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Section 1: Diagonalizing 2× 2 Symmetric Matrices

1.1: An explicit formula

Symmetric matrices are special. For instance, they always have real eigenvalues. There
are several ways to see this, but for 2×2 symmetric matrices, direct computation is simple
enough: Let A be any symmetric 2× 2 matrix:

A =
[
a b
b d

]
.

Then A− tI =
[
a− t b
b d− t

]
so that

det(A− tI) = (a− t)(d− t)− b2 = t2 − (a+ d)t+ ad− b2 .

Hence the eigenvalues of A are the roots of

t2 − (a+ d)t+ ad− b2 = 0 . (1.1)

Completing the square, we obtain

(
t− a+ d

2

)2

= b2 − ad+
(
a+ d

2

)2

= b2 − ad+
(
a2 + d2 + 2ad

4

)
= b2 +

a2 + d2 − 2ad
4

= b2 +
(
a− d

2

)2

Hence, (1.1) becomes t =
a+ d

2
±

√
b2 +

(
a− d

2

)2

. Since b2 +
(
a− d

2

)2

is the sum of

two squares, it is positive, and so the square root is real. Therefore, the two eigenvalues
are

µ+ =
a+ d

2
+

√
b2 +

(
a− d

2

)2

and µ− =
a+ d

2
−

√
b2 +

(
a− d

2

)2

. (1.2)

We have just written down an explicit formula for the eigenvalues of the 2×2 symmetric

matrix A =
[
a b
b d

]
. As you can see from the formula, the eigenvalues are both real.
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There is even more that is special about n × n symmetric matrices: They can always
be diagonalized, and by an orthogonal matrix at that. Again, in the 2 × 2 case, direct
computation leads to an explicit formula.

Let B = A − µ+I. Then an non zero vector v is an eigenvector of A with eigenvalue

µ+ if and only if Bv = 0. Now write B in row vector form: B =
[

r1

r2

]
. Now, by a basic

formula for matrix multiplication, Bv =
[

r1

r2

]
v =

[
r1 · v
r2 · v

]
. So if v is an eigenvector with

eigenvalue µ+, then
r1 · v = 0 and r2 · v = 0 .

Now r1 · v = 0 if and only if v is a multiple of r⊥1 . This means that a vector v is an
eigenvector of A with eigenvalue µ+ if and only if v is a multiple of r⊥1 . In particular, r⊥1
is an eigenvector of A with eigenvalue µ+. Normalizing this, we define

u1 =
1
|r1|

r⊥1 .

This is a unit vector, and an eigenvector of A with eigenvalue µ+.
Next, we use another basic fact about symmetric matrices: Eigenvectors corresponding

to distinct eigenvalues are orthogonal. So as long as µ− 6= µ+, the eigenvectors of A with
eigenvalue µ− must be orthogonal to u1. This means that u⊥1 is an eigenvector of A with
eigenvalue µ−. It is also a unit vector, and orthogonal to u1, so if we define u2 by

u2 = u⊥1 ,

then
{u1,u2}

is an orthonormal basis of IR2 consisting of eigenvectors of A.
What if the eigenvalues are the same? You see from (1.2) that the two eigenvalues are

the same if and only if b2 = 0 and (a− d)2 = 0, which means that A = aI, in which case
A is already diagonal, and every vector in IR2 is an eigenvector of A with eigenvalue a.
Hence the same formulas apply in this case as well.

Now form the matrix U defined by

U = [u1,u2] .

Then

AU = A[u1,u2] = [Au1, Au2] = [µ+u1, µ−u2] = [u1,u2]
[
µ+ 0
0 µ−

]
.

If we define D to be the diagonal matrix

D =
[
µ+ 0
0 µ−

]
,
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then we can rewrite this as
AU = UD . (1.3)

Now since U has orthonormal columns, it is an orthognal matrix, and hence U t is the
inverse of U . Therefore, (1.3) can be rewritten as

D = U tAU .

We summarize all of this in the following theorem:

Theorem 1 (Eigenvectors and eigenvalues for 2 × 2 symmetric matrices) Let

A =
[
a b
b d

]
be any 2× 2 symmetric matrix. Then the eigenvalues of A are

µ+ =
a+ d

2
+

√
b2 +

(
a− d

2

)2

and µ− =
a+ d

2
−

√
b2 +

(
a− d

2

)2

. (1.4)

Moreover, if we define r1 and r2 by

A− µ+I =
[

r1

r2

]
,

and put

u1 =
1
|r1|

r⊥1 and u2 = u⊥1 , (1.5)

then {u1,u2} is an orthonormal basis of IR2 consisting of eigenvectors of A, and with

U = [u1,u2] and D =
[
µ+ 0
0 µ−

]
, (1.6)

U tAU = D . (1.7)

Example 1 (Finding the eigenvectors and eigenvalues of a 2 × 2 symmetric matrix) Let A =[
3 2
2 6

]
. With A =

[
a b
b d

]
, we have

a = 3 b = 2 d = 6 .

Using (1.4), we find that µ± =
9

2
±

5

2
; i.e.,

µ+ = 7 and µ− = 2 .

Now,

A− µ+I =

[
3− 7 2

2 6− 7

]
=

[
−4 2

2 −1

]
.
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The first row of this matrix – written as a column vector – is r1 =

[
−4

2

]
. Hence we have

u1 −
1
√

5

[
−1
−2

]
and u2 =

1
√

5

[
2
−1

]
. (1.8)

Example 2 (Diagonalizing a 2× 2 symmetric matrix) Let A be the 2× 2 matrix A =

[
3 2
2 6

]
that

we considered in Example 1. There we found that the eigenvalues are 7 and 2, and we found corresponding

unit eigenvectors u1
1
√

5

[
−1
−2

]
and u2 =

1
√

5

[
2
−1

]
. Hence from (1.6), we have

U =
1
√

5

[
−1 2
−2 −1

]
and

D =

[
7 0
0 2

]
.

As you can check, UtAU = D, in agreemant with (1.7).

Theorem 1 provides one way to diagonalize a 2×2 symmetric matrix with an orthogonal
matrix U . However, there is something special about it: The matrix U is not only an
orthogonal matrix; it is a rotation matrix, and in D, the eigenvalues are listed in decreasing
order along the diagonal.

This turns out to be useful, and to explain it better, we recall a few facts about 2 × 2
orthogonal matrices.

1.2: 2× 2 orthogonal matrices: rotations and reflections

Let U = [u1,u2] be any orthogonal matrix. Then u1 is a unit vector, so

u1 =
[

cos(θ)
sin(θ)

]
for some θ with 0 ≤ θ < 2π.

Next, u2 is orthogonal to u1, but there are exactly two unit vectors that are orthogonal
to u1, namely ±u⊥1 . Therefore,

either u2 =
[
− sin(θ)

cos(θ)

]
or else u2 =

[
sin(θ)

− cos(θ)

]
.

In the first case,

U =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, (1.9)

while in the second case,

U =
[

cos(θ) sin(θ)
sin(θ) − cos(θ)

]
. (1.10)
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The matrix U in (1.9) describes a counterclockwise rotation through the angle θ. Since
this is the sort of U we get using Theorem 1, we see that this theorem provides us a
diagonalization in terms of a rotation matrix.

what we have said so far is all that is really important in what follows, but you may
be wondering what sort of transformation might be encoded in (1.10). There is a simple
answer: The matrix U in (1.10) describes a reflection.

To see this, define φ = θ/2. Then,

[
cos(θ) sin(θ)
sin(θ) − cos(θ)

]
=
[

cos2(φ)− sin2(φ) 2 sin(φ) cos(φ)
2 sin(φ) cos(φ) sin2(φ)− cos2(φ)

]
=
[

1 0
0 1

]
− 2

[
sin2(φ) − sin(φ) cos(φ)

− sin(φ) cos(φ) cos2(φ)

]
.

From here, one easily sees that if uφ =
[

cos(φ)
sin(φ)

]
,

[
cos(θ) sin(θ)
sin(θ) − cos(θ)

]
= I − 2(u⊥φ )(u⊥φ )t .

From here it follows that with U given by (1.10),

Uuφ = uφ and Uu⊥φ = u⊥φ .

This shows that the matrix U in (1.10) is the reflection about the line through the origin
and uφ.

Problems

1 Let A =

[
1 2
2 4

]
. Use Theorem 1 to find the eigenvectors and eigenvalues of A, and find an orthogonal

matrix U that diagonalizes A.

2 Let A =

[
4 2
2 4

]
. Use Theorem 1 to find the eigenvectors and eigenvalues of A, and find an orthogonal

matrix U that diagonalizes A.

3 Let A =

[
1 2
2 5

]
. Use Theorem 1 to find the eigenvectors and eigenvalues of A, and find an orthogonal

matrix U that diagonalizes A.

4 Let A =

[
−1 2

2 4

]
. Use Theorem 1 to find the eigenvectors and eigenvalues of A, and find an orthogonal

matrix U that diagonalizes A.
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Section 2: Jacobi’s algorithm

2.1 Why iterate?

We have seen that for 2× 2 symmetric matrices A =
[
a b
b d

]
, the eigenvalues are given

by

a+ d

2
±
√

(a− d)2 + 4b2

2
.

How about n×n matrices? Is there such an explicit formula for the eigenvalues of n×n
matrices for larger values of n?

In fact, there cannot be any such formula for the eigenvectors and eigenvalues of n× n
matrices for n ≥ 5. This is because for polynoials of degree 5 and higher there is no
formula for computing the roots in terms of the coefficients in a finite number of steps.
The eigenvalues of A are, of course, the roots of the characteristic polynomial of A.

Nonetheless, there are very effective iterative algorithms for computing the eigenvalues
of a symmetric matrix.

The original iterative algorithm for this purpose was devised by Jacobi*. We first explain
it in the 3× 3 case.

Consider the matrix

A =

 2 1 1
1 2 1
1 1 2

 ,

and focus on the 2×2 block
[

2 1
1 2

]
in the upper left corner. We know how to diagonalize

every 2 × 2 matrix, so we can certainly diagonalize this one. Jacobi’s idea is to use the
similarity transform that diagonalizes this 2 × 2 matrix to partially diagonalize the 3 × 3
matrix A. We then pick another 2× 2 block, and do a further partial diagonalization, and
so on. Here is how this goes.

Applying Theorem 1 of the previous section, we find that with

U =
1√
2

[
1 −1
1 1

]
,

U t
[

2 1
1 2

]
U =

[
3 0
0 1

]
.

The idea is now to “promote” U to a 3 × 3 rotation matrix, which we will denote G1,
and then to work out Gt1AG1. Specifically, take the 3 × 3 identity matrix, and overwrite
the upper left 2× 2 block with U . This gives us the 3× 3 matrix G1:

G1 =

 1/
√

2 −1/
√

2 0
1/
√

2 1/
√

2 0
0 0 1

 .

* This is the Jacobi who is the namesake of Jacobian matrices, among other things.
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Multiplying out Gt1AG1 we find

Gt1AG1 =

 3 0
√

2
0 1 0√
2 0 2

 .

Now four out of six off–diagonal entries are zero. This is our partial diagonalization,
and this is progress towards fully diagonalizing A!

Let’s continue. The only non zero off diagonal entries are in the 1, 3 and 3, 1 positions.
We therefore focus on the 2 × 2 block that contains them: The 2 × 2 block we get by

deleting the second column and row is
[

3
√

2√
2 2

]
.

Our general formulas for diagonalizing 2× 2 matrices give us

U t
[

3
√

2√
2 2

]
U =

[
4 0
0 1

]
where

U =
[√

2/3 −
√

1/3√
1/3

√
2/3

]
.

Define the 3 × 3 rotation matrix G2 by overwriting the 3 × 3 identity matrix with the
entries of U , putting them in the 1, 1, 1, 3, 3, 1 and 3, 3 places, since it was from these
places that we took our 2× 2 block. We obtain:

G2 =

√2/3 0 −
√

1/3
0 1 0√
1/3 0

√
2/3

 .

