Instructions: 1. Closed book, calculators may be used.
 2. Show your work and explain your answers and reasoning.
 3. Express your answers in simplified form.

1. (25) Compute
 a. \(\int \left(\sec(x) \tan(x) + \sqrt[3]{x} \right) dx \)
 b. \(\int_{0}^{1} \frac{r}{(1 + r^2)^4} dr \)
 c. \(\int x \sqrt{x + 1} \, dx \)
 d. \(\int_{0}^{\pi/2} (3 + \cos(2x)) \, dx \)

2. (25) Sketch the region bounded by the three curves

 \[y = x, \]
 \[y = 12 - x^2 \quad (x \leq 0), \]
 \[y = 12 - x \quad (x > 0) \]

 and find its area.

3. (25) The region \(\Omega \) shown at the right is bounded by the y-axis and the curves \(y = 10 - x \) and \(y = x^3 \). Find the volume of the solid generated by revolving \(\Omega \) about the y-axis. (Note: the curves \(y = 10 - x \) and \(y = x^3 \) intersect when \(x = 2 \).)

4. (25) A vertical cylindrical tank of radius 3 feet and height 5 feet is full of water. Find the work done in pumping out the water:
 a. to an outlet at the top of the tank;
 b. to a level 4 feet above the top of the tank.

 (Assume that the water weighs 62.5 pounds per cubic foot.)
Answers

1. a. \(\sec(x) + \frac{4}{5}x^5 + C \)
 b. \(\frac{7}{48} \)
 c. \(\frac{2}{5}(x + 1)^5 - \frac{2}{3}(x + 1)^3 + C \)
 d. \(3\pi \)

2. \(\frac{212}{3} \)

3. \(\frac{328\pi}{15} \)

4. a. \(\frac{225\pi\sigma}{2} \)
 b. \(\frac{585\pi\sigma}{2} \)
 where \(\sigma = 62.5 \)