CORE[x] is idempotent

Johan G. F. Belinfante and Tiffany Goble
2003 September 4

In[1]:= << goede152.s87; << tools.m

:Package Title: goede152.s87 2003 September 2 at 1:35 p.m.
It is now: 2003 Sep 5 at 9:0
Loading Simplification Rules
TOOLS.M Revised 2003 August 9
weightlimit = 40

summary

The function CORE[x] is idempotent. This fact is rederived in this notebook, along with some related facts. No conditions are put on the class \(x \). The present version of the GOEDEL program already has a rewrite rule that expresses the idempotence of CORE[x].

In[2]:= composite[CORE[x], CORE[x]]
Out[2]= CORE[x]

This rule is now removed, and will later be rederived:

In[3]:= composite[CORE[x_], CORE[x_]] =.

When \(x \) is a subclass of \(y \) or conversely, the functions CORE[x] and CORE[y] commute, and their composite is CORE[intersection[x, y]]. A simple formula for CORE[union[x,y]] is derived which holds without any conditions on \(x \) and \(y \). As a byproduct, an interesting formula for the power class of a union emerges.

core[x,y]

A temporary abbreviation is introduced for the \(x \)-core of \(y \).

In[4]:= core[x_, y_] := U[intersection[x, P[y]]]

In the case that \(x \) is a topology and \(y \) is a set, this is what one usually calls the interior of \(y \). In the present notebook, neither \(x \) nor \(y \) is assumed to be a set, and none of the topology axioms are needed. The following fact will be needed below:

In[5]:= subclass[core[x, y], y]
Out[5]= True
monotonicity

The monotonicity of \(\text{core}[x, y] \) with respect to its second argument can be derived quickly as follows:

\[
\begin{align*}
\text{In}[6] := & \quad \text{SubstTest}\[\text{implies}, \text{subclass}[u, v], \text{subclass}[\text{image}[w, u], \text{image}[w, v]], \{u \to \text{P}[y], v \to \text{P}[z], w \to \text{composite}[\text{inverse}[E], \text{id}[x]]\}] \\
\text{Out}[6] = & \quad \text{or[not[subclass[y, z]]], subclass[U[\text{intersection}[x, \text{P}[y]]], U[\text{intersection}[x, \text{P}[z]]]]} = \text{True}
\end{align*}
\]

This is worth adding as a permanent rewrite rule:

\[
\begin{align*}
\text{In}[7] := & \quad \text{or[not[subclass[y, z]]], subclass[U[\text{intersection}[x, \text{P}[y]]], U[\text{intersection}[x, \text{P}[z]]]]} = \text{True}
\end{align*}
\]

Restatement:

\[
\begin{align*}
\text{In}[8] := & \quad \text{implies[subclass[y, z], subclass[\text{core}[x, y], \text{core}[x, z]]]}
\end{align*}
\]

\[
\begin{align*}
\text{Out}[8] = & \quad \text{True}
\end{align*}
\]

No new rule is needed for monotonicity with respect to the first argument.

\[
\begin{align*}
\text{In}[9] := & \quad \text{implies[subclass[x, y], subclass[\text{core}[x, z], \text{core}[y, z]]]}
\end{align*}
\]

\[
\begin{align*}
\text{Out}[9] = & \quad \text{True}
\end{align*}
\]

idempotence

The core of a core involves the construction \(\text{P}[U[-]] \):

\[
\begin{align*}
\text{In}[10] := & \quad \text{core}[x, \text{core}[x, y]]
\end{align*}
\]

\[
\begin{align*}
\text{Out}[10] = & \quad \text{U[\text{intersection}[x, \text{P}[\text{U[\text{intersection}[x, \text{P}[y]]]]]]]}
\end{align*}
\]

The following general inclusion holds for this construction:

\[
\begin{align*}
\text{In}[11] := & \quad \text{subclass[z, P[U[z]]]}
\end{align*}
\]

\[
\begin{align*}
\text{Out}[11] = & \quad \text{True}
\end{align*}
\]