We then compute

Gt2(Gt1AG1)G2 =

 4 0 0
0 1 0
0 0 1

 .

Defining V = G1G2, and D =

 4 0 0
0 1 0
0 0 1

 we can write this as

A = V DV t .

The diagonalization is complete! In particular we can now read of the eigenvalues of A;
they are 4 and 1 with multiplicities 1 and 2 respectively. We have diagonalized the 3 × 3
matrix A by repeated use of our 2× 2 diagonalization formulas!
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The matrix A is not so bad to deal with by analysis of its characteristic polynomial.
Indeed,

det(A− tI) = −t3 + 6t2 − 9t+ 4 .

You might notice that t = 1 is a root, and from there you could factor

−t3 + 6t2 − 9t+ 4 = (4− t)(1− t)(1− t) .

However, factoring cubic polynomials is not so easy. Using Jacobi’s idea, we diagonalized
A without ever needing to factor a cubic polynomial. This is even more advantageous for
larger matrices.

Moving from this specific example to the general 3×3 symmetric matrix, let’s define the
three kinds of rotation matrices that we will use to diagonalize 2 × 2 submatrices. There
will be three kinds because there are three ways to choose a pair of rows (and columns)
We index these matrices by the pair of row indices that we “keep”:

For 1 ≤ i < j ≤ 3, define the Givens rotation matrix G(θ, i, j) by

G(θ, 1, 2) =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1



G(θ, 1, 3) =

 cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)


and

G(θ, 2, 3) =

 1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 .

These are just rotations through the angle θ in the x, y plane, the x, z plane and the
y, z plane respectively. In particular, they are orthogonal: their columns are orthonormal,
and so their inverses are just their transposes.

The n× n version is similar:

G(θ, i, j)i,i = cos(θ) G(θ, i, j)i,j = − sin(θ)

G(θ, i, j)j,i = sin(θ) G(θ, i, j)j,j = sin(θ)

For all other entires,
G(θ, i, j)k,` = Ik,` .

With these preparations made, here is the algorithm. We give it in pseudo code, as the
sketch of a program. We assume we are given a symmetric matrix A to diagonalize.
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Jacobi’s Algorithm

Declare two n× n symmetric matrix variables, B and V . Initialize them as

B ← A and V ← I .

Then:

(1) Find the off–diagonal element of B with the largest absolute value. That is, find values
of i and j that maximize

|Bi,j | with i < j .

(2) For the values of i and j determined in (1), let U be a rotation matrix so that

U t
[
Ai,i Ai,j
Aj,i Aj,j

]
U

is diagonal.

(3) Let θ be the angle of rotation of the matrix U found in (2). For the values of i and j
found in (1), assign

B ← G(θ, i, j)tBG(θ, i, j) and V ← V G(θ, i, j) .

(Notice that B is still symmetric after being updated)

(4) If B is diagonal, stop. Otherwise, go to (1) and repeat.

In the example with which we began this section, the procedure terminated in two
iterations. However, this was beginners luck: The first matrix we looked at was particularly
nice. Even with 3× 3 symmetric matrices, the program sketched above would go into an
infinite loop.

If it does terminate, then we have

V tAV = D

where D is diagonal and V is a rotation matrix. Then the diagonal entries of B are the
eigenvalues of A and the columns of V are eigenvectors of A.

The good news is that even if it doesn’t terminate exactly in any finite number of steps,
the off diagonal terms will tend to zero in the limit as the number of iterations goes to
infinity. In fact, we can guarantee a limit on the number of iterations it will take before
the off diagonal entries all round off to zero if we are working with any fixed number of
digits.

Let’s take another example. This time, we will simply report the results in decimal
form.

1-11



Example 1 (Three steps of Jacobi’s algorithm) Let A =

[
2 −4 1
−4 5 1

1 −1 2

]
. Note that |Bi,j | is largest

for i = 1 and j = 2. We compute the corresponding angle θ, and after the first step we have

B =

[
7.77200 0 1.39252

0 −0.77200 0.25233
1.39252 0.25233 2

]
.

Now, |Bi,j | is largest for i = 1 and j = 3. We compute the corresponding angle θ, and after the second
step we have

B =

[
8.08996 0.56207 0
0.56207 −0.77200 0.24599

0 0.24599 1.68205

]
.

Now, |Bi,j | is largest for i = 1 and j = 2. We compute the corresponding angle θ, and after the third
step we have

B =

[
8.08996 0.00555 −0.05593
0.00555 1.70646 0
−0.05593 0 −0.79642

]
.

The matrix is now almost diagonal. A few more iterations, and the off diagonal entries would all be

zero in the decimal places kept here.

2.2 Will the Jacobi algorithm diagonalize any symmetric matrix – or can it
“get stuck”?

In general, the Jacobi algorithm does not produce an exactly diagonal matrix in any
finite number of iterations, so the formulation of the algorithm that we gave above would
result in an infinite loop. However, it will very quickly “almost diagonalize” any matrix.
The main goal in this section is to carry out a “worst case analysis” of how fast the Jocobi
algorithm eliminates the off diagonal entries.

We now define a quantity that we will use to measure “how nearly diagonal” a matrix
is:

Definition For any n× n matrix B, define the number Off(B) by

Off(B) =
∑
i 6=j

|Bi,j |2 . (2.1)

Notice that this is the sum of the squares of the off–diagonal entries.

The point of the definition is that

B is diagonal ⇐⇒ Off(B) = 0 ,

and
B is almost diagonal ⇐⇒ Off(B) ≈ 0 .

In fact, since B is symmetric, the largest (in absolute value) off diagonal entry occurs
twice, so

2 max
i 6=j
|Bi,j |2 ≤ Off(B) . (2.2)
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Therefore, for any ε > 0,

Off(B) ≤ 2ε2 ⇒ max
i 6=j
|Bi,j | ≤ ε .

We can now state the main result of this section:

Theorem 1 (Rate of diagonalization for the Jacobi Algorithm) Let A be any n×n
symmetric matrix. Let A(n) denote the matrix produced by running n steps of the Jacobi
algorithm. Then

Off(A(n)) ≤
(

1− 2
n2 − n

)m
Off(A) .

Since
(

1− 2
n2 − n

)
< 1,

lim
m→∞

(
1− 2

n2 − n

)m
= 0 ,

and so the theorem says that
lim
m→∞

Off(A(m)) = 0 .

This answers the question raised in the title of this subsection: No, the Jacobi algorithm
cannot ever get stuck.

In fact, the theorem says that the off diagonal entries are “wiped out” at an exponential

rate. For instance, if n = 3,
(

1− 2
n2 − n

)
=

2
3

, so

Off(A(m)) ≤
(

2
3

)m
Off(A) . (2.3)

If we define a sequence of numbers {am} by

am = ln
(

Off(A(m))
)
,

Then (2.3) say that

am ≤ ln
(

2
3

)
m+ ln (Off(A)) . (2.4)

Since ln(2/3) is negative, the sequence decreases in steady increments and will eventually
become as negative as you like.
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Suppose we want to run the algortihm until Off(A(m)) < ε for some given value of ε,
say ε = 10−10. How many steps might this take? We can stop as soon as

am ≤ ln(ε) ,

and from (2.4), we see that this is guaranteed by

ln
(

2
3

)
m+ ln (Off(A)) ≤ ln(ε) ,

which means

m ≥ ln (Off(A))− ln(ε)
ln(3)− ln(2)

. (2.5)

Let m be the smallest integer satisfying (2.5). Then we are guaranteed that Off(A(m) < ε.
It will take no more than this many steps for the stopping rule to kick in; we have an a
priori upper bound on the run time for our algorithm.

In fact, it works much, much better that this in practice for a typical symmetric matrix
A. The estimate is actually a much too pessimistic “worst case” analysis. But it still shows
that the stopping rule will always kick in, so we never have an infinite loop.

Accordingly, we now modify the Jacobi algorithm by including a stopping rule in the
fourth step. The new version includes a parameter ε > 0 to be specified along with A. The
only modification is to the fourth step, which now becomes:

(4) If Off(B) ≤ ε, stop. Otherwise, go to (1) and repeat.

There is still an important issue to be dealt with here. When the stopping rule kicks
in, the algorithm returns an almost diagonal matrix, but in general it will not be exactly
diagonal. Hence, the diagonal entries of the matrix we get back will not exactly equal the
eigenvalues of A. So we have to ask: If a matrix A is almost diagonal, can we be sure
that its eigenvalues are very close to its diagonal entries? In the next section, we shall see
that the answer is yes, and hence our modified Jacobi algorithm actually returns useful
information when it terminates.

In the rest of this section, we prove the theorem. We shall need another definition that
is companions to the definition of Off(A).

Definition For any n× n matrix B, define the quantity On(B) by

On(B) =
∑
i

|Bi,i|2 ,

which is the sum of the squares of the on–diagonal entries.
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Recall that for any matrix B, the Hilbert–Schmidt norm of B, ‖B‖HS is defined by

‖B‖HS =
√∑

i,j

|Bi,j |2 .

Notice that
On(B) + Off(B) =

∑
i,j

|Bi,j |2 = ‖B‖2HS . (2.6)

The key to proving Theorem 1 lies with the following lemma:

Lemma Let B be an n×n symmetric matrix. Let G be the givens rotation matrix produced
for this B in the first step of the Jocobi algoithm. Then:

‖GtBG‖HS = ‖B‖HS (2.7)

and
On(GtBG) = On(B) + 2 max

i 6=j
|Bi,j |2 . (2.8)

What this lemma says is that the Hilbert Schmidt norm of a matrix is unchanged as we
run the Jacobi algoithm, and the value of On(B) is increased. But by (2.6), this means
that Off(B) must decrease – by the same amount. That is,

Off(GtBG) = Off(B)− 2 max
i6=j
|Bi,j |2 . (2.9)

As we now explain, this leads directly to the proof of the theorem. We shall then come
back, and prove the Lemma.

Proof of Theorem 1: The first step is to eliminate maxi 6=j |Bi,j |2 from the right hand
side of (2.9), and express it in terms of Off(B) alone.

To do this, note that Off(B) is a sum over the n2−n squares of the off diagonal entries
of B, and each term in the sum is clearly no larger than maxi6=j |Bi,j |2. Therefore,

Off(B) ≤ (n2 − n) max
i 6=j
|Bi,j |2 .

In other words,

2 max
i 6=j
|Bi,j |2 ≥

2
n2 − n

Off(B) .

Combining this and (2.9), we have

Off(GtBG) ≤ Off(B)− 2
n2 − n

Off(B)

=
(

1− 2
n2 − n

)
Off(B) .

(2.10)
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This shows that in each step of the algorithm, Off(B) is decreased by the stated factor.

2.3 Proof of the Key Lemma

In this final subsection, we prove (2.7) and (2.8). First reacall that for any n×n matrix
B, the trace of B, denoted by tr(B), is defined by

tr(B) =
n∑
i=1

Bi,i .

We can express ‖B‖HS in terms of the trace as follows: Using the symmetry of B,

tr(B2) =
n∑

i,j=1

Bi,jBj,i =
n∑

i,j=1

|Bi,j |2 = ‖B‖2HS . (2.11)

The key fact about the trace that makes this useful is that similar matrices have the
same trace. Let G be a Givens rotation matrix. Then

(GtBG)2 = GtBGF tBG = GtB2G .

Since Gt is the inverse of G, this says that (GtBG)2 and B2 are similar. Hence they have
the same trace, and so by (2.11), (2.7) is true.

