the class ENUMS

Johan G. F. Belinfante
2010 December 3

In[1]:= SetDirectory["l:"; << goedel.10dec01a

:Package Title: goedel.10dec01a

2010 December 1 at 12:30 noon

It is now: 2010 Dec 3 at 8:19

Loading Simplification Rules

TOOLS.M is now incorporated in the GOEDEL program as of 2010 September 3

weightlimit = 40

summary

The definition of \texttt{enum}[x] as the union of partial enumerations of the ordinals in the class \(x \) does not provide a membership rule, and makes it difficult to quantify over the variable \(x \). It is nonetheless possible to derive variable-free statements about all enumerations by exploiting the fact that \texttt{enum}[x] is the unique function contained in \(\Omega \times \Omega \) that subcommutes with the membership relation and whose range is the class of ordinals in \(x \). In this notebook the class \texttt{ENUMS} of all (small) enumerations is defined, and some of its properties are derived.

introduction

In this section a rewrite rule is derived that allows one to regard \texttt{enum}[x] as a wrapper for enumerations.

Lemma.

In[4]:= SubstTest[subcommute, funpart[t], E, t -> enum[x]] // Reverse

Out[4]= subclass[composite[enum[x], E], composite[inverse[IMAGE[inverse[enum[x]]]], E]] := True

In[5]:= subclass[composite[enum[x_], E],
 composite[inverse[IMAGE[inverse[enum[x_]]]], E]] := True

The following rewrite rule characterizing enumerations resembles a wrapper-removal rule.

Theorem.

In[6]:= equiv[equal[x, enum[range[x]]], and[FUNCTION[x],
 subclass[x, cart[OMEGA, OMEGA]], subclass[composite[x, E], composite[E, x]]]]

The class `ENUMS` of all (small) enumerations is defined by the following equation.

```plaintext
In[8]:= intersection[FUNS,
    image[INVERSE, subcommutant[inverse[E]]], P[cart[OMEGA, OMEGA]]] := ENUMS
```

It is easier to reason about the class `ENUMS` if membership statements do not automatically expand out. Accordingly, only theorems about membership will be derived.

Theorem.

```plaintext
In[9]:= Map[implies[#, FUNCTION[x]] &, SubstTest[member, x, intersection[u, v],
    {u -> intersection[FUNS, image[INVERSE, subcommutant[inverse[E]]]],
    v -> P[cartsq[OMEGA]]}]] // Reverse
Out[9]= or[FUNCTION[x], not[member[x, ENUMS]]] = True
```

Theorem.

```plaintext
In[10]:= or[FUNCTION[x_], not[member[x_, ENUMS]]] := True
```

Theorem.

```plaintext
In[11]:= Map[implies[#, subcommute[x, E]] &, SubstTest[member, x, intersection[u, v],
    {u -> intersection[FUNS, image[INVERSE, subcommutant[inverse[E]]]],
    v -> P[cartsq[OMEGA]]}]] // Reverse
Out[11]= or[not[member[x, ENUMS]], subclass[composite[x, E], composite[E, x]]] = True
```

Theorem.

```plaintext
In[12]:= or[not[member[x_, ENUMS]], subclass[composite[x_, E], composite[E, x_]]] := True
```

Theorem.

```plaintext
In[13]:= Map[implies[#, subclass[x, cartsq[OMEGA]]] &, SubstTest[member, x, intersection[u, v],
    {u -> intersection[FUNS, image[INVERSE, subcommutant[inverse[E]]]],
    v -> P[cartsq[OMEGA]]}]] // Reverse
Out[13]= or[not[member[x, ENUMS]], subclass[x, cart[OMEGA, OMEGA]]] = True
```

In the reverse direction, one has:

Theorem.
The following may nonetheless be convenient.

Theorem.

Lemma.

Theorem.
In[31]:= and[equal[x, enum[range[x]]], member[x, V]]
Out[31]= member[x, ENUMS]

ranges of enumerations

Lemma.

