theorem 8.2.1, measurability of Lkf is most easily
shown by first considering nonnegative f and k, and then extending to the
general case. We omit the details and assume that Lkf is measurable for all
f ∈ L2(R). Applying the Cauchy–Bunyakovski–Schwarz Inequality, we see
that

‖Lkf‖2
2 =

∫ ∞

−∞

|Lkf(x)|2 dx

=

∫ ∞

−∞

∣

∣

∣

∣

∫ ∞

−∞

k(x, y) f(y) dy

∣

∣

∣

∣

2

dx

≤

∫ ∞

−∞

(
∫ ∞

−∞

|k(x, y)|1/2 · |k(x, y)|1/2 |f(y)| dy

)2

dx
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≤

∫ ∞

−∞

(
∫ ∞

−∞

|k(x, y)| dy

) (
∫ ∞

−∞

|k(x, y)| |f(y)|2 dy

)

dx

≤

∫ ∞

−∞

C1

∫ ∞

−∞

|k(x, y)| |f(y)|2 dy dx

= C1

∫ ∞

−∞

|f(y)|2
∫ ∞

−∞

|k(x, y)| dx dy

≤ C1

∫ ∞

−∞

|f(y)|2 C2 dy

= C1C2 ‖f‖
2
2.

We were allowed to interchange the order of integration in the preceding
calculation because the integrand |f(y)|2 |k(x, y)| is nonnegative, and there-
fore Tonelli’s Theorem is applicable. It follows that Lk is bounded, and its
operator norm satisfies ‖Lk‖ ≤ (C1C2)

1/2. ⊓⊔

By applying Hölder’s Inequality instead of CBS, we can obtain a similar
result showing that Lk is bounded from Lp(R) to Lp(R) for all 1 ≤ p ≤ ∞
(the proof is assigned as Problem 8.3.5).

Theorem 8.3.2 (Schur’s Test). If k satisfies the conditions given in equa-
tion (8.5), then Lk is a bounded mapping of Lp(R) into itself for each index

1 ≤ p ≤ ∞, and its operator norm satisfies ‖Lk‖ ≤ C
1/p′

1 C
1/p
2 . ♦

8.3.1 Convolution

Convolution is an important operation that plays central roles in harmonic
analysis in mathematics and signal processing in engineering. We studied the
convolution of sequences in Section 6.7, and now we will consider convolution
of functions. For more details on convolution than what is presented here, we
refer to [Heil11] and [Heil19].

Let f and g be measurable functions whose domain is the real line R.

Formally, the convolution of f and g is the function f ∗ g defined by

(f ∗ g)(x) =

∫ ∞

−∞

f(y) g(x − y) dy,

as long as this integral makes sense. If we set k(x, y) = g(x−y) then, at least
formally, Lkf = f∗g. However, even if g belongs to L2(R), the kernel k(x, y) =
g(x − y) will not belong to L2(R2), so Theorem 8.2.1 is not applicable. On
the other hand, if g is integrable then Schur’s Test can be applied, and it
yields the results stated next (the proof is assigned as Problem 8.3.5).



8.3 Schur’s Test 365

Theorem 8.3.3 (Young’s Inequality). If 1 ≤ p ≤ ∞, f ∈ Lp(R), and
g ∈ L1(R), then f ∗ g ∈ Lp(R) and

‖f ∗ g‖p ≤ ‖f‖p ‖g‖1. ♦

Taking p = 1, we see that if f and g both belong to L1(R), then so does
f ∗ g. Hence L1(R) is closed under convolution. Moreover, the convolution of
integrable functions is commutative and associative and is submultiplicative
in the sense that ‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1. Using the terminology of functional
analysis, this says that L1(R) is a commutative Banach algebra with respect
to convolution.

8.3.2 Integral Operators on Other Domains

We have focused so far on functions whose domain is the real line, kernels
that are defined on R2, and the corresponding integral operators. However,
all of the results we derived can be extended to functions that are defined
on other domains. For example, let E ⊆ Rm and F ⊆ Rn be measurable
sets, and let k be any measurable function that is defined on E × F. Given
a function f defined on F, we formally define Lkf on the domain E by the
rule

Lkf(x) =

∫

F

k(x, y) f(y) dy, x ∈ E.