Now consider (2.8). For any k and `,

(GtBG)k,k =
n∑

r,s=1

(Gt)k,rBr,sGs,k

=
n∑

r,s=1

(G)r,kGs,kBr,scr

(2.12)

We suppose that G = G(θ, i, j); that is the largest off diagonal element in B occurs at
the i, j entry. If k 6= i and k 6= j, then the kth column of G is the same as the kth column
of the identity matrix. Therefore, the only non zero term in the sum (2.12) is the term
with r = s = k. That is,

(GtBG)k,k = Bk,k for k 6= i, j . (2.13)

What happens for k = or k = j? To see this, consider the 2× 2 matrices[
(GtBG)i,i (GtBG)i,j
(GtBG)j,i (GtBG)j,j

]
and

[
Bi,i Bi,j
Bj,i Bj,j

]
.
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Let U be the 2× 2 rotation matrix out of which G is constructed. Then[
(GtBG)i,i (GtBG)i,j
(GtBG)j,i (GtBG)j,j

]
= U t

[
Bi,i Bi,j
Bj,i Bj,j

]
U .

Since U diagonalizes
[
Bi,i Bi,j
Bj,i Bj,j

]
, we have that (GtBG)i,j = (GtBG)j,i = 0, and so

[
(GtBG)i,i 0

0 (GtBG)j,j

]
= U t

[
Bi,i Bi,j
Bj,i Bj,j

]
U .

Therefore, since U is a rotation matrix,

|(GtBG)i,i|2 + |(GtBG)j,j |2 = F

([
(GtBG)i,i 0

0 (GtBG)j,j

])
= F

(
U t
[
Bi,i Bi,j
Bj,i Bj,j

]
U

)
= F

([
Bi,i Bi,j
Bj,i Bj,j

])
= |Bi,i|2 + |Bj,j |2 + 2|Bi,j |2 .

In short,
|(GtBG)i,i|2 + |(GtBG)j,j |2 = |Bi,i|2 + |Bj,j |2 + 2|Bi,j |2 (2.14)

Since, by hypothesis,
|Bi,j |2 = max k, `|Bk,`|2 ,

we have from this, (2.13) and (2.14) that

On(GtBG) = On(B) + 2 max k, `|Bk,`|2 ,

and hence (2.8) is true.

Problems

1 Write down the 5× 5 Givens rotation matrix G(π/4, 2, 3).

2 Write down the 5× 5 Givens rotation matrix G(π/3, 1, 4).

3 Find the analog of ♣dsl91 that is valid for the n× n case.

4 (a) Work out by hand one iteration of the Jacobi algorithm for A =

[
2 2 3
2 1 1
3 1 2

]
.

(b) Using a computer and some software package for linear algebra, let ε = 10−3, and run the Jacobi
algorithm for A until the stopping rule kicks in. Give the results of this approximate calculation of the
eigenvalues of A.
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5 (a) Work out by hand one iteration of the Jacobi algorithm for A =

[
4 2 3
2 2 1
3 1 4

]
.

(b) Using a computer and some software package for linear algebra, let ε = 10−3, and run the Jacobi
algorithm for A until the stopping rule kicks in. Give the results of this approximate calculation of the
eigenvalues of A. Are all of the eigenvalues of A positive.

6 Consider the function f(x, y, z) given by

f(x, y, z) = x3yz2 + 4xy − 3yz .

Determine whether all of the eigenvalues of the Hessian at x0 =

[
1
1
1

]
are positive or if the are all negative,

or neither. (Use the Jacobi algorithm to compute the eigenvalues accurately enough to decide this).

7 Consider the function f(x, y, z) given by

f(x, y, z) = xyz2 + xy2z + x2yz .

Determine whether all of the eigenvalues of the Hessian at x0 =

[
1
1
1

]
are positive or if the are all negative,

or neither. (Use the Jacobi algorithm to compute the eigenvalues accurately enough to decide this).
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Section 3: The eigenvalues of almost diagonal matrices

3.1 The Gershgorin Disk Theorem

Let A be an n × n matrix. If A is diagonal, we know what the eigenvalues are – they
are the diagonal entries of A. But suppose that the off diagonal entries are very small in
absolute value, but not actually zero. Is it then true that each eigenvalue of A is close to
one of the diagonal entries of A and vice versa?

Let us look at a simple example: consider A =
[

3 ε
ε 2

]
where ε is some small number.

Are the eigenvalues of A close to 3 and 2? By Theorem 1 of Section 1, the eigenvalues of
A are

µ± =
5
2
± 1

2
(
4ε2 + 1

)1/2
.

Now, by Taylor’s Theorem with remainder

(
1 + 4ε2

)1/2
= 1 + 2ε2 +O(ε4) .

Therefore, the eigenvalues are

µ+ = 3 + ε2 +O(ε4) and µ− = 2− ε2 +O(ε4) .

This is very nice: For small values of ε, ε2 is much, much smaller than ε, and so the
difference between the eigenvalues and the diagonal entries is much, much smaller that
the largest off diagonal entry! Thus, using the diagonal entries to estimate the eigenvalues
works very well in this case. Can we prove something like this for general use?

It turns out that this we can. We will prove a theorem saying how close the diagonal
entries are to the eigenvalues. This is very important in practice. If the matrix we are
dealing with is a Hessian of a function f at some critical point x0, and we want to know
whether or not x0 is a local minimum, we need to know whether or not all of the eigenvalues
of the Hessian are positive. If you are using a Jacobi iteration, and at some point all of
the diagonal entries are positive, does that mean that all of the eigenvalues are positive?
The answer depends on the sizes of the off diagonal terms, but in a rather nice way, as we
shall see.

Before explaining this, we make some definitions: For each i with 1 ≤ i ≤ n, define

ri(A) =
∑
j = 1
j 6= i

|Ai,j | . (3.1)

That is, ri(A) is the sum of the absolute values of all of the off–diagonal elements in the
ith row of A.

The ith Gershgorin disk of A is then defined to be the set of all complex numbers z that
are within a distance ri(A) of Ai,i, the ith diagonal element of A. The Gershgorin Disk
Theorem says that every eigenvalue of A lies within one of the Gershgorin disks of A.
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Theorem 1 (Gershgorin Disk Theorem) Let A be any n×n matrix, and let µ be any
eigenvalue of A. Then for some i with 1 ≤ i ≤ n,

|µ−Ai,i| ≤ ri(A)

where ri(A) is given by (3.1).

Proof: Let v be an eigenvalue of A with eigenvalue µ. Then for each i,

µvi =
n∑
j=1

Ai,jvj . (3.2)

Let ` be chosen so that
|v`| = max{ |vj | : 1 ≤ j ≤ n} . (3.3)

Taking i = ` in (3.2), we have

(µ−A`,`) v` =
n∑

j = 1
j 6= `

A`,jvj . (3.4)

Since eigenvectors are non zero by definition, v` 6= 0, and so, dividing through by v`, we
get,

(µ−A`,`) =
n∑

j = 1
j 6= `

A`,j
vj
v`

. (3.5)

By (3.3), |vj/v`| ≤ 1 for all j, so taking absolute values in (3.5),

|µ−A`,`| ≤
n∑

j = 1
j 6= `

|A`,j | = r` .

This says that µ belongs to the Gershgorin disk about A`,`.

Example 1 (Gershgorin disks) Consider the matrix A =

[
3 0.1 −0.1

0.1 0 0.1
−0.1 0.1 2

]
. This matrix happens

to be symmetric, so all of its eigenvalues are real numbers. We compute the radii of the Gershgorin disks
finding

r1(A) = 0.2 r2(A) = 0.2 and r3(A) = 0.2 .
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The Gershgorin disks are therefore the disks of radius 0.2 centered on −1, 0 and 2 respectively. These
disks contain the eigenvalues. Since in this case we know that the eigenvalues are real numbers, we know
that they lie in the intervals

[2.8, 3.2] [−0.2, 0.2] and [1.8, 2.2] .

This is all well and good, but for all we know at this point, all three of the eigenvalues
might lie in just one of the intervals. Instead, we might well expect that there is one
eigenvalue in each interval. That is, we might well expect that there is one eigenvalue close
to 3, one close to 0, and one close to 2.

This is in fact the case. It can be shown that whenever the Gershgorin disks do not
overlap, there is one eigenvalue in each of them. Proofs of this in the general case seem to
rely more on complex analysis than linear algebra per se, and we won’t give such a proof
here. But many of our applications will be to the case in which A is symmetric, as in the
example, and then there is a fairly simple proof. To explain, we first make some more
definitions:

Define the numbers δ(A) and r(A) by

δ(A) = min{ |Ai,i −Aj,j | : i ≤ i < j ≤ n } , (3.6)

and
r(A) = max{ ri(A) 1 ≤ i ≤ n } . (3.7)

That is, δ(A) is the minimum distance between distinct diagonal elements of A, and r(A)
the the maximum of the radii of the Gershgorin disks. Clearly, as long as

δ(A) > 2r(A) ,

the disks do not overlap.

Theorem 2 (One eigenvalue per disk) Let A be any symmetric n × n matrix, and
suppose that

r(A) <
δ(A)

2
. (3.8)

Then there is exactly one eigenvalue in each Gershgorin disk of A.

Proof: Supose that there is no eigenvalue in the ith Gershgorin disk. Then all of the
eigenvalues of A lie in the other Gershgorin disks, and so if µ is any eigenvalue of A,

|µ−Ai,i| > δ(A)− r(A) . (3.9)

In particular, Ai,i is not an eigenvalue of A, so (A−Ai,iI)−1 is invertible. The eigenvalues
of (A − Ai,iI)−1 are exactly the numbers (µ − Ai,i)−1 where µ is an eigenvalue of A. By
(3.9), none of these eigenvalues is larger than (δ(A)− ρ(A))−1. But since (A−Ai,iI)−1 is
symmetric, its norm is the maximum absolute value of its eigenvalues. Hence

‖(A−Ai,iI)−1‖ ≤ (δ(A)− r(A))−1 .
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Now (A − Ai,iI)ei is just the ith column of A − Ai,iI, which by the symmetry of A is
just the ith row of A−Ai,iI. Hence

|(A−Ai,iI)ei| =
√√√√√√

∑
j = 1
j 6= i

|Ai,j |2 .

Clearly, for j 6= i, |Ai,j | ≤ ri(A) ≤ r(A), and so we have

∑
j = 1
j 6= i

|Ai,j |2 ≤ r(A)


∑
j = 1
j 6= i

|Ai,j |

 ≤ (r(A))2 .

Hence,
|(A−Ai,iI)ei| ≤ r(A) .

Next, since
ei = (A−Ai,iI)−1(A−Ai,iI)ei ,

1 = ‖ei‖ ≤ ‖(A−Ai,iI)−1‖|(A−Ai,iI)ei|

≤ 1
δ(A)− r(A)

r(A) .

This implies that δ(A) ≤ 2r(A). Hence, under the condition (3.8), it is impossible that the
ith Gershgorin disk does not contain an eigenvalue. Since i is arbitrary, each Gershgorin
disk contains an eigenvalues. Since there can be no more than n eigenvalues, each contains
exactly one.

Example 2 (Checking for one eigenvalue per disk) Let A be the matrix

[
3 0.1 −0.1

0.1 0 0.1
−0.1 0.1 2

]
form

Example 1. From the computations of the ri(A) done there, we see that r(A) = 0.2. It is also clear that
δ(A) = 1. Hence

r(A) = 0.2 <
1

2
=
δ(A)

2
,

and so (3.8) is satisfied in this case, and we now know that there is exactly one eigenvalue in each of the
intervals

[2.8, 3.2] [−0.2, 0.2] and [1.8, 2.2] . (3.10)
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The results we have obtained so far are very useful as they stand. But if we actually
calculate the eigenvalues of the matrix A considered in Examples 1 and 2, we find that
they are:

µ1 = 3.0125807... µ2 = −0.0086474... and µ3 = 1.9960667... (3.11)

where all digits shown are exact.
As you see, they are very close to 3, 0 and 2, respectively; much closer than is ensured

by (3.10). Was this just luck, or is there a chance to say something more incisive about
the location of the eigenvalues?