In[32]:= SubstTest[implies, member[pair[x, y], composite[Id, t]], member[x, domain[t]],
{t -> composite[id[ENUMS], inverse[IMAGE[SECOND]], y -> enum[x]]} // Reverse
Out[32]= or[member[x, image[IMAGE[SECOND], ENUMS]],
not[member[x, V]], notsubclass[x, OMEGA]] = True

In[33]:= (% /. x -> x_) /. Equal -> SetDelayed

Theorem. (Eliminate the variable x.)

In[34]:= Map[equal[V, #] & , SubstTest[class, x, implies[member[x, u], member[x, v]],
{u -> P[OMEGA], v -> image[IMAGE[SECOND], ENUMS]]]
Out[34]= subclass[P[OMEGA], image[IMAGE[SECOND], ENUMS]] = True

In[35]:= subclass[P[OMEGA], image[IMAGE[SECOND], ENUMS]] := True

Lemma. (Eliminating the variable x.)

In[40]:= SubstTest[implies, and[member[x, v], equal[x, enum[range[x]]]],
subclass[range[x], OMEGA], v -> V] // Reverse
Out[40]= or[not[member[x, ENUMS]], subclass[range[x], OMEGA]] = True

In[41]:= or[not[member[x_, ENUMS]], subclass[range[x_], OMEGA]] := True

Lemma. (Eliminating the variable x.)

In[42]:= Map[equal[V, #] & , SubstTest[class, x, implies[member[x, u], member[x, v]],
{u -> ENUMS, v -> image[inverse[IMAGE[SECOND]], P[OMEGA]]}]]

In[43]:= % /. Equal -> SetDelayed

Theorem.

In[44]:= SubstTest[and, subclass[u, v], subclass[v, u],
{u -> P[OMEGA], v -> image[IMAGE[SECOND], ENUMS]]]
Out[44]= equal[image[IMAGE[SECOND], ENUMS], P[OMEGA]] = True

In[45]:= image[IMAGE[SECOND], ENUMS] := P[OMEGA]
domains of enumerations

Theorem.

\[
\text{SubstTest[implies, and[member[x, V], equal[x, enum[t]]], member[domain[x], OMEGA], t \to range[x]]} \quad \text{// Reverse}
\]

\[
\text{or[member[domain[x], OMEGA], not[member[x, ENUMS]]]} = \text{True}
\]

Lemma. (Eliminate the variable \(x \).)

\[
\text{Map[equal[V, #] \&, SubstTest[class, x, implies[member[x, u], member[x, v]], \{u \to \text{ENUMS, } v \to \text{image[\text{inverse[IMAGE[\text{FIRST}], OMEGA}]\}}\]}}
\]

\[
\text{subclass[\text{image[IMAGE[\text{FIRST}], ENUMS], OMEGA]} = \text{True}}
\]

An inclusion in the opposite direction can be derived by considering enumerations of ordinals.

Lemma. The identity function on any ordinal is an enumeration.

\[
\text{SubstTest[member, enum[t], ENUMS, t \to \text{ord[x]}]} \quad \text{// Reverse}
\]

\[
\text{member[id[\text{ord[x]}], ENUMS]} = \text{True}
\]

Corollary. A simple special case.

\[
\text{SubstTest[member, id[\text{ord[x]}], ENUMS, x \to 0]} \quad \text{// Reverse}
\]

\[
\text{member[0, ENUMS]} = \text{True}
\]

Theorem.

\[
\text{Map[empty, SubstTest[reify, x, dif[set[\text{ord[x]}], t], t \to \text{image[\text{inverse[IMAGE[DUP]], ENUMS}]}}]}
\]

\[
\text{subclass[\text{image[IMAGE[DUP], OMEGA], ENUMS}} = \text{True}
\]

\[
\text{subclass[\text{image[IMAGE[DUP], ENUMS]} = \text{True}}
\]

Corollary. An inclusion in the opposite direction form an earlier one.
Theorem. The class of domains of (small) enumerations is Ω.

Lemma. Enumerations with the same range are equal.

Theorem. The function $\text{IMAGE}[\text{SECOND}]$ restricted to ENUMS is one-to-one.
This provides a one-to-one correspondence between sets of ordinals and enumerations. The composite of this function with \texttt{IMAGE[FIRST]} yields a one-to-one correspondence between sets of ordinals and ordinals.

