 2. Show your work and explain your answers and reasoning.
 3. Calculators may be used, but pay particular attention to instruction 2.
 To receive credit, you must show your work. Unexplained answers,
 and answers not supported by the work you show, will not receive
 credit.
 4. Express your answers in simplified form.

1. (25) Find a basis for the image and a basis for the kernel of the matrix

 \[\begin{pmatrix} 1 & 2 & 1 & 0 & 1 \\ 2 & 4 & 3 & 0 & 4 \\ 0 & 0 & -1 & 2 & 2 \\ 1 & 2 & 2 & 0 & 3 \end{pmatrix} \]

 Compute the dimension of the image and the dimension of the kernel.

2. (25) Find the QR factorization of the matrix

 \[\begin{pmatrix} 1 & 0 & 2 \\ 2 & 2 & 0 \\ 1 & 2 & 4 \end{pmatrix} \]

 by applying the Gram-Schmidt process to the columns of A.

3. (25) A matrix A has QR factorization

 \[A = QR = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \\ -1/2 & -1/2 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix} \]

 Use this QR factorization to find

 a. The least-squares solution to \(A x = \begin{pmatrix} 3 \\ -3 \\ -1 \\ 7 \end{pmatrix} \)

 b. The matrix for the orthogonal projection onto the image of A.

4. (25) Find a diagonal matrix D and an invertible matrix V such that

 \[A = \begin{pmatrix} 5 & -4 \\ 3 & -2 \end{pmatrix} = VDV^{-1} \]

 and use them to calculate \(A^8 \).
Answers.

1. A basis for the image can be found by row reducing A to identify the pivot columns

and then using the pivot columns of A. Thus a basis is

$$\begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ -1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \\ 0 \end{bmatrix},$$

and the image of A has dimension 3. A basis for the kernel of A is found from the general

solution to $Ax = 0$, and is

$$\begin{bmatrix} 1 \\ 0 \\ -2 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}. $$

The kernel has dimension 2.

2. $R = \begin{bmatrix} \sqrt{6} & \sqrt{6} & \sqrt{6} \\ 0 & \sqrt{2} & \sqrt{2} \\ 0 & 0 & 2\sqrt{3} \end{bmatrix}$, $Q = \begin{bmatrix} 1 \\ \sqrt{2} \\ \sqrt{3} \\ \sqrt{6} \\ 1 \\ \sqrt{2} \\ \sqrt{3} \\ \sqrt{6} \\ 1 \end{bmatrix}$

3. a. Solve $Rx = Q^T b$ for least squares solution $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$

b. $P = QQ^T = \frac{1}{4} \begin{bmatrix} 2 & 0 & -2 & 0 \\ 0 & 2 & 0 & -2 \\ -2 & 0 & 2 & 0 \\ 0 & -2 & 0 & 2 \end{bmatrix}$

4. $S = \begin{bmatrix} 4 \\ 3 \\ 1 \end{bmatrix}$, $D = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $A^8 = \begin{bmatrix} 1021 & -1020 \\ 765 & -764 \end{bmatrix}$