It was not just luck, as our 2 × 2 example indicates at the beginning of this section
indicates. In fact, it turns out that we can be considerably more incisive. The key fact
enabling us to squeezing more out of the Gershgorin disk theorem is the fact that similar
matrices have the same eigenvalues.

Fix any i with 1 ≤ i ≤ n, and any α > 0, Let S be the diagonal matrix whose ith
diagonal entry is α, and whose other diagonal entries are all 1. For instance, if n = 4 and
i = 2, we have

S =


1 0 0 0
0 α 0 0
0 0 1 0
0 0 0 1

 .

Then SAS−1 is obtained from A by multiplying the ith row through by α, and the ith
column through by 1/α. In particular, the two factors cancel on the diagonal, and so the
ith diagonal entry is unchanged, as are all of the other diagonal entries.

Since every off–diagonal entry in the ith row of A gets multiplied by α we have

ri(SAS−1) = αri(A) . (3.12)

If α < 1, this change shrinks the ith Gershgorin disk. Unfortunately, it expands the others:
For k 6= i, |Ai,k| ≤ rk(A), and so

rk(SAS−1) = rk(A) + (1/α− 1)|Ak,i| ≤ (1/α)rk(A) .

That is,

r(SAS−1) ≤ 1
α
r(A) .

Since the diagonal entries of SAS−1 are the same as the diagonal entries of A,

δ(SAS−1) = δ(A) .

Therefore, as long as
1
α
r(A) <

δ(A)
2

, (3.13)
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Theroem 2 says that each Gershgorin disk of SAS−1 contains one eigenvalue of SAS−1,
and hence of A. We now choose α as small as possible while still keeping (3.8) satisfied
so there will be one eigenvalue in each disk. This shrinks the radius of the ith Gershgorin
disk as much as possible while sitll making sure it includes an eigenvalue of A.

By (3.13), the smallest admissible value for α is

αmin =
2r(A)
δ(A)

.

Using this value of α in (3.12), the radius of the ith Gershgorin of SAS−1 becomes

ri(SAS−1) =
2r(A)
δ(A)

r(A) ≤ 2
δ(A)

(r(A))2 .

The disk of this radius about Ai,i contains one eigenvalue of SAS−1, and hence of A. Since
i is arbitrary, this proves the following result:

Theorem 3 (Small Gershgorin Disks) Let A be any symmetric n×n matrix. Suppose
that r(A) < δ(A)/2. Then for all i with 1 ≤ i ≤ n, the disk of radius

2
δ(A)

(r(A))2

about Ai,i contains exactly one eigenvalue of A.

Example 3 (Checking for one eigenvalue per small disk) Let A be the matrix

[
3 0.1 −0.1

0.1 0 0.1
−0.1 0.1 2

]
from Examples 1 and 2. From the computations of the ri(A) done there, we see that r(A) = 0.2. It is also
clear that δ(A) = 1. Hence

2

δ(A)
(r(A))2 = 0.08 ,

and so (3.8) is satisfied in this case, and we now know that there is exactly one eigenvalue in each of the
intervals

[2.92, 3.08] [−0.08, 0.08] and [1.92, 2.08] . (3.14)

These intervals are much narrower than before – the radius is 0.08 instead of 0.2. They still comfortably

contain the eigenvalues (3.11), as they must.

3.2 Application to Jacobi iteration

Suppose we are given an n × n symmetric matrix A, and are asked to compute the
eigenvalues of A to 10 digits of accuracy. That is, if µi denotes the ith eigenvalue of A, we
want to compute explicit numbers di so that for each i

µi = di ± 10−10 . (3.15)

Of course, the numbers di will be the diagonal entries of some matrix A(m) that is obtained
from A by running m steps of the Jacobi algorithm.
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The results we have obtained enable us to be sure that what we are computing with the
Jacobi algorithm are actually the eigenvalues of A. We want to stop the computation at
the first m such that (3.15) is satisifed.

• Can we devise a “stopping rule” that we could code into an implementation of the Jacobi
algorithm that would guarantee the validity of (3.15) at the stopping point? Moreover, can
we be sure that this stopping rule always leads to termination in a finite number of steps
for all matrices A?

The answer is yes, and the stopping rule is rather simple. To explain it in a generally
useful form, let us replace the specific accuracy level 10−10 by ε. Then we have the following
theorem:

Theorem 4 (Stopping rule for the Jacobi algorithm) Let ε > 0 be any given positive
number. For any n × n symmetric matric A, let µ1, µ2, . . . , µn be the eigenvalues of A,
arranged in decreasing order. Let A(m) be the matrix produced at the mth step by the

Jacobi algorithm, and let d(m)
1 , d

(m)
2 , . . . , d

(m)
n be the diagonal entries of A(m), arranged in

decreasing order. Then if

Off(A(m)) <
1

n− 1

(
ε

2n− 1

)2

,

it follows that

|µi − d(m)
i | < ε

for each i = 1, . . . , n.

Since we know from the previous section that

Off(A(m)) ≤
(

1− 2
n2 − n

)m
Off(A) , (3.16)

it follows that the stopping rule “kicks in” for A no later than the mth step where m is
the smallest integer such that

(
1− 2

n2 − n

)m
Off(A) <

1
n− 1

(
ε

2n− 1

)2

. (3.17)

In particular, no matter what accuracy level we set for our computation, we can compute
the eigenvalues of A to that accuracy in a finite number of steps. We can even set a “worst
case” upper bound on the number of steps before we begin the computation. It must be
stressed, however, that this upper bound on the number of steps is indeed based on a
“worst case” analysis. In fact, (3.16), while always true, is rather pessimistic. In practice,
the decrease of Off(A(m)) is much, much faster. Therefore, in pratice the stopping rule
“kicks” much, much more quickly. Still, it is important to know that it always does kick
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in at some finite step. If you implement the Jacobi algorithm in code, your program will
never go into an infinite loop.

The rest of this subsection is devoted to proving Theorem 4. Before we begin the proof,
we prove a useful lemma relating Off(B) and r(B) for an n× n symmetric matrix.

Lemma Let B be any n× n matrix. Then

(r(B))2 ≤ (n− 1)Off(B) . (3.18)

Proof: For any i, by the Schwarz inequality,

ri(B) =
n∑

j = 1
j 6= i

|Bi,j | ≤
√
n− 1

√√√√√√√
n∑

j = 1
j 6= i

|Bi,j |2 .

Hence
(r(B))2 = max{ (ri(B))2 : 1 ≤ i ≤ n}

≤
n∑
i=1

(ri(B))2

≤
n∑
i=1

(n− 1)
n∑

j = 1
j 6= i

|Bi,j |2

≤ (n− 1)Off(B) .

(3.19)

Proof of Theorem 4 Our goal is to compute the eigenvalues of A to a given accuracy
level ±ε. We run the Jacobi algorithm some number of steps, resulting in an “almost
diagonal” matrix B. We would like to be sure that the eigenvalues of B, and hence of A,
are given by by the diagonal entries of B up to order ε.

It would be nice to apply the small Gershgorin Disk Theorem, except there is no way
to tell in advance how small δ(B) might be – it might even be zero.*

Therefore, we have to deal with overlapping disks. To analyze this case, it is best to
draw a picture. The following picture shows 7 disks of radius r(B) with several overlapping
clusters. What can we say about the eigenvalues of B in this case?

* If the eigenvlaues of A are all distinct, then after enough steps of the Jacobi algorithm, δ(B) ≈ δ(A) > 0,

but we cannot know this in advance: We are trying to compute the eigenvalues.
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It can be shown, using the same ideas that were used to prove Theorem 2, that each
of the clusters of overlapping disks contains as many eigenvalues as there are disks in the
cluster. In the picture, you see three clusters: The cluster on the left has 4 disks, the
middle cluster has two, and the cluster on the right has just one.

By what we have explained above, the cluster on the left contains 4 eigenvalues, but
they can be anywhere in the cluster – really. So if we are really unlucky, they might all
be bunched up at the extreme right end of the cluster, as far away from B2,2 as possible.
Then the distance from B2,2 to the nearest eigenvalue is 3 diameters and one radius; i.e.,
7r(B), as in the picture. (We have drawn the worst case, where the disks “just barely”
overlap. Otherwise, the distance would be less).

In general, you see that in a cluster of k disks covering Bi,i, the distance from Bi,i to
the nearest eigenvalue is no more than k− 1 diameters plus one radius; i.e., (2k− 1)r(B).
Since k ≤ n, we have that in any case, no matter how bad the clustering is, there is an
eigenvalue µ of B satisfying

|Bi,i − µ| ≤ (2n− 1)r(B) .

Now by the lemma, for any ε > 0,

Off(B) <
1

n− 1

(
ε

2n− 1

)2

⇒ r(B) <
ε

2n− 1
.

It therefore follows that when

Off(B) <
1

n− 1

(
ε

2n− 1

)2

, (3.20)

each diagonal entry of B is within ε of some eigenvalue of B.
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3.3 Continuity of Eigenvalues

For any symmetric n × n matrix A, there is an orthonormal basis {u1,u2, . . . ,un}
consisting of eigenvectors of A, Let µj denote the eigenvalue corresponding to uj . We may
redistribute the labels, if need be, to arrange that

µ1 ≥ µ2 ≥ · · · ≥ µn .

In our discussion so far, A has been a fixed matrix, and we have learned how to compute
the eigenvalues in terms the entries of A. We do this by an iterative procedure, but all the
same, given A and j, µj is a well determined number. To explicitly indicate that it came
from A, let us write µj(A) to denote the jth largest (with repitition) eigenvalue of A.

Let us now shift our points of view, and think of the assignment

A 7→ µj(A)

as it a function on the space of n × n symmetric matrices. We call this function the jth
eigenvalue function.

Our concern in this subsection is with the continuity of these functions. For functions
f on sets of matrices, the definition of continuity is very much like the one for functions
on IRn.

Definition (Continuity of Matrix Functions) Let f be a fucntion defined on a set U
of m× n matrices. If A is in U , then f is continuous at A in case for all ε > 0, there is a
δ(ε) > 0 so that

‖A−B‖ ≤ δ(ε) ⇒ |f(A)− f(B)| < ε (3.21)

whenever B belongs to U , the domain of definition of f .

The importance of the definition is this: In many applications, one is not working with
the exact matrix A, but only some decimal approximation to it. This is certainly the
case if the entries of A are irrational, and you are doing your computations on a machine.
In this case, even if you made no further round–off errors, you would be computing the
eigenvalues of some other matrix C that is close to A, a “rounded off” version of A, but is
not exactly A. Is this good enough?

This is only good enough if, whenever C is close enough to A, then each eigenvalue of
C is close to the corresponding eigenvalue of A. In other words, this is good enough if and
only if the eigenvalues are continuous functions of the matrix A. Fortunately they are, as
we shall see in this subsection.

To examine the continuity of the eigenvalues at A, let C be any other n× n symmetric
matrix. We wish to estimate |µj(C)− µ)j(A)| in terms of ‖C −A‖.

If we define B = C −A, so that

C = A+B ,
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our goal then is to estimate |µj(A+B)− µj(A)| in terms of ‖B‖.
For this purpose, it is best to use the orthonormal basis {u1,u2, . . . ,un} consisting of

eigenvectors of A that we introduced above. Then

Auj = µj(A)uj .

(Note: the eigenvecotors uj also depend on A, but we do not record this in our notation
since we are only studying the dependence of the eigenvalues.)

Let Q = [u1,u2, . . . ,un] and let D be the diagonal entry whose jth diagonal entry is
µj(A). Then QtAQ = D. Define G by G = QtBQ, so that

Qt(A+B)Q = D +G .

Since Q is orthogonal, so that Qt = Q−1 this says that A+ B is similar to D +G. Then
since similar matrices have the same eigenvalues,

µj(A+B) = µj(D +G) . (3.22)

Furthermore,
‖B‖ = ‖G‖ . (3.23)

To see this, note that GtG = QtBQQtBQ = QtBtBQ so that GtG is similar to BtB,
Hence both BtB and GtG have the same largest eigenvalue. Since the norm of a matrix
is the square root of the largest eigenvalue, this implies (3.23).