Corollary.

\texttt{In[87]}:= \texttt{SubstTest[FUNCTION, composite[funpart[u], funpart[v]],
\{u \rightarrow \texttt{IMAGE[FIRST]}, v \rightarrow \texttt{composite[id[ENUMS], inverse[IMAGE[SECOND]]]}})]} // \texttt{Reverse}

\texttt{Out[87]}= \texttt{FUNCTION[inverse[image[DORA, ENUMS]]]} = True

\texttt{In[88]}:= \texttt{FUNCTION[inverse[image[DORA, ENUMS]]]} := True

Comment. The function \texttt{inverse[image[DORA, ENUMS]]} assigns an ordinal to each set of ordinals, usually called its \textit{order type}.

closure under unions of chains

In this section it is shown that the class of enumerations is closed under unions of chains. This is true because each of the three classes whose intersection is \texttt{ENUMS} also has that property. In fact, two of these three classes is closed under arbitrary unions. The class \texttt{FUNS} is the only one of the three that is not closed under arbitrary unions.

Lemma. (Closure under arbitrary unions implies closure under unions of chains.)

\texttt{In[91]}:= \texttt{SubstTest[Uchains, Uclosure[t], t \rightarrow \texttt{image[INVERSE, subcommutant[x]]}})]} // \texttt{Reverse}

\texttt{Out[91]}= \texttt{Uchains[image[INVERSE, subcommutant[x]]]} = \texttt{image[INVERSE, subcommutant[x]]}

\texttt{In[92]}:= \texttt{Uchains[image[INVERSE, subcommutant[x_]]]} := \texttt{image[INVERSE, subcommutant[x]]}

Theorem. The class \texttt{ENUMS} is closed under unions of chains.

\texttt{In[93]}:= \texttt{SubstTest[implies, and[equal[x, Uchains[x]], equal[y, Uchains[y]]],
equal[intersection[x, y], Uchains[intersection[x, y]]],
{x \rightarrow \texttt{FUNS}, y \rightarrow \texttt{intersection[
image[INVERSE, subcommutant[\texttt{inverse[E]}]], P[cart[\texttt{OMEGA}, \texttt{OMEGA}]]}})]} // \texttt{Reverse}

\texttt{Out[93]}= \texttt{equal[ENUMS, Uchains[ENUMS]]} = True

\texttt{In[94]}:= \texttt{Uchains[ENUMS]} := \texttt{ENUMS}

enumerations are one-to-one

Lemma.

\texttt{In[96]}:= \texttt{SubstTest[implies, and[member[x, V], equal[x, enum[t]]],
\text{member[x, BIJ], t \rightarrow range[x]} \text{]} \text{ // MapNotNot} // Reverse}

\texttt{Out[96]}= \texttt{or[FUNCTION[inverse[x]], not[member[x, ENUMS]]]} = True
Lemma.

\textbf{In}[103]:= member[x, \text{dif[ENUMS, BIJ]}] // NotNotTest

\textbf{Out}[103]= \text{or[and[member[x, ENUMS], not [FUNCTION[x]]],}
\text{and[member[x, ENUMS], not [FUNCTION[inverse[x]]]]] = False}

\textbf{In}[104]= \text{nothing} /. \text{Equal} \rightarrow \text{SetDelayed}

Theorem. Every enumeration is a bijection.

\textbf{In}[105]= Map[empty, \text{dif[ENUMS, BIJ]} // Normality]

\textbf{Out}[105]= \text{subclass[ENUMS, BIJ] = True}

\textbf{In}[106]= \text{subclass[ENUMS, BIJ] := True}

Corollary. Any set of ordinals is equipollent to its order type.

\textbf{In}[108]= \text{SubstTest[implies, subclass[u, v],}
\text{subclass[image[t, u], image[t, v]], \{t \rightarrow \text{DORA}, u \rightarrow \text{ENUMS}, v \rightarrow \text{BIJ}\] // Reverse}

\textbf{Out}[108]= \text{subclass[image[\text{DORA, ENUMS}], Q] = True}

\textbf{In}[109]= \text{subclass[image[\text{DORA, ENUMS}], Q] := True}