The following application of \text{SubstTest} makes use of this fact:

\[
\begin{align*}
\text{In}[12] := & \quad \text{SubstTest}\[\text{implies}, \text{subclass}[u, v], \text{subclass}[\text{image}[w, u], \text{image}[w, v]], \{u \to \text{P}[y], v \to \text{P[core[x, y]]}, w \to \text{composite}[\text{inverse}[E], \text{id}[x]]\}] \\
\text{Out}[12] = & \quad \text{subclass[U[\text{intersection}[x, \text{P}[y]]], U[\text{intersection}[x, \text{P}[y]]]]} = \text{True}
\end{align*}
\]

\[
\begin{align*}
\text{In}[13] := & \quad (\% / . \{x \to x_-, y \to y_-\}) / . \text{Equal} \to \text{SetDelayed}
\end{align*}
\]

The reverse inclusion also holds, so an equation holds:
In[14]:= SubstTest[and, subclass[u, v], subclass[v, u], {u \rightarrow core[x, y], v \rightarrow core[x, core[x, y]]}]

Out[14]= True = equal[U[intersection[x, P[y]]], U[intersection[x, P[intersection[x, P[y]]]]]]

In[15]:= U[intersection[x_, P[U[intersection[x_, P[y_]]]]]] := U[intersection[x, P[y]]]

Restatement:

In[16]:= equal[core[x, core[x, y]], core[x, y]]

Out[16]= True

a corollary

The following corollary makes it unnecessary to retain the result of the preceding section as a permanent rewrite rule.

In[17]:= SubstTest[and, subclass[u, v], subclass[v, u], {u \rightarrow intersection[x, P[y]], v \rightarrow intersection[x, P[core[x, y]]]}]

Out[17]= True = equal[intersection[x, P[y]], intersection[x, P[intersection[x, P[y]]]]]

In[18]:= intersection[x_, P[U[intersection[x_, P[y_]]]]] := intersection[x, P[y]]

In the setting of topology, the interpretation of this result is that the collection of open subsets of a set is the same as the collection of open subsets of the interior of that set.

functional formulations

The corollary of the preceding section has the following functional counterpart:

In[19]:= composite[IMAGE[id[x]], POWER, CORE[x]] // VSNormality

Out[19]= composite[IMAGE[id[x]], POWER, CORE[x]] = composite[IMAGE[id[x]], POWER]

In[20]:= composite[IMAGE[id[x_]], POWER, CORE[x_]] := composite[IMAGE[id[x]], POWER]

Application of the associative law yields the idempotence rule that was removed at the beginning of this notebook.

In[21]:= Assoc[BIGCUP, composite[IMAGE[id[x]], POWER], CORE[x]] // Reverse

Out[21]= composite[CORE[x], CORE[x]] = CORE[x]

The rewrite rule is now restored:

In[22]:= composite[CORE[x_], CORE[x_]] := CORE[x]

a more general result

The method used to derive the idempotence property can be used to derive a more general result:
In[23]:={Assoc[composite[BIGCUP, IMAGE[id[x]]],
 composite[IMAGE[id[y]], POWER], CORE[y]]} // Reverse

Out[23]= composite[CORE[intersection[x, y]], CORE[y]] = CORE[intersection[x, y]]

In[24]:= composite[CORE[intersection[x_, y_]], CORE[y_]] := CORE[intersection[x, y]]

This result can be reformulated. To do so, we need three lemmas:

In[25]:= SubstTest[implies, equal[x, z], equal[CORE[x], CORE[z]], z -> intersection[x, y]]

Out[25]= or[equal[Uclosure[x], Uclosure[intersection[x, y]]], not[subclass[x, y]]] = True

In[26]:= (% /. {x -> x_ , y -> y_}) /. Equal -> SetDelayed

In[27]:= SubstTest[implies, equal[u, v], equal[CORE[x], CORE[y]],
 {u -> CORE[x], v -> CORE[intersection[x, y]]},
 w -> CORE[y]]

Out[27]= or[equal[composite[CORE[x], CORE[y]], CORE[intersection[x, y]]],
 not[equal[Uclosure[x], Uclosure[intersection[x, y]]]]] = True

