Instructions: 1. Closed book, calculators may be used.
2. Show your work and explain your answers and reasoning.
3. Express your answers in simplified form.

1. (25) Compute
 a. \(\frac{d}{dx} \left(\ln(x^2 + 2) + \sin^{-1}(3x) \right) \)
 b. \(\int \frac{e^x}{1 - e^x} \, dx \)
 c. \(\int \frac{\ln x}{x} \, dx \)
 d. \(\frac{d}{dx} \left(\frac{e^x + e^{-x}}{2} \right) \)
 e. \(\frac{d}{dx} \left(\frac{e^x - e^{-x}}{2} \right) \)

2. (25) Find
 a. \(\int x \ln(x) \, dx \)
 b. \(\int \sin(x)\sin(2x) \, dx \)
 c. \(\int \sin^2(x)\cos^3(x) \, dx \)
 d. \(\int_0^5 x^2 \sqrt{25 - x^2} \, dx \)
 e. \(\int_0^\pi x \sin(x) \, dx \)

3. (25) Cobalt-60, which is used extensively in medicine, has a half-life of 5.3 years.
 a. What percentage of a given amount of cobalt-60 will remain after 8 years?
 b. If a sample has 100 grams of cobalt-60 now, how much was there 3 years ago?
 (Remember that the rate of decay of a radioactive substance is proportional to the amount of the substance present.)
4. (25) The region bounded by the graph of $f(x) = \frac{1}{1 + x^2}$, the x-axis, the y-axis, and the line $x = 1$, is shown at the right.

a. Compute the volume of the solid obtained by revolving this region about the y-axis.

b. Compute the volume of the solid obtained by revolving this region about the x-axis.

Answers

1. a. \(\frac{2x}{x^2 + 2} + \frac{3}{\sqrt{1 - 9x^2}} \)
 b. \(-\ln|1 - e^x| + C\)
 c. \(\ln|\ln x| + C\)
 d. \(\frac{e^x - e^{-x}}{2}\)
 e. \(\frac{e^x + e^{-x}}{2}\)

2. a. \(\frac{1}{2}x^2\ln(x) - \frac{1}{4}x^2 + C\)
 b. \(\frac{1}{2}\sin(x) - \frac{1}{3}\sin(3x) + C\)
 c. \(\frac{1}{3}\sin^3(x) - \frac{1}{5}\sin^5(x) + C\)
 d. \(\frac{625\pi}{16}\)
 e. \(\pi\)

3. a. 35%
 b. 148 grams

4. a. \(\pi \ln(2)\)
 b. \(\pi \left(\frac{\pi}{8} + \frac{1}{4}\right)\)