homomorphic image of a binary operation

Johan G. F. Belinfante and Ming Li
2006 September 21

summary

The image of a binary operation under a binary homomorphism is a binary operation. This fact is derived in this notebook by a series of lemmas. The derivations of some lemmas went much faster when some steps of the proof were omitted, relying on rewrite rules to supply the needed facts.

terminology

A binary operation is defined to be a mapping from \(\text{cart}[u,u] \) to \(u \) for some set \(u \). If \(x \) is a binary operation, then \(u = \text{fix}[ext{domain}[x]] \). A binary homomorphism from \(x \) to \(y \) is defined to be a mapping \(w \) from \(\text{fix}[ext{domain}[x]] \) to \(\text{fix}[ext{domain}[y]] \) such that \(\text{composite}[w, x] \) is equal to \(\text{composite}[y, \text{cross}[w, w]] \). The restriction \(\text{composite}[y, \text{id}[\text{cart}[\text{range}[w], \text{range}[w]]]] \) of \(y \) is called the homomorphic image of \(x \) under \(w \).

FUNCTION lemma

Lemma.

\[
\text{In}[2]:= \quad \text{SubstTest}[\text{implies, and}[ext{FUNCTION}[\text{composite}[x, y]], \text{FUNCTION}[y]], \\
\quad \text{FUNCTION}[\text{composite}[x, \text{id}[\text{range}[y]]]], y \rightarrow \text{cross}[w, w]]
\]

\[
\text{Out}[2]:= \quad \text{or}[\text{FUNCTION}[\text{composite}[x, \text{id}[\text{cart}[\text{range}[w], \text{range}[w]]]]], \\
\quad \text{not}[\text{FUNCTION}[\text{composite}[ext{Id}, w]]], \text{not}[\text{FUNCTION}[\text{composite}[x, \text{cross}[w, w]]]]] = \text{True}
\]

\[
\text{In}[3]:= \quad (\% / (x \rightarrow x_-, w \rightarrow w_-)) / \text{. Equal} \rightarrow \text{SetDelayed}
\]
The following theorem establishes that the homomorphic image is a function. (Comment. There is a speedup by a factor 20 in the following derivation by deliberately omitting two steps of the proof: `implies[and[p3,p4,p5],p6] and implies[p4,p7].`)

```plaintext
In[4]:= Map[not, SubstTest[and, implies[p1, p3], implies[p2, p4],
implies[p2, p5], implies[and[p6, p7], p8], not[implies[and[p1, p2], p8]],
{p1 \to member[x, BINOPS], p2 \to member[w, binhom[x, y]], p3 \to FUNCTION[x],
p4 \to FUNCTION[w], p5 \to equal[composite[w, x], composite[y, cross[w, w]]],
p6 \to FUNCTION[composite[y, cross[w, w]]], p7 \to FUNCTION[cart[range[w]], range[w]]],
p8 \to FUNCTION[composite[y, id[cart[range[w]], range[w]]]]])
Out[4]= or[FUNCTION[composite[y, id[cart[range[w]], range[w]]]]],
not[member[w, binhom[x, y]]], not[member[x, BINOPS]]] = True

In[5]:= (% /. \{x \to x_, y \to y_, w \to w_\}) \/. Equal \to \text{SetDelayed}
```

domain lemma

One needs to show that the domain of the homomorphic image is a cartesian square.

Lemma.

```plaintext
In[6]:= SubstTest[implies, equal[\{u, v\}, equal[domain[\{u\}], domain[\{v\}]]],
\{u \to composite[w, x], v \to composite[y, cross[w, w]]\}]
Out[6]= or[equal[composite[\text{inverse}[w], domain[y], w], image[\text{inverse}[x], domain[w]]],
not[\text{equal}[\text{composite}[w, x], \text{composite}[y, \text{cross}[w, w]]]]] = True

In[7]:= (% /. \{w \to w_, x \to x_, y \to y_\}) \/. Equal \to \text{SetDelayed}
```

The transform of square by a function is a square:

```plaintext
In[8]:= SubstTest[implies, equal[\{u, v\}, equal[image[\{w, u\}], image[\{w, v\}]]],
\{u \to \text{composite[\text{inverse}[funpart[z]], t, funpart[z]],
v \to \text{cartsq[s], w \to cross[funpart[z], funpart[z]]}\}]
Out[8]= or[\text{equal}[\text{cart}[\text{image}[\text{funpart[z]}, s]], \text{image}[\text{funpart[z]}, s]],
\text{composite[\text{id}[\text{range}[\text{funpart[z]]]], t, \text{id}[\text{range}[\text{funpart[z]]]]]},
not[\text{equal}[\text{cart}[s, s], \text{composite[\text{inverse}[\text{funpart[z]], t, \text{funpart[z]]]}}]]] = True

In[9]:= (% /. \{s \to s_, t \to t_, z \to z_\}) \/. Equal \to \text{SetDelayed}
```