Now our problem is to estimate |µj(D +G)− µj(D)| in terms of ‖G‖. For this, we use
the fact that for each i and j,

Gi,j ≤ ‖G‖ .

Indeed, by the Schwarz inequality and the definition of the norm,

|Gi,j | = |ei ·Gej | ≤ |ei||Gej | ≤ ‖G‖|ei||ej | = ‖G‖ . (3.24)

Therefore, for each i,

ri(D +G) =
∑
j 6=i

|Gi,j | ≤ (n− 1)‖G‖ . (3.25)

Also, by defintion, the ith diagonal entry of G is

ei ·Gei = ei ·QtBQei = (Qei) ·B(Qei) = ui ·Bui .

Therefore,
(D +G)i,i = µi(A) + ui ·Bui . (3.26)

By the first Gershgorin disk Theorem,

µi(D +G)− (µi(A) + ui ·Bui)) | ≤ (n− 1)‖B‖ .
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But by (3.22), and the fact that |ui ·Bui)| ≤ ‖B‖, we now have

|µi(A+B)− µi(A)| ≤ n‖B‖ .

We have now proved the following:

Theorem 5 (Continuity of eigenvalues) Let A and C be any n×n symmetric matrices.
Then for each i = 1, . . . , n,

|µi(A)− µi(C)| ≤ n‖A− C‖ . (3.27)

In particular, the function A 7→ µi(A) is continuous on the set of n×n symmetric matrices.

Notice that (3.27) says that we can use δ(ε) = ε/n in (3.21) for the ith eigenvalue
function on the set on n× n symmetric matrices.

In the next section we shall discuss the case of non symmetric matrices. The situation
there is complicated by the fact that these cannot always be diagonalized. However, the
case of symmetric matrices is particularly important, and it is worth observing that we
can push our results a bit further in case all of the eigenvalues of A are distinct, so that
we may use the Small Gershgorin Disk Theorem.

Suppose that A is not only symmetric, but is also non degenrate, meaning that it has
not repeated eigenvalues:

µ1(A) > µ2(A) > · · · > µn(A) .

Let δ denote the least gap between these eigenvalues: i.e.,

δ(A) = min
j=1,...,n−1

(µj(A)− µj+1(A)) .

Then, since by (3.25) and (3.23), r(A) ≤ (n− 1)‖B‖ = (n− 1)‖G‖, whenever

2(n− 1)‖B‖ < δ(A) ,

the conditions of the Small Gershgorin Disk Theorem are satisfied, and the distance be-
tween µi(A+B) and the ith diagonal entry of D+G is no greater than 2(n−1)2‖B‖2/δ(A).
By (3.26), the ith diagonal entry of D +G is µi(A) + ui ·Bui. Therefore,

|µi(A+B)− (µi(A) + ui ·Bui)| ≤
2(n− 1)2‖B‖2

δ(A)
. (3.28)

This formula shows that if δ(A) > 0, then the function A 7→ µi(A), is not only contin-
uous, it is also it differentiable. In particular, for any no zero value of t, it follows from
(3.28) that ∣∣∣∣µi(A+ tB)− µi(A)

t
− ui ·Bui

∣∣∣∣ ≤ t2(n− 1)2‖B‖2

δ(A)
. (3.29)
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Therefore, whenever δ(A) > 0,

lim
t→0

µi(A+ tB)− µi(A)
t

= ui ·Bui .

This gives a formula for the “directional derivative” of µi in the space of n× n symmetric
matrices. In fact, another way to write (3.28) is

µi(A+ tB) = µi(A) + t (ui ·Bui) +O(t2) . (3.30)

We have now proved the following:

Theorem 6 (Differentiability of eigenvalues) Let A and B be any n × n symmetric
matrices. Suppose that δ(A) > 0, and for each i = 1, . . . , n, let ui be a normalized eigen-
vector corresponding to the ith eigenvalue of A. Then t 7→ µi(A + tB) is a differentiable
function of t at t = 0, and

d
dt

∣∣∣∣
t=0

µi(A+ tB) = ui ·Bui .

In fact, the somewhat stronger staement (3.30) is also true.

Example 4 (Derivatives of eigenvalues) Let A be the matrix A =

[
3 0 0
0 1 0
0 0 2

]
, and let B be the

matrix B =

[
2 1 1
1 3 1
1 1 2

]
. Since A is already diagonal, we can take u1 = e1, u2 = e2 and u3 = e3. Then

µ1 = 3, µ2 = 1 and µ3 = 2. Hence the eigenvalues µi(t) of A+ tB satisfy

µ1(t) = 3 + 2t+O(t2)

µ2(t) = 1 + 3t+O(t2)

µ3(t) = 2 + 2t+O(t2)

and so
µ′1(0) = 2 µ′2(0) = 3 and µ′3(0) = 2 .

We have seen that A 7→ µi(A) is differnetiable at A in case δ(A) > 0. what happens if
δ(A) = 0? Then, indeed, µi(A) may not be differentiable.

Example 5 (Nondiferentiability of t 7→ µi(A+tB) where δ(A) = 0) Let A be the matrix A =

[
2 0
0 2

]
,

and let B be the matrix B =

[
0 1
1 0

]
. It is easy to compute the two eigenvalues of A + tB, using, for

example, the formulas from Section 1. The result is:

µ± = 2± t .
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Now notice that µ1(A + tB) is, by definition, the larger of these two eigenvalues. Which one is larger
depends on the sign of t, and the result is that

µ1(A+ tB) = 2 + |t| .

Likewise,
µ2(A+ tB) = 2− |t| .

Notice that these are not differentiable at t = 0. This example shows that the role of the condition

δ(A) > 0 is not artificial: This condition prevent “crossing” of eigenvalues for small enough values of t.

At the crossings, nothing dramatic happens to the the eigenvalues, but they “switch tracks” in a non

differentiable way.

Problems

1. Let A =

[
1 0.01 −0.01

0.01 5 0.01
−0.01 0.01 3

]
.

(a) Compute ri(A) for i = 1, 2, 3.

(b) Compute r(A) and compute δ(A).

(c) Find three small intervals about 1, 5 and 3 that are guaranteed, by Theorem 3, to contain the
eigenvalues of A.

2. Let A =

[ −1 0.02 −0.01
0.02 2 0.03
−0.01 0.03 4

]
.

(a) Compute ri(A) for i = 1, 2, 3.

(b) Compute r(A) and compute δ(A).

(c) Find three small intervals about −1, 2 and 4 that are guaranteed, by Theorem 3, to contain the
eigenvalues of A.

3. Let A =

[ −1 0.002 −0.001
0.002 3 0.003
−0.001 0.003 5

]
.

(a) Compute ri(A) for i = 1, 2, 3.

(b) Compute r(A) and compute δ(A).

(c) Find three small intervals about −1, 3 and 5 that are guaranteed, by Theorem 3, to contain the
eigenvalues of A.

4. Let A =

[
31 0.001 −0.001
0.001 8 0.001
−0.001 0.001 9

]
.

(a) Compute ri(A) for i = 1, 2, 3.

(b) Compute r(A) and compute δ(A).

(c) Find three small intervals about 3, 8 and 9 that are guaranteed, by Theorem 3, to contain the
eigenvalues of A.

5. Let A be the matrix A =

[
3 0 0
0 4 0
0 0 1

]
, and let B be the matrix B =

[
0 1 1
1 1 1
1 1 −1

]
. Compute expressions

for the eigenvalues µi(t) of A+ tB that are valid up to corrections of size O(t2).
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6. Let A be the matrix A =

[
3 2 0
2 3 0
0 0 1

]
, and let B be the matrix B =

[
0 1 1
1 1 1
1 1 −1

]
. Compute expressions

for the eigenvalues µi(t) of A+ tB that are valid up to corrections of size O(t2).

7. Let A be the matrix A =

[
3 0 0
0 4 2
0 2 4

]
, and let B be the matrix B =

[
1 1 1
1 2 1
1 1 −3

]
. Compute expressions

for the eigenvalues µi(t) of A+ tB that are valid up to corrections of size O(t2).

8. Let B be the n×n matrix that has 1 in every entry in the first row, and 0 elsewhere. Compute Off(B)
and r(B), and compare with the inequality (r(B))2 ≤ (n− 1)Off(B) that was derived in this section.

9. Show that for symmetric n × n matrices B, the inequality (r(B))2 ≤ (n − 1)Off(B) that was derived
in this section can be improved to

(r(B))2 ≤
(n− 1)

2
Off(B) ,

and find an n× n symmetric matrix B for which equality holds in this inequality.
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Section 4: The singular value decomposition

4.1 What is a singular value decomposition?

We can diagonalize any symmetric n×n matrix A: Let {u1,u2, . . . ,un} be an orthonor-
mal basis of IRn consisting of eigenvectors of A. Let U be the n × n matrix whose jth
column is U . Then U tAU = D where D is the diagonal matrix whose j diagonal entry is
µj , the eigenvalue corresponding to uj . Multiplying on the left by U , and on the right by
U t, we get

A = UDU t (4.1)

since U is orthogonal, so that U t = U−1.
In (4.1), we have a factorization of A into simple pieces – we have “taken it apart” into

simple pieces that are easy to work with and understand. “Decompositions” of matrices
into simple pieces are very useful in a wide variety of problems involving matrices, and they
will be very useful to us in the next chapters when, for example, the matrices in questions
are the Jacobians of some non linear transformation

In general, Jacobian matrices are not symmetric, and not even square. However, there
is a decomposition very much like (4.1) that is valid for all matrices – square or not.

Definition (Singular Value Decomposition) Let A be an m × n matrix. Suppose D
is an r × r diagonal matrix with strictly positive diagonal entries σ1 ≥ σ2 ≥ · · · ≥ σ1 > 0,
Suppose that U and V are n × r and m × r matrices, respectively, with orthonormal
columns. Suppose finally that

A = V DU t (4.2)

Then the positive entries of D are called the singular values of A, and the decomposition
(4.2) is called the singular value decomposition.

As we shall soon see, every matrix has a singular value decomposition. First, let us try
to understand what information about A is encoded into a singular value decomposition
of A.

For this purpose, another way of writing a singular value decomposition is very illu-
minating. To explain, first recall that if u is any vector in IRn, and v is any vector in
IRm, then we may regard them both as matrices – an n× 1 matrix, and and m× 1 matrix
respectively. Then the matrix product vut makes sense: It is the product of an m × 1
matrix and a 1× n matrix. Evidently the result is an m× n matrix. This sort of matrix
product of two vectors is sometimes called their outer product.

Example 1 (Outer products) Let v =

[
2
4

]
and let u =

[
1
3
5

]
. Then

vut =

[
2
4

]
[ 1 3 5 ] =

[
2 6 10
4 12 20

]
.
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As you can easily see by pondering the example, in any matrix of the form vut, all of
the columns are multiples of a single vector, namely v. Hence the rank of any such matrix
is one.

Conversely, if B is an m × n matrix with rank one, then all of the columns must be
multiples of a single vector v – or else the span of the columns would be at least two
dimensional. Hence for some numbers a1, a2, . . . , an,

B = [a1v, a2v, . . . , anv] = vut where u =


a1

a2
...
an

 .

Hence, an m× n matrix is a rank one matrix if and only if it has the form vut.
The relevance of this to us here is that a singular value decomposition of A provides

a decomposition of an m × n matrix A into a sum of r rank one matrices, where r turns
out to be the rank of A. Indeed, Let A = V DU t be a singular value decomposition of and
m× n matrix A, and let us write

V = [v1,v2, . . . ,vr] and U = [u1,u2, . . . ,ur] .

