The predicate **associative** is defined by a rule wrapped inside `class`. The wrapping is done to prevent the definition from being expanded each time it is used. The definition of `associative[x]` does not require that `x` be a function.

definition and some examples

The wrapped definition of `associative[x]` is:

```plaintext
In[2]:= class[w_, associative[x_]] := class[w, and[subclass[x, cart[cart[V, V], V]],
                                     equal[composite[x, cross[x, Id]], composite[x, cross[Id, x], ASSOC]]]]
```

In order to reason effectively about associativity, it is useful also to have available these clauses:

```plaintext
In[3]:= implies[associative[x],
               equal[composite[x, cross[x, Id]], composite[x, cross[Id, x], ASSOC]]] // AssertTest
Out[3]= or[equal[composite[x, cross[x, Id]],
               composite[x, cross[Id, x], ASSOC]], not[associative[x]]] == True

In[4]:= or[equal[composite[x_, cross[x_, Id]],
               composite[x_, cross[Id, x_], ASSOC]], not[associative[x_]]] := True

In[5]:= implies[associative[x], subclass[x, cart[cart[V, V], V]]] // AssertTest
Out[5]= or[not[associative[x]], subclass[x, cart[cart[V, V], V]]] == True

In[6]:= or[not[associative[x_]], subclass[x_, cart[cart[V, V], V]]] := True
```
\begin{verbatim}
In[7]:= implies(and[subclass[x, cart[cart[V, V], V]], equal[composite[x, cross[x, Id]], composite[x, cross[Id, x], ASSOC]]], associative[x]) // AssertTest
Out[7]= or[associative[x],
not[equal[composite[x, cross[x, Id]], composite[x, cross[Id, x], ASSOC]]],
not[subclass[x, cart[cart[V, V], V]]] == True

In[8]:= or[associative[x__],
not[equal[composite[x__, cross[x__, Id]], composite[x__, cross[Id, x__], ASSOC]]],
not[subclass[x__, cart[cart[V, V], V]]] := True

\end{verbatim}

Examples

To save writing, the corresponding unwrapped definition will be introduced:

\begin{verbatim}
In[9]:= ASSOCIATIVE[x__] := and[subclass[x, cart[cart[V, V], V]],
equal[composite[x, cross[x, Id]], composite[x, cross[Id, x], ASSOC]]]

The wrapped and unwrapped predicates are logically equivalent:

\begin{verbatim}
In[10]:= equiv[associative[x], ASSOCIATIVE[x]] // not // not
Out[10]= True

The unwrapped predicate makes it easy to find some examples of associative relations:

\begin{verbatim}
In[11]:= Select[NamedClasses, ASSOCIATIVE]
Out[11]= {0, CAP, COMPOSE, CUP, FIRST, NATADD, NATMUL, SECOND, SYMDIF}

The corresponding wrapped rules can be derived:

\begin{verbatim}
In[12]:= Map[AssertTest[associative[#]] &,
{0, CAP, COMPOSE, CUP, FIRST, NATADD, NATMUL, SECOND, SYMDIF}] // TableForm
Out[12]//TableForm=
associative[0] == True
associative[CAP] == True
associative[COMPOSE] == True
associative[CUP] == True
associative[FIRST] == True
associative[NATADD] == True
associative[NATMUL] == True
associative[SECOND] == True
associative[SYMDIF] == True

These are made into rewrite rules:
\end{verbatim}
In[13]:= associative[0] := True

In[14]:= associative[CAP] := True

In[15]:= associative[COMPOSE] := True

In[16]:= associative[CUP] := True

In[17]:= associative[FIRST] := True

In[18]:= associative[NATADD] := True

In[19]:= associative[NATMUL] := True

In[20]:= associative[SECOND] := True

In[21]:= associative[SYMDIF] := True

This example is useful for providing a counterexample at the end of this notebook. It also shows that associative relations need not be functions.

In[22]:= associative[cart[cart[x, x], y]] // AssertTest

Out[22]= associative[cart[cart[x, x], y]] == True

In[23]:= associative[cart[cart[x_, x_], y_]] := True

To provide some simple counterexamples, the following may be useful:

In[24]:= associative[Id] // AssertTest

Out[24]= associative[Id] == False

In[25]:= associative[Id] := False

In[26]:= associative[V] // AssertTest

Out[26]= associative[V] == False

In[27]:= associative[V] := False

a theorem

In this section it will be shown that if \(x \) satisfies just the equational condition in the definition of associativity, then \(\text{composite}[x, \text{id}[\text{cart}[V, V]]] \) is associative. The following lemma is needed:

In[28]:= Assoc[cross[x, y], cross[Id, cross[Id, Id]], ASSOC] // Reverse

Out[28]= composite[cross[x, composite[y, id[cart[V, V]]]], ASSOC] ==
 composite[cross[x, y], ASSOC]

In[29]:= composite[cross[x_, composite[y_, id[cart[V, V]]]], ASSOC] :=
 composite[cross[x, y], ASSOC]
The result may be rewritten as follows:

To derive the corresponding wrapped version of this, a lemma is needed:

What about the converse? It is not true, as the following example shows:

This is made into a temporary rewrite rule:

The result may be rewritten as follows:

To derive the corresponding wrapped version of this, a lemma is needed:

The transfer from the unwrapped version to the wrapped version is done as follows:

What about the converse? It is not true, as the following example shows: