summary

If the axiom of choice holds, there is no difference between the equipollence relation \(Q \) and the equicardinality relation \(\text{inverse}[\text{CARD}] \circ \text{CARD} \). By default, \text{axch} is not assumed in the GOEDEL program, so one needs to distinguish these two relations. The subset relation \(S \) commutes with \(Q \), but when the axiom of choice is not assumed, the subset relation \(S \) need not commute with the equicardinality relation \(\text{inverse}[\text{CARD}] \circ \text{CARD} \). However, the equicardinality relation does subcommute with the subset relation. This is because the domain of the cardinality function is invariant under \text{inverse}[S].

\[
\text{In}[2]:= \text{invariant}[\text{inverse}[S], \text{domain}[\text{CARD}]]
\]
\[
\text{Out}[2]= \text{True}
\]

In other words, if a set is equipollent to an ordinal, then so is any subset.

\[
\text{In}[3]:= \text{implies}[\text{and}[\text{subclass}[x, y], \text{member}[y, \text{image}[Q, \text{OMEGA}]], \text{member}[x, \text{image}[Q, \text{OMEGA}]]]]
\]
\[
\text{Out}[3]= \text{True}
\]

The statements that \(Q \) commutes with \(S \) and with \text{inverse}[S] are formulated in the GOEDEL program in an unsymmetric fashion in that the following two rewrite rules move both \(S \) and \text{inverse}[S] from left to right:

\[
\text{In}[4]:= \text{composite}[S, Q]
\]
\[
\text{Out}[4]= \text{composite}[Q, S]
\]
For the equicardinality relation, in addition to putting \(S \) or its inverse on the left or right of \(\text{inverse}[\text{CARD}] \circ \text{CARD} \), one also has the superior option of placing it in between \(\text{inverse}[\text{CARD}] \) and \(\text{CARD} \). In this notebook precise statements about all these matters are derived, as well as various new simplification rules that hold independently of \(\text{axch} \).

a statement equivalent to axch

The axiom of choice equivalent to the statement that every set is equipollent to an ordinal.

\[
\text{equiv}[\text{axch}, \text{equal}[ext{V}, \text{image}[ext{Q}, \text{OMEGA}]]]
\]

\[\text{Out}[6]= \text{True}\]

Lemma.

\[
\text{SubstTest}[\text{implies}, \text{equal}[ext{u}, \text{v}], \text{equal}[ext{fix}[ext{u}], \text{fix}[ext{v}]],
\{\text{u} \rightarrow \text{Q}, \text{v} \rightarrow \text{composite[\text{inverse}[\text{CARD}], \text{CARD}]}\}] \quad \text{// Reverse}
\]

\[\text{Out}[7]= \text{or}[\text{axch}, \text{not}[ext{equal}[ext{Q}, \text{composite[\text{inverse}[\text{CARD}], \text{CARD}]]}]] = \text{True}\]

\[\text{In}[8]= \% /. \text{Equal} \to \text{SetDelayed}\]

Lemma. The equipollence relation and the equicardinality relation are equal if \(\text{axch} \) holds.

\[
\text{implies}[\text{axch}, \text{equal}[ext{Q}, \text{composite[\text{inverse}[\text{CARD}], \text{CARD}]]}] \quad \text{// AssertTest}
\]

\[\text{Out}[9]= \text{or}[ext{equal}[ext{Q}, \text{composite[\text{inverse}[\text{CARD}], \text{CARD}]]}, \text{not}[\text{axch}]] = \text{True}\]

\[\text{In}[10]= \% /. \text{Equal} \to \text{SetDelayed}\]

Theorem. The statement that the equipollence and equicardinality relations are equal is equivalent to \(\text{axch} \).

\[
\text{equiv}[\text{equal}[ext{Q}, \text{composite[\text{inverse}[\text{CARD}], \text{CARD}]]}, \text{axch}]
\]

\[\text{Out}[11]= \text{True}\]

\[\text{In}[12]= \text{equal}[ext{Q}, \text{composite[\text{inverse}[\text{CARD}], \text{CARD}]]} := \text{axch}\]

a key simplification rule

Lemma. An inclusion.

\[
\text{SubstTest}[\text{subclass}, \text{x}, \text{composite[\text{id}[\text{y}, \text{z}]],} \{\text{x} \rightarrow \text{composite[\text{inverse}[\text{CARD}], \text{S}, \text{CARD}],}
\text{y} \rightarrow \text{domain[\text{CARD}],} \text{z} \rightarrow \text{composite[\text{Q}, \text{S}]}\}] \quad \text{// Reverse}
\]

\[\text{Out}[13]= \text{subclass[composite[\text{inverse}[\text{CARD}], \text{S}, \text{CARD}], composite[\text{inverse}[\text{CARD}], \text{CARD}, \text{S}]]} = \text{True}\]
Lemma. An equation.

