1. Suppose B is a bounded subset of \mathbb{R} and A is a nonempty subset of B. Prove that $\inf(B) \leq \inf(A)$.

2. Identify
 a. A° (A interior)
 b. \overline{A} (A closure)
 c. (A°)
 d. $(\overline{A})^\circ$
 e. The set of all cluster points of A.

 where A is (i) the Cantor set F, (ii) $\mathbb{Q} \cap [0,1]$}

3. Directly from the definition, show that $\{(x,y): |x| + |y| < 1\}$ is not compact.

4. Prove that if A and B are connected subsets of \mathbb{R}, then $A \times B$ is a connected subset of \mathbb{R}^2.