summary

A wrapped membership rule is introduced for \texttt{hull[x,y]}, and replacements for a large number of existing rewrite rules are derived. By delaying the normalization of \texttt{hull}, existing rules can conveniently be used to help derive their replacements.

definitions

The definition of \texttt{hull} is given in wrapped form. Unless special measures are taken, a default rule for wrapped membership would prevent the \texttt{GOEDEL} program from recognizing this new definition. To get around this problem, the dummy variable in \texttt{class} is called \texttt{u} so that sorting the down values for \texttt{class} will cause the new rule to precede the default rule.

\begin{verbatim}
In[3]:= class[u_, member[v_, hull[x_, y_]]] := Module[{w = Unique[]},
 class[u, forall[w, implies[and[member[w, x], subclass[y, w]], member[v, w]]]]
\end{verbatim}

The wrapped definition of \texttt{trv[x]} will also be replaced:

\begin{verbatim}
In[4]:= class[u_, member[x_, trvnew[y_]]] := Module[{z = Unique[]},
 class[u,
 exists[z, and[member[x, hull[TRV, z]], subclass[z, y], subclass[z, cart[V, V]]]]]]
\end{verbatim}

\begin{verbatim}
In[5]:= DownValues[class] = Sort[DownValues[class]];
\end{verbatim}

The correctness of this replacement for \texttt{trv[x]} will now be verified, but no further use of \texttt{trvnew[x]} will be made of this in the rest of this notebook.

\begin{verbatim}
In[6]:= trvnew[x] // Normality
\end{verbatim}

Normalization

The new constructor will not immediately be normalized, but instead Normality will be used to derive a temporary equality rule:

\[
\text{In[7]:=} \quad \text{Map[equal[hull[x, y], #] &, hull[x, y] // Normality // Reverse]}
\]

```
Reverse::normal : Nonatomic expression expected at position 1 in Reverse[True]. More...
```

```
Out[7]= equal[True, hull[x, y]]
```

\[
\text{In[8]:=} \quad \text{equal[A[intersection[x_, image[S, singleton[y_]]]], hull[x_, y_]] := True}
\]

When hull is later normalized, the equality rule will no longer be needed. Later in this notebook it will be replaced with a rewrite rule, but only after various replacement rules have been derived.

deriving formulas for hull using equality

Delaying the normalization of hull allows one to take advantage of existing rewrite rules to derive the needed replacement rules using equality substitution. For example:

\[
\text{In[9]:=} \quad \text{SubstTest[implies, and[equal[u, v], subclass[y, v], subclass[y, u],}
\quad \{u -> hull[x, y], v -> A[intersection[x, image[S, singleton[y]]]]]}]
\]

```
Out[9]= subclass[y, hull[x, y]] := True
```

\[
\text{In[10]:=} \quad \text{subclass[y_, hull[x_, y_]] := True}
\]

rules for argument 0

Two rules can be derived when one of the arguments is the empty set.

\[
\text{In[11]:=} \quad \text{hull[0, x] // Normality}
\]

```
```

\[
\text{In[12]:=} \quad \text{hull[0, x_] := V}
\]

\[
\text{In[13]:=} \quad \text{hull[x, 0] // Normality}
\]

```
```

\[
\text{In[14]:=} \quad \text{hull[x_, 0] := A[x]}
\]

rules for argument V

When one of the arguments of hull is the universal class V, one has:
The class `hull[x,y]` need not be a set. The following sethood rules hold:

In[19]:= member[hull[x, y], V] // AssertTest
Out[19]= True

In[20]:= member[hull[x_, y_], V] := member[y, image[inverse[S], x]]

Note that when `hull[x,y]` is not a set, it must be V.

In[21]:= equal[V, hull[x, y]] // AssertTest
Out[21]= True

In[22]:= equal[V, hull[x_, y_]] := not[member[y, image[inverse[S], x]]]

equality rules for hull

One needs lemmas to derive equality substitution rules for each of the arguments of `hull`.