In[15]:= equal[composite[inverse[CARD], S, CARD],
 composite[inverse[CARD], CARD, S]] // AssertTest
Out[15]= equal[composite[inverse[CARD], CARD, S], composite[inverse[CARD], S, CARD]] = True

In[16]:= % /. Equal -> SetDelayed
A better equation can be derived.

Theorem. A simplification rule for moving CARD past S.

In[17]:= SubstTest[implies, equal[u, v], equal[composite[t, u], composite[t, v]],
 {t -> CARD, u -> composite[inverse[CARD], CARD, S],
 v -> composite[inverse[CARD], S, CARD]}; // Reverse
Out[17]= equal[composite[CARD, S], composite[id[fix[CARD]]], S, CARD]] = True

In[18]:= composite[CARD, S] := composite[id[fix[CARD]]], S, CARD]
Corollary.

In[19]:= composite[inverse[S], inverse[CARD]] // DoubleInverse
Out[19]= composite[inverse[S], inverse[CARD]] =
 composite[inverse[CARD], inverse[S], id[fix[CARD]]]

In[20]:= composite[inverse[S], inverse[CARD]] :=
 composite[inverse[CARD], inverse[S], id[fix[CARD]]]

Theorem. A rewrite rule that moves the inverse of the cardinality function to the left.

In[21]:= Map[composite[#, inverse[CARD]] &,
 Assoc[composite[id[image[Q, OMEGA]]], S, id[domain[CARD]]], Q]]
Out[21]= composite[id[image[Q, OMEGA]]], S, inverse[CARD]] =
 composite[inverse[CARD], S, id[fix[CARD]]]

In[22]:= composite[id[image[Q, OMEGA]]], S, inverse[CARD]] :=
 composite[inverse[CARD], S, id[fix[CARD]]]
Corollary. A rewrite rule that moves the cardinality function to the right.

In[26]:= composite[CARD, inverse[S], id[image[Q, OMEGA]]] // DoubleInverse
Out[26]= composite[CARD, inverse[S], id[image[Q, OMEGA]]] =
 composite[id[fix[CARD]]], inverse[S], CARD]

In[27]:= composite[CARD, inverse[S], id[image[Q, OMEGA]]] :=
 composite[id[fix[CARD]]], inverse[S], CARD]
Corollary. This special result is not needed in the rest of this notebook.

In[29]:= \text{Map[composite[\text{CARD}, \#] \\ &,
Assoc[id[\text{FINITE}], id[\text{image[Q, OMEGA]}], composite[S, inverse[\text{CARD}]]]}

Out[29]= \text{composite[\text{id[omega], S, id[fix[\text{CARD}]]]} = \text{composite[\text{id[omega], S, id[omega]]}}

In[30]:= composite[\text{id[omega], S, id[fix[\text{CARD}]]]} := \text{composite[\text{id[omega], S, id[omega]]}}

\text{subcommute property}

Corollary. The equipollence relation subcommutes with the subset relation.

In[31]:= \text{SubstTestsubclass, composite[id[x], y, y,
\{x \rightarrow \text{domain[\text{CARD}], y \rightarrow composite[S, inverse[\text{CARD}], \text{CARD}]}\} // \text{Reverse}}

Out[31]= \text{subclass[composite[\text{inverse[\text{CARD}], S, \text{CARD}], composite[S, inverse[\text{CARD}], \text{CARD}}]} = \text{True}

In[32]:= \text{subclass[composite[\text{inverse[\text{CARD}], S, \text{CARD}], composite[S, inverse[\text{CARD}], \text{CARD}}]}} := \text{True}

Restatement.

In[33]:= \text{subcommute[composite[inverse[\text{CARD}], \text{CARD}], S]}

Out[33]= \text{True}

Corollary. The relation \text{inverse[S]} subcommutes with the equicardinality relation.

