next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Dmodules :: DintegrationIdeal

DintegrationIdeal -- integration ideal of a D-module



A suplementary function for Dintegration that computes the integration ideal.
i1 : W = QQ[y,t,Dy,Dt, WeylAlgebra => {y=>Dy, t=>Dt}];
i2 : I = ideal(2*t*Dy+Dt, t*Dt+2*y*Dy+2); -- annihilator of 1/(t^2-y)

o2 : Ideal of W
i3 : DintegrationIdeal(I, {1,4})

o3 = ideal 1

o3 : Ideal of QQ


The module M should be specializable to the subspace. This is true for holonomic modules.The weight vector w should be a list of n numbers if M is a module over the nth Weyl algebra.

See also

Ways to use DintegrationIdeal :