Then
A = σ1v1ut1 + σ2v2ut2 + · · ·+ σrvrutr . (4.3)

As we now explain, this additive decomposition is just another way of writing the multi-
plicative decomposition (4.2)

To see that (4.3) is just another way of writing (4.2), we need to make one more obser-
vation about rank one matrices. We know that matrices represent linear transformations.
What linear transformation does vut represent? To answer that, apply vut to a general
vector x in IRn, and see what happens. By associativity, (vut)x = v(utx), and by the
rule for matrix–vector multiplication in row form, utx = u · x. Therefore,

(vut)x = (u · x)v . (4.4)

Now, let us apply the terms in A = V DU t to some general vector x in IRn one at a
time, and see what happens:

First, for any x in IRn,

U tx =


u1

u2
...

ur

x =


u1 · x
u2 · x

...
ur · x

 .

Next,

DU tx =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σr




u1 · x
u2 · x

...
ur · x

 =


σ1u1 · x
σ2u2 · x

...
σrur · x
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Finally then,

V DU tx = [v1,v2, . . . ,vr]


σ1u1 · x
σ2u2 · x

...
σrur · x


= (σ1u1 · x)v1 + (σ2u2 · x)v2 + · · ·+ (σrur · x)vr .

(4.5)

By (4.4), this is equivalent to (4.3).
Many applications of the singular value decomposition start from the additive form

(4.3). Here is a hint of one that we shall explore more thoroughly later on:
Consider an image in grayscale with a size of, say 1000 by 2000 pixels. This corresponds

to a 1000 × 2000 matrix, with 2 million entries, each being an integer in the range 0 to
255. To store or transmit the image faithfully, one must store or transmit all 2 million
pixel values. But the information content in the image can be stored or transmitted much
more efficiently. Let

A =
r∑
j=1

σjvjutj

be a singular value decomposition of the matrix. As we shall see, r is the rank of A, and
so this is no more than 1000. Now, here is the key fact: If A comes from an image with
structure, like a picture of a face, The first few singular values will be much, much larger
than the rest. Hence, we can get a good approximation to A by changing σj to zero for
all j greater than, say, 20. This gives us the approximation

A ≈
r∑
j=1

σjvjutj (4.6)

Now, to store or transmit the right hand side, you just need to store or transmit the
20 singular values σ1, . . . , σ20, the 20 vectors u1, . . . ,u20 with 2000 entries each, and the
20 vectors v1, . . . ,v20 with 1000 entries each. This is a total of 60, 020 numbers, which
is a lot less than the 2 million entires of A. Given this data, you can reconstruct the
approximation A in (4.6), and hence an approximation to the original image. The basis
idea here has many applications that will be explored in projects.

Before delving further into applications of the singular value decomposition, or expaling
how to compute one, we close this section with a useful theorem that sheds more light on
our current focus – what the singular value decomposition is.

Theorem 1 (Singular value decomposition, rank and bases) Let A be an m × n
matrix, and let A = V DU t be a singular value decomposition of A where D is an r × r
matrix. Then r is the rank of A, the columns of V are an orthonormal basis for Img(A), and
the the columns of U are an orthonormal basis for Img(At) = (Ker(A))⊥. In particular,
the orthogonal projections

V V t and UU t
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project onto Img(A) and (Ker(A))⊥, respectively.

Proof: Every vecotr in Img(A) is, by definition, of the form Ax for some x in IRn. But
by (4.5),

Ax = (σ1u1 · x)v1 + (σ2u2 · x)v2 + · · ·+ (σrur · x)vr ,

which is a linear combination of the columns of V . Hence, the columns of V span Img(A).
Since they are orthonormal, they are also linearly independent, and hence are an orthonor-
mal basis for Img(A). The rank of A is the dimension of its image, and since we have found
a basis with r elements, this shows that rank(A) = r.

We also know that to compute the orthognal projection PImg(A) onto Img(A), we can
use P = QQt for any matrix Q whose columns are an orthonormal basis for Img(A). V is
such a matrix, and hence PImg(A) = V V t.

To deduce the statements about U , take the transpose of A = V DU t, getting At =
UDV t. Thus, U for A is V for At. Hence what we have just seen shows that the columns
of U are an orthonormal basis for Img(At), and PImg(At) = V V t. Finally, recall that

Img(At) = (Ker(A))⊥.

4.2 The singular value decomposition and least square solutions

In this subsection we explain an important application of the singular value decompo-
sition to the solution of least squares problems.

Fist notice that since the diagonal entries of D are all strictly positive, D is invertible,
and

D−1 =


1/σ1 0 . . . 0

0 1/σ2 . . . 0
...

...
. . .

...
0 0 . . . 1/σr

 .

Hence the matrix product UD−1V t is always well defined whenver A = V DU t is a singular
value decomposition of A. This matrix is called the generalized inverse of A:

Definition(Generalized Inverse) Let A = V DU t be a singular value decompostion of
A. Then the generalized inverse of A is the matrix

A+ = UD−1V t . (4.7)

Theorem 2 (Singular Values and Least Squares) Let A be an m × n matrix, and
suppose that A = V DU t is a singular value decomposition of A. Let A+ be the generalized
inverse of A. Then for any b in IRm, A+b is a least squares solution to Ax = b, its length
is less than that of any other least squares solution.

Proof: Notice that

AA+ = V DU tUD−1V t = V D−1DV t = V V t

1-37



since U tU = I. By Theorem 1, V V t is the orthogonal projection onto Img(A), and hence
for any b in IRm, A(A+b) is the orthogonal projection of b onto Img(A); i.e., the vector
in Img(A) that is closest to b. Hence A+b is a least squares solution of Ax = b. Next,
from the formula for A+,

A+b = U(D−1V tb)

is a linear compbination of the columns of U , and hence belongs to Img(At) = (Ker(A))⊥.
That is, A+b is orthogonal to very vector in Ker(A). Now since A+b is a particular least
sqaures solution to Ax = b, any other least squares solution x can be written as

x = A+b + w

where w belongs to Ker(A). But then by the orthogonality,

|x|2 = |A+b|2 + |w|2

which is larger than |A+b|2 unless w = 0.

Example 2 (SV D and least squares) Let A be the matrix A =

[
2 0
0 2
1 2

]
. In this case, let

V =
1

3
√

5

[
2 −6
4 3
5 0

]
, S =

[
3 0
0 2

]
and U =

1
√

5

[
1 −2
2 1

]
. (4.8)

Then, as you can check, A = V DUt. You should also check at this point that U and V are isometries.

Let b =

[
1
1
1

]
. It was claimed above that UD−1V tb is the least squares solution to Ax = b with the

least length. In this case, you can see that the columns of A are linearly independent so that Ker(A) = 0
and there is exactly one least squares solution. So in this example, we can ignore the least length part.
We just want to see that A+b gives us the least squares solution to Ax = b.

Working A+b = UD−1V tb out,

A+b = UD−1V tb =
1

15

[
1 −2
2 1

] [
1/3 0
0 1/2

] [
2 4 5
−6 3 0

][ 1
1
1

]
=

1

15

[
1 −2
2 1

] [
1/3 0
0 1/2

] [
11
−3

]
=

1

15

[
1 −2
2 1

] [
11/3
−3/2

]
=

1

18

[
8
7

]
.

(4.9)

Now let’s verify that A+bb is the least squares solution to Ax = b.

AA+b =
1

18

[
2 0
0 2
1 2

][
8
7

]
=

1

9

[
8
7
11

]
. (4.10)
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This isn’t b, but that must mean the b doesn’t belong to Img(A). Let’s find the equation for Img(A). Row

reduction of

[
2 0 | x
0 2 | y
1 2 | z

]
leads to

[
2 0 | x
0 2 | y
0 0 | z − x/2− y

]
and so Img(A) is the plane in IR3 given by

the equation
x+ 2y − 2z = 0 . (4.11)

Evidently b does not lie in this plane, so Ax = b has no solution, as we thought. Now since Img(A) is a
plane, it is easy to find c, the vector in Img(A) that is closest to b: By Theorem 2.2.1,

c = b−
a · b
|a|2

a =

[
1
1
1

]
−

1

9

[
1
2
−2

]
=

1

9

[
8
7
11

]
. (4.12)

Comparing (4.10) and (4.12), we see that A+b satisfies Ax = c, so it is the least squares solution to

Ax = b. Since the columns of A are evidently linearly independent, Ker(A) = 0, and there is just one

solution. In this case, there certainly is no solution of lesser length.

Next we look at an example in which the columns of A are not independent, so there is
more than one least squares solution.

Example 3 (SV D and the least length least sqaures solution) Let A =

[
2 0 4
0 2 −2
1 2 0

]
. This is

closely related to the matrix of Example 1: The first two columns are the same, and the new third column
is twice the first column minus the second. Since the columns are not linearly independent, the kernel is
not zero. Moreover, the span of the columns is the same as in Example 1, so it is still the case that the
image of A is the plane given by (4.11). Let

V =
1

3
√

5

[
6 2
−3 4

0 5

]
, D =

[
2
√

6 0
0 3

]
and U =

1
√

30

[
2
√

6
−1 2

√
6

5 0

]
. (4.13)

As you can check, A = V DUt. You should also check at this point that U and V are isometries.
Now, we know from Example 2 that b does not lie in Img(A), so there is no solution. But we claim

that A+b = UD−1V tb is the least squares solution of least length. To see this, lets first compute A+b:

A+b = UD−1V tb =
1

15
√

6

[
2
√

6
−1 2

√
6

5 0

][
1/(2
√

6) 0
0 1/3

] [
6 −3 0
2 4 5

][ 1
1
1

]
=

1

36

[
10
17
3

]
Now let’s apply A to this vector and see what we get:

Ax∗ =
1

36

[
2 0 4
0 2 −2
1 2 0

][
10
17
3

]
=

1

9

[
8
7
11

]

which we recognize from (4.12): The right hand side is c, the orthogonal projection of b onto Img(A).

Hence x∗ is a least squares solution to Ax = b. We can also directly check that x∗ is the minimal length

least squares solution.
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To do this, you first determine, in the usual way, that the kernel of A is spanned by w =

[−2
1
1

]
, and

so the set of all least square solutions of Ax = b is given by A+b + tw. Since

A+b ·w =
1

36

[
10
17
3

]
·
[−2

1
1

]
= 0 ,

it follows that |A+b + tw|2 = |A+b|2 + t2|w|2. Clearly, we get the minimal length solution by taking

t = 0.

4.3 Finding a singular value decomposition

Now we’ve seen two examples in which A has a singular value decomposition. The next
theorem tells us that every matrix has a singular value decomposition, and moreover, it
tells us one way to find U , V and D. We will discuss methods for finding U , V and D
after the proof of Theorem 2.

Before going into the proof, let’s relate finding singular values to something with which
we are more familiar: finding eigenvalues.

Let A be an m× n matrix, and suppose that it has some singular value decomposition
A = V DU t. Then AtA = UD2U t, or, what is the same,

(AtA)U = U(D2) .

Writing U in the form U = [u1,u2, . . . ,ur], and writing

D =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σr

 , (4.14)

this is the same as
AtAuj = σ2

juj .

In other words, the columns of U must be eigenvectors of AtA, and the corresponding
entries of D2 must be the corresponding eigenvalues. Having made this observation, it is
very easy to prove that every matrix has a singular value decomposition.

Theorem 3 (A Singular Value Decomposition Always Exists) Let A be any m×n
matrix, and let r = rank(A). Then there exist an r × r diagonal matrix D with strictly
positive diagonal entries, an m×r isometry V and an m×r isometry U so that A = V DU t.
The diagonal entries of D are the square roots of the r strictly positive eigenvalues of AtA,
arranged in decreasing order.

Proof: Since AtA is symmetric, there is an orthonormal basis {u1,u2, . . . ,un} of IRn

consisting of eigenvectors for AtA.
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Let {µ1, µ2, . . . , µn} be the eigenvalues of AtA arranged in decreasing order. That is,
we arrange them so that µ1 ≥ µ2 ≥ . . . ≥ µn. Each one is non negative since if uj is a
normalized eigenvector corresponding to µj , then

µj = uj · (µjuj) = uj ·
(
AtA

)
uj = (Auj) · (Auj) = |Auj |2 ≥ 0 .