In[28]:= (% /. {x -> x_ , y -> y_}) /. Equal -> SetDelayed

In[29]:= SubstTest[implies, and[equal[u, v], equal[v, w]],
 equal[u, w],
 {u -> CORE[x], v -> CORE[intersection[x, y]],
 w -> composite[CORE[x], CORE[y]]}]

Out[29]= or[equal[composite[CORE[x], CORE[y]], CORE[x]],
 not[equal[composite[CORE[x], CORE[y]], CORE[intersection[x, y]]]],
 not[equal[Uclosure[x], Uclosure[intersection[x, y]]]]] = True

In[30]:= (% /. {x -> x_ , y -> y_}) /. Equal -> SetDelayed

The three lemmas can be combined to derive:

In[31]:= Map[not, SubstTest[and, implies[p1, p2],
 implies[p2, p3], implies[p2, p3], p4],
 not[implies[p1, p4]],
 {p1 -> subclass[x, y], p2 -> equal[Uclosure[x], Uclosure[intersection[x, y]]],
 p3 -> equal[composite[CORE[x], CORE[y]], CORE[intersection[x, y]]],
 p4 -> equal[composite[CORE[x], CORE[y]], CORE[x]]}]

Out[31]= or[equal[composite[CORE[x], CORE[y]], CORE[x]],
 not[subclass[x, y]]] = True

In[32]:= or[equal[composite[CORE[x_], CORE[y_]], CORE[x_]],
 not[subclass[x_, y_]]] := True

the composite in the reverse order

In this section, the case subclass[x,y] is considered again, but this time we study the composite of CORE[x] and CORE[y] in the reverse order. For this case, we redo an argument about core[x,y], which was based on the inclusion subclass[w, P[U[w]]].

In[33]:= SubstTest[implies, subclass[u, v], subclass[image[w, u], image[w, v]],
 {u -> intersection[x, P[z]], v -> P[core[x, z]], w -> composite[inverse[E], id[y]]}]

Out[33]= subclass[U[intersection[x, y, P[z]]],
 U[intersection[y, P[U[intersection[x, P[z]]]]]]] = True

In[34]:= (% /. {x -> x_ , y -> y_ , z -> z_}) /. Equal -> SetDelayed
Reformulation:

```
In[35]:= subclass[core[intersection[x, y], z], core[y, core[x, z]]]
```

```
Out[35]= True
```

An analog of an earlier lemma is redone:

```
In[36]:= SubstTest[implies, subclass[x, w], subclass[core[x, z], core[w, z]], w \rightarrow intersection[x, y]]
```

```
Out[36]= or[not[subclass[x, y]], subclass[U[intersection[x, P[z]]], U[intersection[x, y, P[z]]]]] = True
```

```
In[37]:= (% /. {x \rightarrow x_, y \rightarrow y_, z \rightarrow z_}) /. Equal \rightarrow SetDelayed
```

This yields an inclusion:

```
In[38]:= Map[not, SubstTest[and, implies[p1, p2], implies[p2, p3], not[implies[p1, p3]], {p1 \rightarrow subclass[x, y], p2 \rightarrow subclass[core[x, z], core[intersection[x, y], z]], p3 \rightarrow subclass[core[x, z], core[y, core[x, z]]]]]
```

```
Out[38]= or[not[subclass[x, y]], subclass[U[intersection[x, P[z]]], U[intersection[y, P[U[intersection[x, P[z]]]]]]], not[subclass[x, y]]] = True
```

```
In[39]:= (% /. {x \rightarrow x_, y \rightarrow y_, z \rightarrow z_}) /. Equal \rightarrow SetDelayed
```

The reverse inclusion is a general property of core, so an equation can be derived:

```
In[40]:= SubstTest[and, implies[p, subclass[u, v]], implies[p, subclass[v, u]], {p \rightarrow subclass[x, y], u \rightarrow core[x, z], v \rightarrow core[y, core[x, z]]}] // Reverse
```

```
Out[40]= or[equal[U[intersection[x, P[z]]], U[intersection[y, P[U[intersection[x, P[z]]]]]]], not[subclass[x, y]]] = True
```

```
In[41]:= (% /. {x \rightarrow x_, y \rightarrow y_, z \rightarrow z_}) /. Equal \rightarrow SetDelayed
```