Remove the `funpart` wrapper:

```plaintext
In[10]:= SubstTest[implies, and[\text{equal}[\{w, \text{funpart[z]}\}], \text{equal}[\text{composite[\text{inverse}[w], t, w], \text{cartsq[u]}]]],
\text{equal}[\text{cart}[\text{image}[\{w, u\}], \text{image}[\{w, u\}], \text{composite[\text{id}[\text{range}[w]], t, \text{id}[\text{range}[w]]]]], z \to w]
Out[10]= or[\text{equal}[\text{cart}[\text{image}[\{w, u\}], \text{image}[\{w, u\}], \text{composite[\text{id}[\text{range}[w]], t, \text{id}[\text{range}[w]]]]],
not[\text{equal}[\text{cart}[u, u], \text{composite[\text{inverse}[w], t, w]]], not[\text{FUNCTION}[w]]]] = True

In[11]:= (% /. \{t \to t_, u \to u_, w \to w_\}) \/. Equal \to \text{SetDelayed}
```
Lemma. (Comment. The following derivation leaves out one step of the proof: \texttt{implies[and[p3, p4, p6], p7].})

```mathematica
In[12]:= Map[not, SubstTest[and, \texttt{implies[p1, p3], implies[p2, p4], implies[p2, p5], implies[p5, p6], not[implies[and[p1, p2], p7]]}],
{p1 -> member[x, BINOPS], p2 -> member[w, binhom[x, y]], p3 -> subclass[range[x], fix[domain[x]]], p4 -> equal[domain[w], fix[domain[x]]], p5 -> equal[composite[w, x], composite[y, cross[w, w]]], p6 -> equal[composite[inverse[w], domain[y], w], image[inverse[x], domain[w]]], p7 -> equal[composite[inverse[w], domain[y], w], domain[x]]}]
```  

```
Out[12]= \texttt{or[equal[composite[inverse[w], domain[y], w], domain[x]], not[member[w, binhom[x, y]]], not[member[x, BINOPS]] = True}
```  

```
In[13]:= \texttt{or[member[w, \texttt{\_}, binhom[x, \_]], domain[\_]], not[member[\_ \_ \_, binhom[\_ \_, \_]], not[member[\_ \_, BINOPS]]] := True}
```  

Theorem. The domain of the homomorphic image is a cartesian square.

```
In[14]:= Map[not, SubstTest[and, \texttt{implies[and[p1, p2], p3], implies[p1, p4], implies[p2, p5], not[implies[and[p1, p2], p6]]},
{p1 -> member[x, BINOPS], p2 -> member[w, binhom[x, y]], p3 -> equal[composite[inverse[w], domain[y], w], domain[x]], p4 -> equal[domain[x], cartsq[fix[domain[x]]]], p5 -> FUNCTION[w], p6 -> equal[cart[\texttt{image[w, fix[domain[x]]]}, image[w, fix[domain[x]]]],
\texttt{composite[id[range[w]], domain[y], id[range[w]]]}]}]
```  

```
Out[14]= \texttt{or[equal[cart[\texttt{image[w, fix[domain[x]]]}, image[w, \texttt{fix[domain[x]]]}], \texttt{composite[id[range[w]], domain[y], id[range[w]]]}]], not[member[w, binhom[x, y]]], not[member[x, BINOPS]] = True}
```  

```
In[15]:= (% /. {\texttt{w \_\_, x \_\_, y \_\_, y \_\_}) / \texttt{Equal \\rightarrow SetDelayed}
```  

range lemmas

Lemma 1.

```
In[16]:= SubstTest[\texttt{implies, equal[u, v], equal[range[u], range[v]]},
{u -> composite[w, x], v -> composite[y, cross[w, w]]}]
```  

```
Out[16]= \texttt{or[equal[\texttt{image[w, range[x]]}, \texttt{image[y, cart[range[w], range[w]]]}],
not[equal[\texttt{composite[w, x], composite[y, cross[w, w]]}]] = True}
```  

```
In[17]:= (% /. {\texttt{w \_\_, x \_\_, y \_\_, y \_\_}) / \texttt{Equal \\rightarrow SetDelayed}
```

Theorem. If \texttt{w} is a binary homomorphism from \texttt{x} to \texttt{y}, then \texttt{range[w]} is closed under \texttt{y}.
Restatement:

In[20]:=
Out[20]= True

Corollary.

In[21]:=
Out[21]= True

In[22]:=

main theorem

Observation: One does not need to be all that specific about the assertion that some class is a cartesian square.

In[23]:=
Out[23]= True

To show that a function \(x \) is a set, it suffices to prove that its domain is a set.

In[24]:=
Out[24]= True

If it is also known that the domain is a square, all one needs is that \(\text{fix[domain[x]]} \) is a set. This motivates the following lemma, which provides a criterion for \(x \) to be a binary operation.
Main theorem. The homomorphic image of a binary operation is a binary operation.

The variable \(w \) that appears in one of the range lemmas is easily obtained.

serendipity

The variable \(w \) that appears in one of the range lemmas is easily obtained.