In[34]:= \text{SubstTest[\text{subcommute, inverse[x], inverse[y],}
\{x \rightarrow \text{composite[\text{inverse[\text{CARD}], CARD}], y \rightarrow \text{inverse[S]}\}]}

Out[34]= \text{subclass[composite[\text{inverse[\text{CARD}], inverse[S], \text{CARD}], composite[\text{inverse[\text{CARD}], CARD, inverse[S]}]]} = \text{True}

In[35]:= \text{subclass[composite[\text{inverse[\text{CARD}], inverse[S], \text{CARD}],}
\text{composite[\text{inverse[\text{CARD}], CARD, inverse[S]}]]}} := \text{True}

Restatement.

In[36]:= \text{subcommute[\text{inverse[S], composite[\text{inverse[\text{CARD}], \text{CARD}]}}]}

Out[36]= \text{True}

\text{another statement equivalent to axch}

Lemma. If \text{axch} holds, then the equicardinality relation commutes with the subset relation.
Lemma. If the equicardinality relation commutes with the subset relation, then \texttt{axch} holds.

Theorem. The statement that the equicardinality relation commutes with the subset relation is equivalent to \texttt{axch}.

Restatement.

rules that convert \texttt{Q} to \texttt{inverse[CARD]} \circ \texttt{CARD}

By adding a factor of \texttt{id[image[Q, \Omega]]}, one can use double inversion to convert an expression involving the equipollence relation to one involving the equicardinality relation.
In[46]:= composite[Q, inverse[S], id[image[Q, OMEGA]]] // DoubleInverse

Out[46]= composite[Q, inverse[S], id[image[Q, OMEGA]]] :=
 composite[inverse[CARD], inverse[S], CARD]

In[47]:= composite[Q, inverse[S], id[image[Q, OMEGA]]] :=
 composite[inverse[CARD], inverse[S], CARD]

rules that remove a factor of S or its inverse

Theorem.

In[48]:= Assoc[composite[Q, S], id[image[Q, OMEGA]], S] // Reverse

In[49]:= composite[S, inverse[CARD], S, CARD] := composite[S, inverse[CARD], CARD]

Corollary.

In[50]:= composite[inverse[CARD], inverse[S], CARD, inverse[S]] // DoubleInverse

Out[50]= composite[inverse[CARD], inverse[S], CARD, inverse[S]] :=
 composite[inverse[CARD], CARD, inverse[S]]

In[51]:= composite[inverse[CARD], inverse[S], CARD, inverse[S]] :=
 composite[inverse[CARD], CARD, inverse[S]]

rules that remove a factor of CARD or its inverse

Theorem.

In[52]:= Map[inverse, Assoc[inverse[CARD], composite[Q, S], inverse[CARD]]]

Out[52]= composite[CARD, inverse[S], CARD] := composite[id[fix[CARD]], inverse[S], CARD]

In[53]:= composite[CARD, inverse[S], CARD] := composite[id[fix[CARD]], inverse[S], CARD]

Corollary.

In[54]:= composite[inverse[CARD], S, inverse[CARD]] // DoubleInverse

Out[54]= composite[inverse[CARD], S, inverse[CARD]] := composite[inverse[CARD], S, id[fix[CARD]]]

In[55]:= composite[inverse[CARD], S, inverse[CARD]] :=
 composite[inverse[CARD], S, id[fix[CARD]]]
rules that remove an identity factor

Theorem.

\[
\text{In}[56]:= \text{Assoc\{inverse[CARD], composite\{id\{image\{Q, OMEGA\}\}, S\}, id\{image\{Q, OMEGA\}\}\} // Reverse}
\]

\[
\text{Out}[56]= \text{composite\{inverse[CARD], S, id\{image\{Q, OMEGA\}\}\} = composite\{inverse[CARD], S\}}
\]

\[
\text{In}[57]:= \text{composite\{inverse[CARD], S, id\{image\{Q, OMEGA\}\}\} := composite\{inverse[CARD], S\}}
\]

Corollary.

\[
\text{In}[58]:= \text{composite\{id\{image\{Q, OMEGA\}\}, inverse[S], CARD\} // DoubleInverse}
\]

\[
\text{Out}[58]= \text{composite\{id\{image\{Q, OMEGA\}\}, inverse[S], CARD\} = composite\{inverse[S], CARD\}}
\]

\[
\text{In}[59]:= \text{composite\{id\{image\{Q, OMEGA\}\}, inverse[S], CARD\} := composite\{inverse[S], CARD\}}
\]