In order to derive the functional version of this result, it is convenient to reformulate it without hypotheses:

```
In[42]:= SubstTest[implies, subclass[w, x], equal[core[w, z], core[x, core[w, z]]], w \rightarrow intersection[x, y]]
```

```
Out[42]= equal[U[intersection[x, P[U[intersection[x, y, P[z]]]]]], U[intersection[x, y, P[z]]]] = True
```

```
In[43]:= U[intersection[x_, P[U[intersection[x_, y_, P[z_]]]]]] := U[intersection[x, y, P[z]]]
```

The functional version is now immediate:

```
In[44]:= composite[core[x], core[intersection[x, y]]] // VSNormality
```

```
Out[44]= composite[core[x], core[intersection[x, y]]] = core[intersection[x, y]]
```

```
In[45]:= composite[core[x_], core[intersection[x_, y_]]] := core[intersection[x, y]]
```

As before, one can rewrite this without intersections. To do so, one needs analogs of some earlier lemmas:
For completeness, we note the following fact which is closely related to the above results:

These lemmas can be combined to yield the desired result:

In particular, it follows that if \(x \) is a subclass of \(y \) or vice-versa, then \(\text{CORE}[x] \) and \(\text{CORE}[y] \) commute.

a special case

Since \(x \) is contained in \(P[U[x]] \), one finds in particular:

This result can also be derived another way which does not depend on the other results derived in this notebook:

No additional work is needed for the composite in the reverse order:

For completeness, we note the following fact which is closely related to the above results:
In[56]:= SubstTest[implies, subclass[x, y], subclass[CORE[y], composite[S, CORE[x]]], y -> P[U[x]]]

Out[56]= subclass[IMAGE[id[U[x]]], composite[S, CORE[x]]] = True

In[57]:= subclass[IMAGE[id[U[x_]]], composite[S, CORE[x_]]] := True

CORE[union[x,y]]

A formula for \(\text{CORE}[\text{union}[x,y]] \) is readily obtained by applying \text{RelnNormality}. To clean it up, a lemma is needed:

In[58]:= composite[CUP, intersection[composite[inverse[\text{FIRST}], CORE[x]], composite[inverse[\text{SECOND}], CORE[y]]]] \// \text{VSNormality} \// \text{Reverse}

Out[58]= intersection[composite[S, CORE[x]], composite[S, CORE[y]], composite[cross[S, \text{CORE}[y]]], composite[cross[S, \text{CORE}[y]]], composite[cross[S, \text{CORE}[y]]]] := composite[CUP, intersection[composite[inverse[\text{FIRST}], CORE[x]], composite[inverse[\text{SECOND}], CORE[y]]]]]

In[59]:= intersection[composite[S, CORE[x_]], composite[S, CORE[y_]], composite[cross[S, \text{CORE}[y_]]], composite[cross[S, \text{CORE}[y_]]], composite[cross[S, \text{CORE}[y_]]]] := composite[CUP, intersection[composite[inverse[\text{FIRST}], CORE[x]], composite[inverse[\text{SECOND}], CORE[y]]]]]

The main theorem is:

In[60]:= CORE[\text{union}[x, y]] \// \text{RelnNormality} \// \text{Reverse}

Out[60]= composite[CUP, intersection[composite[inverse[\text{FIRST}], CORE[x]], composite[inverse[\text{SECOND}], CORE[y]]]] := CORE[\text{union}[x, y]]

The following orientation of this equation as a rewrite rule is tentatively adopted:

In[61]:= composite[CUP, intersection[composite[inverse[\text{FIRST}], CORE[x_]], composite[inverse[\text{SECOND}], CORE[y_]]]] := CORE[\text{union}[x, y]]

Restatement:

In[62]:= composite[CUP, cross[CORE[x], CORE[y]], DUP] := CORE[\text{union}[x, y]]

Out[62]= True

The following related result is also of interest:

In[63]:= composite[S, CORE[\text{union}[x, y]]] \// \text{VSNormality} \// \text{Reverse}

