Instructions:
2. Show your work and explain your answers and reasoning.
3. Calculators may be used, but pay particular attention to instruction 2.
 To receive credit, you must show your work. Unexplained answers, and answers not supported by the work you show, will not receive credit.
4. Express your answers in simplified form.

1. (35) Let \(A = \begin{bmatrix} 2 & 3 \\ 3 & 6 \end{bmatrix} \)

 a. Find the characteristic polynomial \(p(\lambda) = |\lambda I - A| \) of \(A \) and use it to calculate the eigenvalues of \(A \).

 b. Find a norm one eigenvector for each of the eigenvalues you found in part a and sketch these eigenvectors on the axes provided.

 c. Find a rotation matrix \(R \) and a diagonal matrix \(D \), for which \(R^T A R = D \).

2. (30) An unknown matrix \(A \) has QR factorization with \(R = \begin{bmatrix} \frac{1}{\sqrt{2}} & 1 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \) and

\[
Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}
\]

Use this QR factorization to find the least squares solution, \(\hat{x} \) of \(A \hat{x} = \hat{b} \). Please note that actually finding the matrix \(A \) is a counterproductive waste of time. Don't do it!!!
3. (35) Let $A = \begin{pmatrix} 5 & 1 & 0 & 2 \\ 1 & 3 & 4 & 0 \\ 5 & 1 & 0 & 2 \\ 1 & 3 & 2 & 2 \end{pmatrix}$ and let $v = \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{pmatrix}$.

a. Compute Av and verify that v is a norm one eigenvector for A. What's its eigenvalue?

b. Find a Householder reflection H that takes v to $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$.

c. Compute $H^t A H$.

d. You've probably noticed by now that you've just completed the first step for finding the Schur decomposition of A. Describe the next step words, not computations.

Answers

1. a. $p(l) = l^2 + 4l + 21$, $l = 7, 1$

b. $\begin{pmatrix} 1/\sqrt{10} \\ 3/\sqrt{10} \end{pmatrix}$, $\begin{pmatrix} 3/\sqrt{10} \\ 1/\sqrt{10} \end{pmatrix}$

c. $\begin{pmatrix} 1/\sqrt{10} \\ 3/\sqrt{10} \end{pmatrix}$ is one of four correct answers.

2.

3. a. The eigenvalue is 2.
b. \[H = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \]

c. \[A_1 = \frac{1}{4} \begin{bmatrix} 8 & 8 & 16 & 8 \\ 8 & 16 & 0 & 0 \\ 16 & 16 & 8 & 0 \\ 8 & 16 & 0 & 0 \end{bmatrix} \]

d. Next, multiply \(A_1 \) on both sides (as in part c) by a matrix
\[
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & * & * & * \\
0 & * & * & * \\
0 & * & * & *
\end{bmatrix},
\]
where the starred submatrix is a reflection that takes a norm one eigenvector of
\[
\begin{bmatrix}
8 & 16 & 0 & 0 \\
16 & 16 & 8 & 0 \\
8 & 16 & 0 & 0 \end{bmatrix}
\]