The analogues of Theorem 8.2.1 and 8.3.1 for this setting are stated in the
following result (whose proof is assigned as Problem 8.3.5).

Theorem 8.3.4. Let E ⊆ R
m and F ⊆ R

n be measurable sets, and let k be
a measurable function on E × F. Then the following statements hold.

(a) If k ∈ L2(E × F ), then Lk maps L2(F ) boundedly into L2(E).

(b) If

esssup
x∈E

∫

F

|k(x, y)| dy < ∞, esssup
y∈F

∫

E

|k(x, y)| dx < ∞,

then Lk maps Lp(F ) boundedly into Lp(E) for 1 ≤ p ≤ ∞. ♦

Problems

8.3.5. Prove Theorems 8.3.2, 8.3.3, and 8.3.4.
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8.3.6. The Volterra operator V is the integral operator V f(x) =
∫ x

0
f(y) dy.

Prove that V maps Lp[0, 1] continuously into itself for each 1 ≤ p ≤ ∞, and
likewise V : C[0, 1] → C[0, 1] is bounded.

8.3.7. Prove the following weighted version of Schur’s Test. Assume that k

is a measurable function on R
2 and there are strictly positive measurable

functions u, v on R such that

∫ ∞

−∞

|k(x, y)| v(y) dy ≤ C1 u(x), a.e. x,

∫ ∞

−∞

|k(x, y)|u(x) dx ≤ C2 v(y), a.e. y.

Prove that the integral operator Lk whose kernel is k defines a bounded
mapping of L2(R) into itself.

8.3.8. Prove the following matrix version of Schur’s Test. Let A = [aij ]i,j∈N

be an infinite matrix such that

C1 = sup
i∈N

∞
∑

j=1

|aij | < ∞, C2 = sup
j∈N

∞
∑

i=1

|aij | < ∞.

Given x = (xk)k∈N, define Ax =
(

(Ax)i

)

i∈N
where (Ax)i =

∑∞

j=1 aijxj .

Prove that A : ℓp → ℓp is bounded and linear for each 1 ≤ p ≤ ∞, and

‖A‖ℓp→ℓp ≤ C
1/p′

1 C
1/p
2 .

8.3.9. The convolution of bi-infinite sequences x = (xk)k∈Z and y = (yk)k∈Z

is formally defined to be the sequence x∗y whose kth component is (x∗y)k =
∑∞

j=−∞
xj yk−j . Prove Young’s Inequality for sequences: If x ∈ ℓp(Z) and

y ∈ ℓ1(Z), then x ∗ y ∈ ℓ1(Z) and ‖x ∗ y‖p ≤ ‖x‖p ‖y‖1.

8.4 Hilbert–Schmidt Operators

Throughout Section 8.4, H will denote a separable Hilbert space.

A Hilbert–Schmidt operator is a special type of compact operator on a
Hilbert space. Although the definition of a Hilbert–Schmidt operator makes
sense when H is nonseparable (by using a complete orthonormal system in-
stead of a countable orthonormal basis), we will restrict our discussion to
Hilbert–Schmidt operators on separable spaces. We do allow H to be either
finite or infinite dimensional in this section, so when we say “let {en} be an
orthonormal basis for H,” this basis has one of the forms {en}

d
n=1 or {en}

∞
n=1.
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8.4.1 Definition and Basic Properties

Suppose that H is a separable infinite-dimensional Hilbert space and {en}n∈N

is an orthonormal basis for H. In this case
∑

‖en‖
2 = ∞. A Hilbert–Schmidt

operator will be required to perform some “compression” on H, in the sense
that the image {Ten}n∈N of the orthonormal basis will need to satisfy the
following condition.

Definition 8.4.1. An operator T ∈ B(H) is a Hilbert–Schmidt operator if
there exists an orthonormal basis {en} for H such that

∑

n

‖Ten‖
2 < ∞. ♦

For example, the identity operator on an infinite-dimensional Hilbert space
is not a Hilbert–Schmidt operator. At the other extreme, if H is finite-
dimensional then every bounded linear operator on H is Hilbert–Schmidt.