We have the following diagonalization of AtA:

AtA = [u1,u2, . . . ,un]


µ1 0 . . . 0
0 µ2 . . . 0
...

...
. . .

...
0 0 . . . µn

 [u1,u2, . . . ,un]t

= µ1u1ut1 + µ2u2ut2 + · · ·+ µnunutn .

(4.15)

Since [u1,u2, . . . ,un] is invertible, the rank of AtA is the rank of the diagonal matrix in
(4.16), which is the number of non-zero eigenvalues. Let r denote the rank of A. Then
since rank(AtA) = rank(A), there are exactly r non–zero eigenvalues. In particular, µj = 0
for j > r, and so we can shorten (4.16) to

AtA = µ1u1ut1 + µ2u2ut2 + · · ·+ µrurutr . (4.16)

For j ≤ r, µj > 0, and so we can define

σj =
√
µj > 0 (4.17)

and then can define D by (4.14). Finally, define the n× r matrix U by

U = [u1,u2, . . . ,un] . (4.18)

Then (4.16) can be written as
AtA = UD2U t . (4.19)

We now claim that there is a singular value decomposition of A with this D and this
U . If so, we would have A = V DU t, and hence

V = AUD−1 . (4.20)

Our claim is correct if and only if the tight hand side defines an isometry. To check this
out, we compute

(AUD−1)t(AUD−1) = (D−1U tAt)(AUD−1)

= D−1U t(AtA)UD−1

= D−1U t(UD2U t)UD−1

= D−1(U tU)D2(U tU)D−1

= D−1D2D−1

= I .
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The first equality is from the properties of the transpose, and the rest from (4.19) and the
fact that U tU = I. This shows that if we define V by (4.20), V is an isometry. But if we
define V by (4.20), we have

V DU t = AUU t .

By Theorem 1, UU t is the orthogonal projection onto Img(At), which is the orthogonal
complement of Ker(A), and so AUU t = A. Hence V , U and D as defined above give us a
singular value decomposition of A.

Let’s make an important observation that justifies the use of the phrase “the singular
values of A”. First, according to the theorem every matrix has a singular value decompo-
sition. It will have more than one. For example, consider an extreme case: A = I, where
I is the n× n identity matrix. Then

I = IIIt

is a singular value decomposition of I. But then so is

I = WIW t

where W is any n × n orthogonal matrix. However, the theorem says that the diagonal
matrix in the middle is uniquely determined.

• The diagonal entires of D are the same in all singular value decompositions of A There-
fore, it makes sense to talk about “the” singular values of A.

The discussion that preceded Theorem 2 not only shows us that U , V and D exist – it
gives us a way to find them! Let’s recapitulate the steps:

(1) Form the n×n matrix AtA, and diagonalize it. Let {µ1, µ2, . . . , µn} be the eigenvalues,
arranged in decreasing order. Define σj = √µj for j = 1, 2, . . . , n. Let r be the number of
these that are strictly positive, and define

D =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σr

 . (4.21)

(2) Let {u1,u2, . . . ,um} be an orthonormal set eigenvectors for AtA with AtAuj = µjuj
for j = 1, 2, . . . , n. Ignore the last n− r of these, and define

U = [u1,u2, . . . ,ur] . (4.22)

(3) Finally, compute
V = AUD−1 . (4.23)
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Example 4 (Computing an SV D) Let’s again consider the matrix A =

[
2 0 4
0 2 −2
1 2 0

]
from Example 2.

In this case,

AtA =

[
5 2 8
2 8 −4
8 −4 20

]
Computing the characteristic polynomial, we find µ3 − 33µ2 + 216µ. This factors as

µ(µ− 9)(µ− 24) ,

so
µ1 = 24 , µ2 = 9 and µ3 = 0 . (4.24)

Evidently, r = 2, and since
√

24 = 2
√

6 and
√

9 = 3,

D =

[
2
√

6 0
0 3

]
.

Eigenvectors corresponding to the eigenvalues in (4.24), found in the usual way, and listed in the
corresponding order, are [

2
−1

5

]
,

[
1
2
0

]
and

[
2
−1
−1

]
.

Since r = 2, we are only concerned with the first two eigenvectors. Normalizing them we have

u1 =
1
√

30

[
2
−1

5

]
and u2 =

1
√

5

[
1
2
0

]
=

1
√

30

[
1
√

6
2
√

6
0

]
.

This gives us U = [u1,u2] =
1
√

30

[
2
√

6
−1 2

√
6

5 0

]
. Now that we have U and D, we find V through

V = AUD−1 =
1

3
√

5

[
6 2
−3 4

0 5

]
. These are exactly the factors we listed in (4.13).

The method that we have just illustrated works as long as all computations are done
exactly. However, it is not a good method to use for larger matrices when computations
are being done on a computer. Computer arithmetic involves round-off, and the method
we have explained can break down badly when numbers are rounded off during the com-
putations.

Here is the point. Suppose you are working on a computer, and and doing your com-
putations to 16 decimal places, a fairly standard accuracy. If σ1/σr ≈ 1010, then when
we compute σ1 + σr, we get a result that differs from σ1 in the last six decimal places.
However, µ1/µr = (σ1/σr)2 ≈ 1020 Then when we add µ1 + µr, we just get µ1. As far as
the computer is concerned, µr is zero compared to µ1. It is thrown away in roundoff.

Now, µ1 + µr is not exactly something you would compute in diagonalizing AtA, but
you are likely to be adding numbers of similarly disparate sizes. Since the computer would
use roundoff rules giving µ1 +µr = µ1, which is not quite right, things can go wrong. They
can go far enough wrong that you might not even get the right value for r, the number of
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non–zero eigenvalues! Then your matrices U , V and D would even have the wrong sizes.
This is much more serious than a few decimal places of error in the entries.

Definition The condition number of an m× n matrix A with rank r is the ratio σ1/σr of
the largest to the smallest singular values of A.

We have hinted at the significance of this number in at the end of our discussion on how
to find singular value decompositions. The bigger the condition number, the more careful
you have to be about roundoff error. The condition number of AtA is the square of the
condition number of A.

Therefore, computer programs for computing singular value decompositions avoid com-
puting AtA. They proceed more directly to the singular values σj . Then, since

σ1

σr
≤ µ1

µr

and is usually much, much less, like 1010 instead of 1020. By avoiding the introduction of
AtA into the analysis, one avoids serious problems with round–off.

We won’t go into the methods you would use to write an effective program; that is
a beautiful problem but it is not the subject of this book. Our main concern is with
understanding how to use the singular value decomposition. In practical application a
computer program, hopefully well written, will be used to compute U , V and D. However,
there a geometric way of understanding singular value decompositions that shed light on
this and other questions.
Example 5 (Condition number) Let A be the 3× 3 matrix considered in Examples 2 and 3. We found

there that r = 2, σ1 = 2
√

6 and σ2 = 3. Hence, the condition number of A is

σ1

σ2
=

2
√

6

3
≈ 1.632993162 .

This is a well conditioned matrix since the condition number is not “too large”. What does “too large”

mean in this context? A condition number C is too large if roundoff on your computer causes it to evaluate

C + 1 as C. In fact, even if C is large enough that your computer would evaluate C + 10−6 as C, you

are probably skating on thin ice. However, whether you are or not depends on the particular problem at

hand.

Exercises

4.1 Let A =

[
22 −4
−13 16

2 −14

]
.

(a) Compute a singular value decomposition of A.

(b) Use the singular value decomposition of A to compute a least squares solution to Ax = b where

b =

[
1
1
1

]
.

(c) Compute the condition number of A.
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4.2 Let A =

[
22 21
−10 −30

17 6

]
.

(a) Compute a singular value decomposition of A.

noindent(b) Use the singular value decomposition of A to compute a least squares solution to Ax = b

where b =

[
1
1
1

]
.

(c) Compute the condition number of A.

4.3 Let A =

[
16 −4 14
13 −22 2

]
.

(a) Compute a singular value decomposition of A.

(b) Use the singular value decomposition of A to compute a least length solution to Ax = b where

b =

[
1
1
1

]
. (Recall that any true solution is also a least squares solution).

(c) Compute the condition number of A.

4.4 Let A =

[
28 20 −16
29 10 −38

]
.

(a) Compute a singular value decomposition of A.

(b) Use the singular value decomposition of A to compute a least length solution to Ax = b where

b =

[
1
1
1

]
. (Recall that any true solution is also a least squares solution).

(c) Compute the condition number of A.
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Section 5: Goemetry and the Singular Value Decomposition

5.1 The image of the unit circle under a linear transformation

The image of the unit circle under an invertible 2× 2 matrix A is always an ellipse. An
easy proof of this can be given using the singular value decomposition, and this fact in
turn can help us understand the nature of the singular value decomposition.

If A has rank one, then Img(A) is a line, and so the image of the unit circle under A
will just be a line segment. This is a “degenerate” sort of ellipse. So let’s suppose that A
has rank 2. Then if A = V DU t is a singular vlaue decompostion of A, V , U and D are all
invertible 2×2 matrices. In particular, V and U are orthogonal 2×2 matrices. Let’s work
out the effect of A on the unit circle by working out the effects of applying, in succession,
U t, D and then V .

Now any orthogonal transformation is just a rotation or a reflection. Both rotations
and reflections leave the unit circle unchanged, and so applying U t to the unit circle has no
effect. At the end of this step we still have a unit circle. Next, what does D do to the unit
circle? It just stretched or compresses it along the axes, producing an elipse whose axes
are allinged with the x, y axes. Finally, applying V to this ellipse just rotates or reflects
it, which gives another ellipse. So the result is always an ellipse.

Example 1 Let A =

[
5 3
0 4

]
. Then AtA =

[
25 15
15 25

]
. Eigenvectors of AtA are found in the usual

way: AtA

[
1
1

]
= 40

[
1
1

]
and AtA

[
1
−1

]
= 10

[
1
−1

]
. This tell us that D =

[
2
√

10 0
0

√
10

]
and U =

1√
2

[
1 −1
1 1

]
Finally, we find V = AUD−1 = 1√

5

[
2 −1
1 2

]
.

Now that we have our singular value decomposition A = V DUt, we can work out the image of the unit
circle under A in three steps.

As explained above, the image of the unit circle under Ut is still the unit circle, since U is a rotation,
possibly folllowed by a reflection. Indeed,

U =
1
√

2

[
1 −1
1 1

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
for θ = π/4. Thus, Ut rotates the unit circle clockwise though the angle π/4, and this doesn’t affect its
graph.

Next apply D. Hence a vector

[
u
v

]
is the image under D of a vector

[
x
y

]
if and only if[

x
y

]
= D−1

[
u
v

]
=

1
√

40

[
u
2v

]
.

With

[
x
y

]
and

[
u
v

]
realted in this way,

[
u
v

]
is in the image of the unit circle if and only if x2 + y2 = 1,

which in terms of u and v is
u2 + 4v2 = 40 . (5.1)

That is, the image of the unit circle under D is the ellipse centered at the origin in the u, v plane whose

major axis has length 2
√

40 = 4
√

10 and runs along the u-axis, and whose whose minor axis has length

2
√

10 and runs along the v-axis. Here is a graph*:

* Clearly D stretches the x component on

[
x
y

]
by a factor of 2

√
10, and stretches the y component on[

x
y

]
by a factor of

√
10, so we could draw the ellipse without even working out the equation.
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Finally, apply V . This too is an isometry, and

V =
1
√

5

[
2 −1
1 2

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
for θ = cos−1(2/

√
5) ≈ .4636476086 radians. Therefore, V rotates the ellipse we have found though this

angle in the counterclockwise direction. The resulting “rotated ellipse” is the image of the unit circle under

A. Thinking of V as a mapping from the u, v plane to the x, y plane, we see that

[
x
y

]
= V

[
u
v

]
if and

only if [
u
v

]
= V t

[
x
y

]
=

1
√

5

[
2 + y

2y − x

]
.

