1. a. Let A and B be non-empty sets in \mathbb{R}. Define $S = \{a+b: a \in A, b \in B\}$. Show that

$$\sup S = \sup A + \sup B$$

b. Show that $\sqrt{2}$ is an irrational number.

2. a. State the definition of “K is a compact set in \mathbb{R}^n.”

b. Use the definition of compact set to show that

$$K = \left\{\frac{1}{n} : n \in \mathbb{N}\right\} \cup \{0\}$$

is compact in \mathbb{R}.

c. Determine the set of cluster points and the boundary set of K.

3. a. Let A be a nonempty set in \mathbb{R}^n. Show that if $F \supseteq A$ and F is closed, then $F \supseteq (A \cup A')$, where A' denotes the set of cluster points of A.

b. Show that the set of rational numbers \mathbb{Q} is neither open nor closed in \mathbb{R}.

4. True or false. Give a reason if you think it is true, and give a counterexample if you think it is false.

a. Every countable infinite set has empty interior.

b. Every countable set in \mathbb{R} is closed in \mathbb{R}.

c. The union of two connected sets is connected.

d. The boundary of every closed connected set in \mathbb{R}^2 is connected.

e. Every uncountable set in \mathbb{R} must have at least one cluster point.