The next result shows that the choice of orthonormal basis in Definition
8.4.1 is irrelevant (the proof is assigned as Problem 8.4.9).

Theorem 8.4.2. Fix T ∈ B(H). For each orthonormal basis E = {en} for H,

define

S(E) =

(

∑

n

‖Ten‖
2

)1/2

.

Then S(E) is independent of the choice of orthonormal basis E . That is, if
S(E) is finite for one orthonormal basis then it is finite for all and takes the
same value for every orthonormal basis E , while if S(E) is infinite for one
orthonormal basis then it is infinite for all. ♦

We use the following notation to denote the space of Hilbert–Schmidt
operators on H.

Definition 8.4.3. The space of Hilbert–Schmidt operators on H is

B2(H) =
{

T ∈ B(H) : T is Hilbert–Schmidt
}

.

The Hilbert–Schmidt norm of T ∈ B2(H) is

‖T ‖B2
=

(

∑

n

‖Ten‖
2

)1/2

,

where {en} is any orthonormal basis for H. ♦

Remark 8.4.4. Writing

‖T ‖2
B2

=
∑

n

‖Ten‖
2 =

∑

n

∑

m

|〈Ten, em〉|2, (8.6)
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we see that the Hilbert–Schmidt norm can be viewed as the ℓ2-norm of the
matrix representation of T with respect to the orthonormal basis {en}.

In particular, if A = [aij ] is an m × m matrix and we let {en} be the
standard basis for Cm, then we see that ‖A‖2

B2
=

∑

i,j |aij |
2. In this context

‖A‖B2
is sometimes called the Frobenius norm of A. ♦

The following theorem justifies the use of the word “norm” in connection
with ‖·‖B2

, and presents some of the other basic properties of Hilbert–Schmidt
operators (the proof is assigned as Problem 8.4.9).

Theorem 8.4.5. The following statements hold.

(a) The Hilbert–Schmidt norm dominates the operator norm, i.e.,

‖T ‖ ≤ ‖T ‖B2
for all T ∈ B2(H).

(b) ‖ · ‖B2
is a norm, and B2(H) is complete with respect to ‖ · ‖B2

.

(c) B2(H) is closed under adjoints, and ‖T ∗‖B2
= ‖T ‖B2

for all T ∈ B2(H).

(d) If T ∈ B2(H) and A ∈ B(H), then AT, TA ∈ B2(H), and

‖AT ‖B2
≤ ‖A‖ ‖T ‖B2

, ‖TA‖B2
≤ ‖A‖ ‖T ‖B2

.

Consequently, B2(H) is a two-sided ideal in B(H).

(e) Every bounded, finite-rank linear operator on H is Hilbert–Schmidt.

(f) Every Hilbert–Schmidt operator on H is compact.

(g) The space B00(H) of finite-rank operators is dense in B2(H) with respect
to both the operator norm and the Hilbert–Schmidt norm. ♦

Combining statements (e) and (f) from the preceding exercise, we see that

B00(H) ⊆ B2(H) ⊆ B0(H). (8.7)

If H is finite-dimensional, then these three spaces coincide. If H is infinite-
dimensional then each of the two inclusions in equation (8.7) is proper (see
Problem 8.4.11).

8.4.2 Singular Numbers and the Hilbert–Schmidt

Norm

We will give an equivalent formulation of Hilbert–Schmidt operators in terms
of their singular numbers (see Section 7.9 for more details on singular numbers
and the Singular Value Decomposition).

A compact operator T ∈ B0(H) need not have any eigenvalues. However,
T ∗T is both compact and self-adjoint, so by the Spectral Theorem there exists
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a countable orthonormal sequence {en}n∈J and corresponding nonzero real
numbers (µn)n∈J such that

T ∗Tf =
∑

n∈J

µn 〈f, en〉 en, f ∈ H.

The scalars µn are the nonzero eigenvalues of T ∗T. Problem 7.3.14 implies
that T ∗T is a positive operator, so µn > 0 for each n.

If T has finite rank then T ∗T also has finite rank. Therefore T ∗T has only
finitely many nonzero eigenvalues, so in this case the index set J is

J = {1, . . . , N} where N = dim
(

range(T ∗T )
)

.

