summary

By definition, a binary homomorphism \(t \in \text{binhom}[x, y] \) is a mapping from \(\text{fix}[\text{domain}[x]] \) to \(\text{fix}[\text{domain}[y]] \) which satisfies the equation \(t \circ x = y \circ (t \otimes t) \). In this notebook it is shown that if \(x \) and \(y \) are binary operations, this equation follows from the (seemingly weaker) inclusion \(t \circ x \subseteq y \circ (t \otimes t) \).

derivation

For simplicity, the derivation is first given using \texttt{funpart} and \texttt{binop} wrappers, which are subsequently eliminated.

Lemma. This derivation contains all the essential steps. Two temporary variables \(u \) and \(v \) are introduced, and eliminated from the final result. The key idea is that if \(u \subseteq v \) and \(v \) is a function, and if \(\text{domain}[u] = \text{domain}[v] \), then \(u = v \).
Theorem. Here the funpart wrapper is removed, and the constructor binhom is introduced.

Corollary. If \(x \) and \(y \) are binary operations and if the mapping \(t: \text{fix}[\text{domain}[x]] \to \text{fix}[\text{domain}[y]] \) satisfies the condition \(t \circ x \subseteq y \circ (t \otimes t) \), then \(t \) is a binary homomorphism: \(t \in \text{binhom}[x, y] \). (The corollary follows from the theorem by removing the \text{binop} wrappers in a standard fashion.)
In[6]:= SubstTest[implies, and[equal[x, binop[u]],
equal[y, binop[v]], member[t, map[fix[domain[x]], fix[domain[y]]]],
subclass[composite[t, x], composite[y, cross[t, t]]],
member[t, binhom[x, y]], {u \rightarrow x, v \rightarrow y}] // Reverse

Out[6]= or[member[t, binhom[x, y]], not[member[t, map[fix[domain[x]], fix[domain[y]]]]],
not[member[x, BINOPS]], not[member[y, BINOPS]],
not[subclass[composite[t, x], composite[y, cross[t, t]]]]] = True

In[7]:= or[member[t_, binhom[x_, y_]], not[member[t_, map[fix[domain[x_]], fix[domain[y_]]]]],
not[member[x_, BINOPS]], not[member[y_, BINOPS]],
not[subclass[composite[t_, x_], composite[y_, cross[t_, t_]]]]] := True