1. Determine all point(s) at which \(f(z) = x^3 + y^2 i \) is differentiable, and calculate \(\frac{df}{dz} \) at the point(s) where it exists.

Answer: The derivative exists on the parabola \(y = \frac{3x^2}{2} \), and equals \(3x^2 \).

2. Calculate a linear fractional transformation which maps \(z_1 = 0, z_2 = 1, z_3 = \infty \) to \(w_1 = -i, w_2 = 1, w_3 = i \), respectively. In addition

 a. Determine into what region this linear fractional transformation maps the upper half plane.

 b. Determine into what curve the line \(\text{Im}(z) = 1 \) is mapped by this linear fractional transformation.

 c. Determine into what curve the line \(\text{Im}(z) = -1 \) is mapped by this linear fractional transformation.

Answers: \(w = \frac{iz + 1}{z + i} \)

 a. unit disk.

 b. circle, center \(\frac{i}{2} \), radius \(\frac{1}{2} \)

 c. line \(\text{Im}(z) = 1 \).

3. Let \(g(z) \) be analytic inside and on a simple closed contour \(C \). Show that for all \(z_0 \) except those on \(C \),

\[
\int_C \frac{g(z)dz}{(z - z_0)^2} = \int_C \frac{g'(z)dz}{z - z_0}.
\]

What (common) value do these integrals have?

Answer: For \(z_0 \) inside \(C \) the value is \(2\pi ig'(z_0) \). For \(z_0 \) outside, it is 0.

4. Let \(f(z) = \frac{e^z - 1}{z^4 (z^2 + 4)} \)
a. Calculate the residue of f at 0 by calculating a few terms in the appropriate Laurent expansion for $f(z)$.

b. Calculate the residue of f at $2i$.

c. What is the radius of convergence of the Taylor series for $f(z)$ centered at $2 + 3i$?

Answers:

a. The residue is $-1/48$.

b. $\frac{e^{2i} - 1}{64i}$

c. $\sqrt{5}$

5. Use the Residue Theorem to show that $\int_{0}^{\infty} \frac{x^2}{x^4 + 1} \, dx = \frac{\pi}{2\sqrt{2}}$.