Instructions: 1. Closed book, calculators may be used.
2. Show your work and explain your answers and reasoning.

1. (25) a. Evaluate the double integral
\[\iint_{\Omega} ye^x \, dxdy \quad \Omega : \quad 0 \leq y \leq 1, \quad 0 \leq x \leq y^2. \]

b. Evaluate
\[\int_{y=0}^{1} \int_{x=1}^{2y} (x + 2z) \, dz \, dx \, dy. \]

2. (25) A solid right circular cylinder T is defined by \(x^2 + y^2 \leq 4, \ 0 \leq z \leq 5 \), and has mass density given by \(\lambda(x,y,z) = z \). Compute the moment of inertia of T about the z-axis.

3. (25) Find the mass of a ball of radius R given that the density varies directly with the distance from the boundary.

4. (25) a. \(h(x,y) = (2xy + 1)i + x^2j \). Find a function \(f(x,y) \) with
\[\nabla f(x,y) = h(x,y) \] and use it to evaluate \(\int_C h(r) \cdot dr \) where \(C \) is a path from \((1,0)\) to \((3,4)\).

b. Use Green's Theorem to evaluate
\[\oint_C (3y \, dx + 5x \, dy) \quad C : \quad x^2 + y^2 = 1. \]

Answers to Hour Test 3

1. a. \(\frac{e}{2} - 1 \). B. 2/3

2. 100\pi

3. Using spherical coordinates, the density is \(\lambda = k(R - \rho) \), and \(M = \frac{\pi k R^4}{3} \).

4. a. \(f(x,y) = x^2y + x \), \(\int_C h(r) \cdot dr = f(3,4) - f(1,0) = 38 \)

b. 2\pi