connex strict orders and total orders

Johan G. F. Belinfante
2010 February 8

A relation \(x \) is connex (or connected) if each pair of elements in \(\text{udora}[x] \) are related by either \(x \) or its inverse. This condition can be stated formally as \(\text{udora}[x] \times \text{udora}[x] \subseteq \text{Id} \cup x \cup \text{inverse}[x] \). There is an almost but not quite equivalent condition that avoids explicit mention of \(\text{udora}[x] = \text{domain}[x] \cup \text{range}[x] \), but introduces an additional variable \(y \) that is generally equal to \(\text{udora}[x] \) except in certain trivial situations. This condition is: \(x \subseteq y \times y \subseteq \text{Id} \cup x \cup \text{inverse}[x] \). The main advantage of this alternate description is that it makes replacing \(x \) with a restriction easier to do. In this notebook rewrite rules are derived that relate these two formulations of connectedness. If \(y \) is connected by the relation \(x \), then either \(y \) is a singleton or \(y \subseteq \text{udora}[x] \). If \(x \) is a strict order and \(x \subseteq y \times y \subseteq \text{Id} \cup x \cup \text{inverse}[x] \), then \(x \cup \text{id}[y] \) is a total order. It follows as a corollary that if a class \(y \) is connected by a strict order \(x \) then \((\text{Id} \cup x) \cap (y \times y) \) is a total order, and consequently the cover relation of \(x \cap (y \times y) \) is a function.

One says that a class \(y \) is connected by a relation \(x \) if \(y \times y \subseteq \text{Id} \cup x \cup \text{inverse}[x] \). When this is the case, it almost follows that the class \(y \) is contained in \(\text{udora}[x] \). The following lemma stops just short of saying this because of the presence of an intersection of \(y \) with \(\text{image}[\text{Di}, y] \).

Lemma.

\[
\text{In}[2]:= \text{SubstTest}[\text{implies}, \text{subclass}[u, v], \text{subclass}[\text{domain}[u], \text{domain}[v]], \\
\{u \rightarrow \text{restrict[Di, y, y]}, v \rightarrow \text{union[x, inverse[x]]}\}] // \text{Reverse}
\]

\[
\text{Out}[2]= \text{or[not[subclass[cart[y, y], union[\text{Id, x, inverse[x]]]], \\
\text{subclass[intersection[y, image[Di, y]], union[domain[x], range[x]]]]} = \text{True}}
\]

\[
\text{In}[3]:= \{\% /. \{x \rightarrow _-, y \rightarrow _-\}\} /. \text{Equal} \rightarrow \text{SetDelayed}
\]
Lemma. This lemma helps eliminate the intersection with image[D, y].

\[
\text{In[4]:=} \text{SubstTest[implies, and[equal[y, t], subclass[t, x]],}
\text{subclass[y, x], t -> intersection[y, image[D, y]]] // Reverse}
\]

\[
\text{Out[4]=} \text{or[member[y, range[SINGLETON]],}
\not[\text{subclass[intersection[y, image[D, y]], x]], subclass[y, x]] = True}
\]

\[
\text{In[5]:=} \text{(% /. \{x \rightarrow x_, y \rightarrow y_\}) /. Equal \rightarrow SetDelayed}
\]

Theorem. If \(y \) is connected by the relation \(x \), then either \(y \) is a singleton or \(y \subset udora[x] \).

\[
\text{In[6]:=} \text{Map[not, SubstTest[and, implies[p1, p2], implies[p2, p3],}
\not[\text{implies[p1, p3]], \{p1 -> subclass[cart[y, y], union[Id, x, inverse[x]]],}
\text{p2 -> subclass[intersection[y, image[D, y]], udora[x]],}
\text{p3 -> or[member[y, range[SINGLETON]], subclass[y, udora[x]]]]] // Reverse}
\]

\[
\text{Out[6]=} \text{or[member[y, range[SINGLETON]],}
\not[\text{subclass[cart[y, y], union[Id, x, inverse[x]]]],}
\text{subclass[y, union[domain[x], range[x]]]] = True}
\]

\[
\text{In[7]:=} \text{or[member[y_, range[SINGLETON]],}
\not[\text{subclass[cart[y_, y_], union[Id, inverse[x], x_]]},
\text{subclass[y_, union[domain[x], range[x]]]] := True}
\]

Lemma. (A corollary of the coextension principle for the case of unions.)

\[
\text{In[8]:=} \text{or[equal[z, union[x, y]], notsubclass[x, z]],}
\not[\text{subclass[z, union[x, y]]] // NotNotTest}
\]

\[
\text{Out[8]=} \text{or[equal[z, union[x, y]], notsubclass[x, z]],}
\not[\text{subclass[y, z]], notsubclass[z, union[x, y]]] = True}
\]

\[
\text{In[9]:=} \text{(% /. \{x \rightarrow x_, y \rightarrow y_\, z \rightarrow z_\}) /. Equal \rightarrow SetDelayed}
\]

A relation \(x \) is connex (or connected) if \(udora[x] \) is connected by \(x \).

