The cardinality of a set x is by definition the intersection of the class of all ordinals that are equipollent to the set:

$$\text{card}[x]$$

Here OMEGA is the class of all ordinals, and Q is the equipollence relation:

$$\text{class}[\text{pair}[x, y], \exists z, \text{and}[\text{ONEONE}[z], \text{equal}[x, \text{domain}[z]], \text{equal}[y, \text{range}[z]]])$$

Since any nonempty class of ordinals has a least member, it follows that $\text{card}[x]$ is an ordinal, unless there does not exist any ordinal equipollent to the set x. In the latter case $\text{card}[x] = A[0] = V$ is the universal class, which is not a set.

The class $\text{image}[Q, \text{OMEGA}]$ is the class of all sets which are equipollent to some ordinal. In this notebook it is shown that if every set is equipollent to an ordinal, then the axiom of choice holds. (The converse also holds, but is not addressed here.)
preliminaries and the strategy of the derivation

The axiom of choice is equivalent to the statement that every set has a cross-section, that is, a function contained in x with the same domain as x. If the set x holds no ordered pairs, then its domain is empty, and the empty set is the sole cross-section. The class of all cross-sections of x is denoted by $X[x]$, and the class of all sets that admit cross-sections is

$$\text{In}[5]:= \text{class}[x, \text{not}[\text{empty}[X[x]]]]$$

$$\text{Out}[5]= \text{SELECT}$$

Thus the statement that every set admits a cross-section is:

$$\text{In}[6]:= \text{equal}[v, \text{SELECT}]$$

$$\text{Out}[6]= \text{axch}$$

The derivation makes use of a basic theorem that is useful for proving various equivalents of the axiom of choice. It says that the class SELECT is closed under compatible compositions:

$$\text{In}[7]:= \text{implies}[\text{and}[\text{member}[u, \text{SELECT}], \text{member}[v, \text{SELECT}], \text{subclass}[\text{range}[v], \text{domain}[u]]], \text{member}[\text{composite}[u, v], \text{SELECT}]]$$

$$\text{Out}[7]= \text{True}$$

This theorem will be applied in the next section to the case where u is a one-to-one correspondence between an ordinal and the range of x. A variable w will be introduced to represent the one-to-one correspondence, and the condition that it be one-to-one is introduced by wrapping it with oopart. Later this wrapper is removed by using the following fact:

$$\text{In}[8]:= \text{equal}[w, \text{oopart}[w]]$$

$$\text{Out}[8]= \text{and}[ext{FUNCTION}[w], \text{FUNCTION}[\text{inverse}[w]]]$$

After deriving the existence of a cross-section under these hypotheses, the variables are removed to obtain a variable-free formulation.
The main idea is to use the invariance of SELECT under compatible composition, as explained above.

\[\text{In}[9]:= \text{Map}\left[\text{or}[\text{not}[\text{equal}[0, X[\text{composite}[\text{id}[\text{range}[\text{oopart}[w]]], x]]]], \# \&, \text{SubstTest}[\text{implies}, \text{and}[\text{member}[u, \text{SELECT}], \text{member}[v, \text{SELECT}], \text{subclass}[\text{range}[v], \text{domain}[u]]], \text{member}[\text{composite}[u, v], \text{SELECT}], [u \to \text{oopart}[w], v \to \text{composite}[\text{inverse}[\text{oopart}[w]], x]]]\right]\]

\[\text{Out}[9]= \text{or}[\text{equal}[0, X[\text{composite}[\text{inverse}[\text{oopart}[w]], x]]], \text{not}[\text{equal}[0, X[\text{composite}[\text{id}[\text{range}[\text{oopart}[w]]], x]]]], \text{not}[\text{member}[\text{composite}[\text{inverse}[\text{oopart}[w]], x], V]], \text{not}[\text{member}[\text{oopart}[w], V]]] = \text{True}\]

\[\text{In}[10]= (\%/. \{w \to __, x \to ___\})/. \text{Equal} \to \text{SetDelayed}\]

The result can be cleaned up. A series of lemmas will be used to do this.

\[\text{In}[11]= \text{SubstTest}[\text{or}, \text{member}[\text{composite}[z, x], V], \text{not}[\text{FUNCTION}[z]], \text{not}[\text{member}[x, V]], z \to \text{inverse}[\text{oopart}[w]]]\]

\[\text{Out}[11]= \text{or}[\text{member}[\text{composite}[\text{inverse}[\text{oopart}[w]], x], V], \text{not}[\text{member}[x, V]]] = \text{True}\]

\[\text{In}[12]= (\%/. \{w \to __, x \to ___\})/. \text{Equal} \to \text{SetDelayed}\]

Lemma. (Any relation whose range is contained in OMEGA has a cross-section.)

\[\text{In}[13]= \text{SubstTest}[\text{implies}, \text{and}[\text{member}[z, V], \text{member}[\text{range}[z], \text{P}[\text{OMEGA}]]], \text{not}[\text{equal}[0, X[z]]], z \to \text{composite}[\text{inverse}[\text{oopart}[w]], x]]\]

\[\text{Out}[13]= \text{or}[\text{not}[\text{equal}[0, X[\text{composite}[\text{inverse}[\text{oopart}[w]], x]]]], \text{not}[\text{member}[\text{composite}[\text{inverse}[\text{oopart}[w]], x], V]], \text{not}[\text{subclass}[\text{image}[\text{inverse}[\text{oopart}[w]], \text{range}[x]], \text{OMEGA}]]] = \text{True}\]

\[\text{In}[14]= (\%/. \{w \to __, x \to ___\})/. \text{Equal} \to \text{SetDelayed}\]

Lemma.
The main theorem is obtained by combining the various lemmas.

The oopart wrapper has served its purpose and is now removed.

This can be restated more succinctly using the classes BIJ and SELECT.
The next step is to use Gödel's algorithm in the form of rewrite rules for `class` to remove the variables. The more complicated concepts are sequestered from the action of Gödel's algorithm by using dummy variables. For example, the one-to-one hypothesis is hidden from the action of the `class` rules by introducing a temporary dummy variable `t` later set equal to the class `BIJ` of all bijections.

```
In[22]:= Map[equal[0, composite[Id, complement[#]]] &, SubstTest[class, pair[x, w], implies[and[member[x, V], member[w, t], member[domain[w], u], equal[range[w], range[x]]], member[x, s]], {s -> SELECT, t -> BIJ, u -> OMEGA}] // Reverse
```

```
Out[22]= equal[0, intersection[OMEGA, image[Q, image[IMAGE[SECOND], complement[SELECT]]]]] := True
```

```
In[23]:= intersection[OMEGA, image[Q, image[IMAGE[SECOND], complement[SELECT]]]] := 0
```

A rewrite rule about disjoint images is invoked to transform this statement:

```
In[24]:= SubstTest[disjoint, y, image[inverse[z], x], {x -> OMEGA, y -> image[IMAGE[SECOND], complement[SELECT]], z -> Q}]
```

```
```

```
In[25]:= subclass[image[inverse[IMAGE[SECOND]], image[Q, OMEGA]], SELECT] := True
```

The last step uses equality substitution, and `assert` is used for simplification.

```
In[26]:= Map[assert, SubstTest[implies, and[equal[u, v], subclass[image[x, u], y], subclass[image[x, v], y]], {u -> image[Q, OMEGA], v -> V, x -> inverse[IMAGE[SECOND]], y -> SELECT}]]
```

```
Out[26]= or[axch, not[equal[V, image[Q, OMEGA]]]] := True
```

```
In[27]:= or[axch, not[equal[V, image[Q, OMEGA]]]] := True
```