Hence

[
x
y

]
is in the image of the ellipse given by (5.1) if and only if

(2x+ y)2

5
+ 4

(2y − x)2

5
= 40 ,

which simplifies to
2x2 − 3xy + 4y2 = 50 . (5.2)

Here is a graph of this ellipse with the major and minor axes drawn in, together with two unit vectors

pointing along them.

It is not necessary to use the singular value decomposition to find the equation of the
ellipse that is the image of the unit circle. Indeed, a point (x, y) belongs to the image of
the unit circle under A if and only if [

x
y

]
= A

[
u
v

]
(5.3)
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for some u and v with
u2 + v2 = 1 . (5.4)

But then [
u
v

]
= A−1

[
x
y

]
(5.5)

and expressing (5.4) in terms of x and y using (5.5) gives us the equation.

Example 2 Consider the matrix A =

[
1 3
−3 −1

]
. Then

A−1 =
1

8

[
−1 −3

3 1

]
,

and so (5.5) becomes

u = −
1

8
x−

3

8
y

v =
3

8
x+

1

8
y .

Substituting this into u2 + v2 = 1 gives

(x+ 3y)2 + (3x+ y)2 = 64

or, in simpler terms,
5u2 + 6uv + 5v2 = 32 . (5.6)

Not only can you find the ellipse without using the singular value decomposition, once
you have the ellipse, you can “see” the singular value decomposition of A by looking at
this ellipse. In particular, let L1 and L2 be the lengths of the major and minor axes of the
ellipse. Then the singular values of A are given by

σ1 =
L1

2
and σ2 =

L2

2
, (5.7)

because D is what is responsible for stretching the unit circle to produce these major and
minor axes. Thus we can “see”

D =
[
σ1 0
0 σ2

]
by looking at the ellipse. We can also see what v1 and v2 are: They are the unit vectors
pointing in the direction of the major and minor axes. These are only determined up to a
sign, but that is fine. We know that we can always change a sign in any of the columns
of V if we change the sign in the corresponding column of U . So, making any choice for
the signs, we have v1 and v2, and hence V = [v1,v2]. Now we know that A has a singular
value decomposition A = V DU t, and we’ve determined V and D. Once D and V are
known, A = V DU t gives us U t = D−1V tA, and hence U is known.
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Therefore, from a good graph of the image of the unit circle under A, and careful
measurement, you can “read off” the singular value decomposition of A.

Example 3 Consider the matrix A =

[
1 3
−3 −1

]
As we saw in Example 2, the image of the unit circle

under this matrix is the ellipse whose equation in the u, v plane is (5.6). Here is a graph, together with

circles that inscribe and circumscribe the ellipse:

–4

–2

0

2

4

v

–4 –2 2 4u

The diameter of the of the circumscribing circle is the length of the major axis, L1, while the diameter
of the inscribed circle is the diameter of the minor axis, L2. In this diagram, you see that L1 = 8 and
L2 = 4. Hence, we can “see” that for this matrix,

D =

[
4 0
0 2

]
.

Next you can see the possible choices for v1 and v2. These are where the ellipse touches the outer and
inner circle respectively.

v1 = ±
1
√

2

[
1
−1

]
and v2 = ±

1
√

2

[
1
1

]
.

Just to concrete, let’s take the plus signs so that we have

V =
1
√

2

[
−1 1

1 1

]
.

Finally, from Ut = D−1V tA,

Ut =
1

4
√

2

[
1 0
0 2

] [
−1 1

1 1

] [
1 3
−3 −1

]
=

1
√

2

[
−1 −1
−1 1

]
.

You can now easily check, that with these definitions of V , D and U , we do indeed have A = V DUt.

As we’ll soon see, the remarkable fact that you can “see” the singular vlaue decompo-
sition of a 2× 2 matrix extends to higher dimensions, and is very useful.
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5.2 The singular value decomposition and volume

We have seen the the image of the unit circle under an invertible 2× 2 matrix A is an
ellipse whose major axis has length 2σ1, and whose minor axis has length 2σ2. The area
of such an ellipse is πσ1σ2. Now if A = V DU t is a singular value decomposition of A,

|det(A)| = |det(V )det(D)||det(U t)| = |det(D)|

since V and U t are orthogonal. But |det(D)| = σ1σ2, and so we see that the area of the
ellipse is |det(A)|π, or, in other words, |det(A)| times the area of the unit circle.

The singular value decomposition can be used in the same way to determine the volume
of the image of the unit cube in IRn under an n× n matrix A.

We may assume that A is invertible, since otherwise the image of all of IRn, and hence
of the unit cube in particular, lies in a subspace of lower dimension, and has zero volume.
Then, if A = V DU t is a singular value decomposition of A, V and U t are orthogonal.

Now, orthogonal transformations preserve lengths and angles, so the image of the unit
cube is just another unit cube, congruent to the original one. In particular, U t does not
affect the volume at all. Next, as we saw above, D is just a scale change – applying D
changes the volume by a factor* of

σ1σ2 · · ·σn = det(D) = |det(A)| . (5.8)

Finally, applying V produces another congruent region, and this transformation, like U t,
has no effect on the volume. Hence the final volume is given by (5.8) since the unit cube
itself, by definition, has unit volume. This gives us a proof of the following Theorem.

Theorem 1 Let A be an n× n matrix. The n dimensional volume of the the image of the
unit cube in IRn under A is |det(A)|.

This fact is very important in the theory of integration in several variables.

5.3 Singular Values, norms and low rank approximation

Recall that when B is a symmetric n×n matrix, the largest eigenvelue µ1 of B is given
by

µ1 = max{x ·Bx : x in IRn with |x| = 1 } . (5.9)

That is, µ1 is the maximum value of the function v→ x ·Bx on the set of unit vectors in
IRn. Moreover, if x is any unit vector with x ·Bx = µ1, then Ax = µ1x.

There is a similar result for singular values. Let A be any m × n matrix, and let
A = V DU t be a singular value decomposition for it. We know that σ2

1 is the largest
eigenvalue of AtA, which is the square of the norm of ‖A‖.

Theorem 2 Let A be any m × n matrix, and let σ1 be the largest singular value of A.
Then

σ1 = max{ |Ax| : x in IRn with |x| = 1 } = ‖A‖ , (5.10)

* This is Cavallieri’s principle.
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where the unit vectors x and y in the right belong to IRn and IRm respectively. Moreover,

|Ax| = σ1

for unit a vector x if and only if AtAx = σ2
1x.

Proof: Let x be any unit vector in IRn. Then

|Ax|2 = Ax ·Ax = x ·AtAx = x ·AtAx , (5.11)

Applying (5.9) with B = AtA, we see that |Ax| =
√

x ·AtAx ≤ σ1, and there is eqaulity
if and only if AtAx = σ2x.

This very simple theorem provides an optimal way to approximate an arbitrary matrix
A by a matrix of low rank. Suppose that A is an m × n matrix of rank r, and that
A = V DU t is a singular value decomposition of A. Let

U = [u1,u2, . . . ,ur] and V = [v1,v2, . . . ,vr] .

Then
A = V DU t = [σ1v1, σ2v2, . . . , σrvr] ([u1,u2, . . . ,ur])

t

= σ1v1ut1 + σ2v2ut2 + · · ·+ σrv1utr .

Now pick any s < r, and define A(s) by

A(s) = σ1v1ut1 + σ2v2ut2 + · · ·+ σsvsuts . (5.12)

Definition (Best rank s approximation) for any n×n matrix A, let A =
∑r
j=1 σjvju

t
j

be a singular value decompostion of A with the singular values arranged in decreasing order
as usual. Then for any s < r, define the matrix

A(s) =
s∑
j=1

σjvjutj . (5.13)

Then A(s) is the best rank s approximation of A.

Note that the matrix A(s) clearly has rank s. Indeed, {v1,v2, . . . ,vs} is an orthonormal
basis for its image. As to the question of why we cal it the “best” such approximation, let
us first look at how good an approximation it is.

Theorem 3 Let A be any m × n matrix, and let A(s) be its best rank s approximation.
Then

‖A−A(s)‖ = σs+1 ,
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where σs+1 is the (s+ 1)st singular value of A. Consequently, for all i and j the absolute
difference between the i, jth entries of A and A(s) is no greater than σs+1:

|Ai,j − [A(s)]i,j | ≤ σs+1 . (5.14)

Proof: By definition,

A−A(s) = σs+1vs+1uts+1 + · · ·+ σrv1utr . (5.15)

If we define Ũ = [us+1, . . . ,ur], Ṽ = [vs+1, . . . ,vr], and define D̃ to be the diagonal matrix
with entries σs+1, . . . , σr, we can rewrite (5.15) as

A−A(s) = Ṽ D̃Ũ t .

This is a singular value decomposition of A − A(s), and clearly the largest singular value
is σs+1. By Theorem 2, this means that ‖A−A(s)‖ = σs+1.

Now, for any matrix B, Bi,j = ei · Bej , and so by the Schwarz inequality and the
definition of the norm,

|Bi,j | = |ei ·Bej | ≤ |ei||Bej | ≤ ‖B‖|ei||ej | = ‖B‖ .

Applying this with B = A−A(s) leads to (5.14).

Let us return to the image compression topic that we discussed in the previous section
,and apply this theorem to it.

Suppose that A is a large matrix, say 200× 300. Such a matrix might record an image
by letting the entries be a numerical designation for the shading of each of an array of
pixels. In a standard grayscale image, each entry would be an integer in the range 0 to
255.

Notice that A has 60, 000 entries. Now suppose that the first 10 singular values of A
are by far the largest, but that σ11 ≤ 3. Then by Theorem 3,

‖A−A(10)‖
‖A‖

≤ 3 ,

and for each i, j,
‖Ai,j − [A(10)]i,j‖

‖A‖
≤ 3 .

Therefore, if we took the matrix A(10), and rounded of the entries to the nearest integer
in the range 0 to 255, the result would differ from Ai,j by no more than 3. The eye can
certainly detect a shift of pixel values of 3 on the 0 to 255 scale, but the image would still
be very recognizable as being essentially the same.
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that is, essentially all of the visual information in A is in A(10). But A(10) can be
expressed very efficiently: We just need to know the 10 numbers σ1 through σ10, the 10
unit vectors in IR200, v1 through v10, and the 10 unit vectors in IR300, u1 through u10.
Then we can reconstruct A(10) using (5.12). The singular value description of the 200×300
matrix A(10) thus requires only

10(1 + 200 + 300) = 5010

numbers.
You could use this as a method for image compression, though there are more efficient

algorithms. Nonetheless, the idea described here are the basis of important applications
of the singular value decomposition in computer vision and data analysis.

Exercises

5.1 Let A =

[
22 −4
−13 16

2 −14

]
.

(a) Compute the best rank 1 approximation of A, A(1).

(b) Compute ‖A−A(1)‖.

5.2 Let A =

[
22 21
−10 −30

17 6

]
.

(a) Compute the best rank 1 approximation of A, A(1).

(b) Compute ‖A−A(1)‖.

5.3 Let A =

[
16 −4 14
13 −22 2

]
.

(a) Compute the best rank 1 approximation of A, A(1).

(b) Compute ‖A−A(1)‖.

5.4 Let A =

[
28 20 −16
29 10 −38

]
.

(a) Compute the best rank 1 approximation of A, A(1).

(b) Compute ‖A−A(1)‖.

5.5 Let A =

[
1 1
1 1 + a
1 1− a

]
.

(a) Compute a singular value decomposition of A.

(b) Compute the best rank 1 approximation of A, A(1).

(c) Compute ‖A−A(1)‖.

(d) Compute the least length, least squares solutions to both Ax = b and A(1)x = b where b =

[
1
2
3

]
.
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