Theorem. If \(x \subset y \times y \subset Id \cup x \cup \text{inverse}[x] \), then either \(y \) is a singleton or \(y = udora[x] \).

\[
\text{In[10]:=} \text{Map[not, SubstTest[and, implies[and[p2, p3, p5], p6], not[implies[p1, or[p4, p6]]],}
\{p1 -> andsubclass[x, cart[y, y]], subclass[cart[y, y], union[Id, x, inverse[x]]],}
\text{p2 -> subclass[domain[x], y], p3 -> subclass[range[x], y],}
\text{p4 -> member[y, range[SINGLETON]], p5 -> subclass[y, union[domain[x], range[x]]],}
\text{p6 -> equal[y, union[domain[x], range[x]]]]] // Reverse}
\]

\[
\text{Out[10]=} \text{or[equal[y, union[domain[x], range[x]]],}
\text{member[y, range[SINGLETON]], notsubclass[x, cart[y, y]]],}
\not[\text{subclass[cart[y, y], union[Id, x, inverse[x]]]]] = True}
\]

\[
\text{In[11]:=} \text{or[equal[y_, union[domain[x_], range[x_]]],}
\text{member[y_, range[SINGLETON]], notsubclass[x_, cart[y_, y_]]],}
\not[\text{subclass[cart[y_, y_], union[Id, x_, inverse[x_]]]]] := True}
\]
the case that y is a singleton

When x is irreflexive, then the case that y is a singleton can only arise if $x = 0$.

Lemma.

\[
\text{In[12]} := \text{SubstTest[implies, subclass[x, set[t]], or[empty[x], equal[x, set[t]]], t \to \text{PAIR}[y, y]] // Reverse}
\]

\[
\text{Out[12]} = \text{or[equal[0, x], equal[x, cart[set[y], set[y]]], not[subclass[x, cart[set[y], set[y]]]] == True}
\]

\[
\text{In[13]} := (\% /. \{x \to x_, y \to y_\}) /. \text{Equal} \to \text{SetDelayed}
\]

Lemma.

\[
\text{In[14]} := \text{Map[not, SubstTest[and, implies[p1, or[p3, p4]], implies[and[p2, p3], p4], not[implies[and[p1, p2], p4], \{p1 \to \text{subclass[x, cartsq[set[y]]]}, p2 \to \text{empty[fix[x]]}, p3 \to \text{equal[x, cart[set[y], set[y]]]}, p4 \to \text{empty[x]}\}]] // Reverse}
\]

\[
\text{Out[14]} = \text{or[equal[0, x], not[equal[0, fix[x]]], not[subclass[x, cart[set[y], set[y]]]] == True}
\]

\[
\text{In[15]} := (\% /. \{x \to x_, y \to y_\}) /. \text{Equal} \to \text{SetDelayed}
\]

Corollary. An irreflexive relation contained in the cartesian square of a singleton is empty.

\[
\text{In[16]} := \text{Map[equal[V, \#] \&, SubstTest[class, t, or[equal[0, x], not[equal[0, fix[x]]]], not[equal[y, set[t]]], not[subclass[x, z]], z \to \text{cart[y, y]]}]
\]

\[
\text{Out[16]} = \text{or[equal[0, x], not[equal[0, fix[x]]]], not[member[y, range[SINGLETON]]], not[subclass[x, cart[y, y]]]] == True}
\]

\[
\text{In[17]} := \text{or[equal[0, x_], not[equal[0, fix[x_]]], not[member[y_, range[SINGLETON]]], not[subclass[x_, cart[y_, y_]]]]} := \text{True}
\]

connex strict relation

A **strict order** is an irreflexive transitive order.

Theorem. If x is a strict order and $x \subset y \times y \subset \text{Id} \cup x \cup \text{inverse}[x]$, then $x \cup \text{id}[y]$ is a total order.
Lemma. A simplification rule.

In[20]:= SubstTest[or, not[equal[0, fix[t]]], not[subclass[t, cart[y, y]]],
not[subclass[cart[y, y], union[Id, t, inverse[t]]]],
TOTALORDER[union[t, id[y]], t -> restrict[x, y, y]]] // AssertTest

Out[20]= or[not[equal[0, union[Id, t, inverse[t]]]],
not[subclass[cart[y, y], union[Id, t, inverse[t]]]],
TOTALORDER[union[t, id[y]], t -> restrict[x, y, y]]]

In[21]:= subclass[cart[y, y], union[Id, composite[id[y]], x, id[y]]],
composite[id[y], inverse[x, id[y]]]] // AssertTest

Out[21]= subclass[cart[y, y],
union[Id, composite[id[y]], x, id[y]],
composite[id[y], inverse[x, id[y]]]]

Lemma.

In[22]:= SubstTest[or, not[equal[0, intersection[y, fix[x]]]]],
not[subclass[cart[y, y], union[Id, x, inverse[x]]]],
TOTALORDER[union[composite[cart[y, y], x, id[y]]],
inverse[x, id[y]]]] // Reverse

Out[22]= or[not[union[Id, x, inverse[x]]]],
not[subclass[cart[y, y], union[Id, x, inverse[x]]]],
TOTALORDER[union[composite[cart[y, y], x, id[y]]],
inverse[x, id[y]]]]

In[23]:= (% /. {x -> x_, y -> y_}) /. Equal -> SetDelayed

Corollary. If a class \(y\) is connected by a strict order \(x\), then \(id[x] \cup restrict[x, y, y]\) is a total order.

In[24]:= Map[not, SubstTest[and, implies[and[p1, p3],
implies[and[p2, p3], or[implies[and[p1, p2], p4]]],
tp1 -> STRICTORDER[x], p2 -> subclass[cart[y, y], union[Id, x, inverse[x]]]],
p3 -> STRICTORDER[restrict[x, y, y]],
p4 -> TOTALORDER[union[composite[cart[y, y], x, id[y]]], id[y]]]]] // Reverse

Out[24]= or[not[equal[0, fix[x]]]],
not[subclass[cart[y, y], union[Id, x, inverse[x]]]],
TOTALORDER[union[composite[cart[y, y], x, id[y]]], id[y]]]]]
Corollary. If a class y is connected by a strict order x, then the cover relation of $x \cap (y \times y)$ is a function.