Out[63]= intersection[composite[S, CORE[x]], composite[S, CORE[y]]] := composite[S, CORE[\text{union}[x, y]]]

The following orientation of this equation as a rewrite rule is tentatively adopted:

In[64]:= intersection[composite[S, CORE[x_]], composite[S, CORE[y_]]] := composite[S, CORE[\text{union}[x, y]]]

Corollary:
In[65]:= SubstTest[composite, CUP, cross[CORE[x], CORE[y]], DUP, y -> V]

Out[65]= composite[CUP, id[CORE[x]], inverse[FIRST]] = Id

In[66]:= composite[CUP, id[CORE[x_]], inverse[FIRST]] := Id

a special case

Note that:

In[67]:= CORE[P[x]]

Out[67]= IMAGE[id[x]]

If follows that any result about \(\text{CORE}[x] \) implies a corresponding result about the special case \(\text{IMAGE}[id[x]] \). One can also derive this result independently:

In[68]:= symdif[IMAGE[id[union[x, y]]],
 composite[CUP, cross[IMAGE[id[x]], IMAGE[id[y]]], DUP]] // VSNormality

Out[68]= union[intersection[complement[IMAGE[id[union[x, y]]]],
 composite[CUP, intersection[composite[inverse[FIRST], IMAGE[id[x]]],
 composite[inverse[SECOND], IMAGE[id[y]]]]],
 intersection[composite[complement[CUP], intersection[composite[inverse[FIRST], IMAGE[id[x]]],
 composite[inverse[SECOND], IMAGE[id[y]]]]], IMAGE[id[union[x, y]]]]] = 0

In[69]:= (% /. {x -> x_, y -> y_}) /. Equal -> SetDelayed

In[70]:= SubstTest[equal, 0, symdif[u, v], {u -> IMAGE[id[union[x, y]]],
 v -> composite[CUP, cross[IMAGE[id[x]], IMAGE[id[y]]], DUP]] // Reverse

Out[70]= equal[composite[CUP, intersection[composite[inverse[FIRST], IMAGE[id[x]]],
 composite[inverse[SECOND], IMAGE[id[y]]]]], IMAGE[id[union[x, y]]]] = True

In[71]:= composite[CUP, intersection[composite[inverse[FIRST], IMAGE[id[x_]]],
 composite[inverse[SECOND], IMAGE[id[y_]]]]] := IMAGE[id[union[x, y]]]

Comparing this with the general theorem, one finds a curious result:

In[72]:= SubstTest[composite, CUP, cross[CORE[u], CORE[v]], DUP, {u -> P[x], v -> P[y]]] // Reverse

Out[72]= CORE[union[P[x], P[y]]] = IMAGE[id[union[x, y]]]

In[73]:= CORE[union[P[x_], P[y_]]] := IMAGE[id[union[x, y]]]

Corollary 1.

In[74]:= SubstTest[intersection, composite[S, CORE[u]],
 composite[S, CORE[v]], {u -> P[x], v -> P[y]]]

Out[74]= intersection[composite[S, IMAGE[id[x]]], composite[S, IMAGE[id[y]]]] = composite[S, IMAGE[id[union[x, y]]]]

In[75]:= intersection[composite[S, IMAGE[id[x_]]], composite[S, IMAGE[id[y_]]]] :=
 composite[S, IMAGE[id[union[x, y]]]]

Corollary 2.
In[76]:= SubstTest[range, CORE[z], z -> union[P[x], P[y]]] // Reverse
Out[76]= Uclosure[union[P[x], P[y]]] = P[union[x, y]]

This second corollary can also be derived another way:

In[77]:= SubstTest[Uclosure, image[inverse[S], z], z -> union[P[x], P[y]]]
Out[77]= Uclosure[union[P[x], P[y]]] = P[union[x, y]]

In[78]:= Uclosure[union[P[x_], P[y_]]] := P[union[x, y]]

The following older formula for the power class of a union seems to be closely related to the new formula:

In[79]:= image[CUP, cart[P[x], P[y]]]
Out[79]= P[union[x, y]]