If T does not have finite rank, then T ∗T does not have finite rank either (see
Problem 7.2.17), so in this case the the index set is J = N. Furthermore,
µn → 0 in this case.

Definition 8.4.6 (Singular Numbers). Let T : H → H be compact, and
let (µn)n∈J and {en}n∈J be as constructed above. The singular numbers or
singular values of T are

sn = µ1/2
n , n ∈ J,

taken in decreasing order:

s1 ≥ s2 ≥ · · · > 0.

The vectors en are corresponding singular vectors of T. ♦

Now we reformulate the definition of Hilbert–Schmidt operators in terms
of singular numbers (the proof is assigned as Problem 8.4.9).

Theorem 8.4.7. Let T : H → H be compact, and let s = (sn)n∈J be the
sequence of singular numbers of T. Then the following statements hold.

(a) T is Hilbert–Schmidt if and only if s ∈ ℓ2(J).

(b) If T is Hilbert–Schmidt, then

‖T ‖B2
= ‖s‖2 =

(

∑

n∈J

s2
n

)1/2

.

(c) If T is a self-adjoint Hilbert–Schmidt operator, then

‖T ‖B2
=

(

∑

n∈J

λ2
n

)1/2

where (λn)n∈J is the sequence of nonzero eigenvalues of T. ♦
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8.4.3 Hilbert–Schmidt Integral Operators

Now we focus on integral operators on L2(R). By Theorem 8.2.1, if a kernel k

belongs to L2(R2), then the corresponding integral operator Lk is a bounded
operator on L2(R). Theorem 8.2.3 showed further that Lk is compact in this
case. According to the next result, Lk is Hilbert–Schmidt when k ∈ L2(R2),
and conversely every Hilbert–Schmidt operator on L2(R) can be written as
an integral operator whose kernel is square integrable.

Theorem 8.4.8 (Hilbert–Schmidt Kernel Theorem).

(a) If k ∈ L2(R2), then the integral operator Lk with kernel k is Hilbert–
Schmidt, and its operator norm is ‖Lk‖B2

= ‖k‖2.

(b) If T is a Hilbert–Schmidt operator on L2(R), then there exists a function
k ∈ L2(R2) such that T = Lk.

(c) k 7→ Lk is an isometric isomorphism of L2(R2) onto B2(L
2(R)).

Proof. (a) Assume that k ∈ L2(R2). We already know that Lk is compact.
To show that Lk is Hilbert–Schmidt, let {en}n∈N be any orthonormal basis
for L2(R). If we set

emn(x, y) = (em ⊗ en)(x, y) = em(x) en(y), (8.8)

then Lemma 8.2.2 shows that {emn}m,n∈N is an orthonormal basis for L2(R2).

Fix integers m, n ∈ N. Since k · emn ∈ L1(R2), Fubini’s Theorem allows
us to interchange integrals in the following calculation:

〈k, emn〉 =

∫ ∞

−∞

∫ ∞

−∞

k(x, y) em(x) en(y) dx dy

=

∫ ∞

−∞

(
∫ ∞

−∞

k(x, y) en(y) dy

)

em(x) dx

=

∫ ∞

−∞

Lken(x) em(x) dx

= 〈Lken, em〉.

Consequently, the Hilbert–Schmidt norm of Lk is

‖Lk‖
2
B2

=

∞
∑

n=1

‖Lken‖
2 =

∞
∑

n=1

( ∞
∑

m=1

|〈Lken, em〉|2
)

=

∞
∑

m=1

∞
∑

n=1

|〈k, emn〉|
2 = ‖k‖2

2 < ∞.

Therefore Lk is Hilbert–Schmidt and ‖Lk‖B2
= ‖k‖2. This also shows that

k 7→ Lk is an isometric map of L2(R) into B2(L
2(R)).
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(b) Let T be any Hilbert–Schmidt operator on L2(R). Choose an ortho-
normal basis {en}n∈N for L2(R), and let emn be defined as in equation
(8.8). Since T is Hilbert–Schmidt, equation (8.6) shows that the sequence
{〈Tem, en〉}m,n∈N is square-summable. As {emn}m,n∈N is an orthonormal ba-
sis for L2(R2), Theorem 5.7.1 therefore implies that the series

k =

∞
∑

m=1

∞
∑

n=1

〈Ten, em〉 emn (8.9)

converges unconditionally in L2(R2), i.e., it converges regardless of what or-
dering we impose on the index set N × N. Let Lk be the integral operator
whose kernel is k. By part (a), Lk is Hilbert–Schmidt and ‖Lk‖B2

= ‖k‖2.

We will show that Lk = T.

By part (a), the mapping L : L2(R) → B2(L
2(R)) given by L(k) = Lk is an

isometry. Since unconditional convergence is preserved by continuous linear
maps (see Problem 6.5.8), we have

Lk = L(k) = L

( ∞
∑

m=1

∞
∑

n=1

〈Ten, em〉 emn

)

=

∞
∑

m=1

∞
∑

n=1

〈Ten, em〉Lemn
, (8.10)

where the series in equation (8.10) converges unconditionally in B2(L
2(R)).

Since the Hilbert–Schmidt norm dominates the operator norm, this series also
converges unconditionally with respect to the operator norm. Consequently,
for each function f ∈ L2(R) we have

Lkf =
∞
∑

m=1

∞
∑

n=1

〈Ten, em〉Lemn
f, (8.11)

where this series converges unconditionally in L2-norm.
Now, Lemn

is the rank-one operator Lemn
f = 〈f, en〉 em (see Example

8.1.4). Substituting this into equation (8.11) and using the unconditionality of
the convergence to reorder the summations (see Problem 8.4.15), we compute
that

Lkf =
∞
∑

m=1

∞
∑

n=1

〈Ten, em〉Lemn
f,

=

∞
∑

m=1

∞
∑

n=1

〈Ten, em〉 〈f, en〉 em

=
∞
∑

n=1

〈f, en〉

( ∞
∑

m=1

〈Ten, em〉 em

)
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=
∞
∑

n=1

〈f, en〉Ten

= T

( ∞
∑

n=1

〈f, en〉 en

)

(since T is continuous)

= Tf.

Thus Lkf = Tf for every f, so T = Lk.

(c) Part (a) shows that L(k) = Lk is an isometry, and part (b) shows that
L is surjective. ⊓⊔

In summary, B2(L
2(R)) is isometrically isomorphic to the Hilbert space

L2(R2). Therefore the space of Hilbert–Schmidt operators inherits a Hilbert
space structure from L2(R2). As every Hilbert–Schmidt operator is defined
by a kernel, we can write the inner product on B2(L

2(R)) as

〈Lk, Lh〉 = 〈k, h〉, k, h ∈ L2(R2).

With respect to this inner product, L(k) = Lk defines a unitary map of
L2(R2) onto B2(L

2(R)).

Problems

8.4.9. Prove Theorems 8.4.2, 8.4.5, and 8.4.7.

8.4.10. Given g, h ∈ H, show that the Hilbert–Schmidt norm of the tensor-
product operator g ⊗ h is ‖g ⊗ h‖B2

= ‖g‖ ‖h‖.

8.4.11. Show that if H is infinite-dimensional, then B00(H) 6= B2(H) and
B2(H) 6= B0(H).

8.4.12. Define a kernel k on [0, 1]2 by k(x, y) = |x−y|. Show that the integral
operator Lk on L2[0, 1] is Hilbert–Schmidt, and find

∑

λ2
n, where {λn}n∈N is

the set of nonzero eigenvalues of Lk.

8.4.13. Exhibit an orthonormal basis for B(L2(R)).

8.4.14. Let X be a Banach space, and assume that vectors xmn ∈ X, m,

n ∈ N, satisfy
∑

m

∑

n ‖xmn‖ < ∞. Show that if σ : N → N×N is a bijection,
then the following series all converge and are equal as indicated:

∞
∑

m=1

( ∞
∑

n=1

xmn

)

=

∞
∑

n=1

( ∞
∑

m=1

xmn

)

=

∞
∑

k=1

xσ(k).
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8.4.15. Prove that the conclusion of Problem 8.4.14 remains valid if we re-
place the hypothesis of absolute convergence with unconditional convergence,
i.e., we assume that the series

∑

(m,n)∈N2 cmn converges unconditionally in X.