In[23]:= SubstTest[implies, equal[u, v], equal[image[w, u], image[w, v]],
{u -> x, v -> y, w -> composite[complement[inverse[E]], id[image[S, singleton[z]]]]}]

Out[23]= or[equal[A[intersection[x, image[S, singleton[z]]]],
A[intersection[y, image[S, singleton[z]]]], not[equal[x, y]]] = True

In[24]:= (%/ {x -> x_, y -> y_, z -> z_}) /. Equal -> SetDelayed

In[25]:= implies[equal[x, y], equal[hull[x, z], hull[y, z]]] // AssertTest
Out[25]= True

In[26]:= or[equal[hull[x_, z_], hull[y_, z_]], not[equal[x_, y_]]] := True
In[27]:= SubstTest[implies, equal[u, v], equal[image[w, u], image[w, v]],
{u -> image[S, singleton[y]], v -> image[S, singleton[z]],
 w -> composite[complement[inverse[E]], id[x]]}]

Out[27]= or[equal[A[intersection[x, image[S, singleton[y]]]],
 A[intersection[x, image[S, singleton[z]]]]],
 not[equal[singleton[y], singleton[z]]] = True

In[28]:= (% /. {x -> x_, y -> y_, z -> z_}) /. Equal -> SetDelayed

In this case, some additional reasoning is required:

In[29]:= Map[not, SubstTest[and, implies[p1, p2], implies[p2, p3],
 not[implies[p1, p3]], {p1 -> equal[y, z], p2 -> equal[singleton[y], singleton[z]],
 p3 -> equal[A[intersection[x, image[S, singleton[y]]]],
 A[intersection[x, image[S, singleton[z]]]]}]])

Out[29]= or[equal[A[intersection[x, image[S, singleton[y]]]],
 A[intersection[x, image[S, singleton[z]]]]],
 not[equal[y, z]] = True

In[30]:= (% /. {x -> x_, y -> y_, z -> z_}) /. Equal -> SetDelayed

Finally, one needs to use AssertTest:

In[31]:= implies[equal[y, z], equal[hull[x, y], hull[x, z]]] // AssertTest
Out[31]= True

In[32]:= or[equal[hull[x_, y_], hull[x_, z_]], not[equal[y_, z_]]] := True

monotonicity properties of hull

The use of AssertTest yields a monotonicity property with respect to the second argument:

In[33]:= impliessubclass[y, z], subclass[hull[x, y], hull[x, z]]] // AssertTest
Out[33]= True

In[34]:= or[notsubclass[y_, z_], subclass[hull[x_, y_], hull[x_, z_]]] := True

For the first argument, monotonicity does not hold, but instead one has an antitone property, which one can derive using AssertTest.

In[35]:= impliessubclass[x, y], subclass[hull[y, z], hull[x, z]]] // AssertTest
Out[35]= True

In[36]:= or[notsubclass[x_, y_], subclass[hull[y_, z_], hull[x_, z_]]] := True

idempotence of hull

To derive the idempotence of hull, the use of AssertTest does not suffice. In one direction, no new rule is needed
5

```
In[37]:= subclass[hull[x, y], hull[x, hull[x, y]]]

Out[37]= True
```

From the idempotence of `HULL[x]` one finds:

```
In[38]:= Map[assert[implies[member[y, image[inverse[S, x]]],
member[A[intersection[x, image[S, singleton[intersection[x, image[S, singleton[y]]]]]]], #]] &,
ImageComp[HULL[x], HULL[x], singleton[y]] /* Reverse

Out[38]= or[not[member[y, image[inverse[S, x]]]], subclass[A[
intersection[x, image[S, singleton[intersection[x, image[S, singleton[y]]]]]]],
A[intersection[x, image[S, singleton[y]]]]] == True

In[39]:= (% /. {x -> x_, y -> y_}) /. Equal -> SetDelayed
```

This yields a partial result:

```
In[40]:= implies[member[y, image[inverse[S, x]]],
equal[hull[x, hull[x, y]], hull[x, y]] /* AssertTest

Out[40]= or[equal[hull[x, y], hull[x, hull[x, y]]], not[member[y, image[inverse[S, x]]]]] ==
or[not[member[y, image[inverse[S, x]]], subclass[hull[x, hull[x, y]], hull[x, y]]]

In[41]:= (% /. {x -> x_, y -> y_}) /. Equal -> SetDelayed
```

For the case that `y` does not belong to `image[inverse[S, x]]` one needs two lemmas. This is the first:

```
In[42]:= SubstTest[implies, and[equal[u, v], member[v, w]], member[u, w],
{u -> V, v -> hull[x, y], w -> image[inverse[S, x]]}

Out[42]= or[member[y, image[inverse[S, x]]],
not[member[hull[x, y], image[inverse[S, x]]]]] == True

In[43]:= (% /. {x -> x_, y -> y_}) /. Equal -> SetDelayed
```

The second lemma is this:

```
In[44]:= SubstTest[implies, and[equal[u, v], equal[v, w]],
equal[u, w], {u -> hull[x, hull[x, y]], v -> V, w -> hull[x, y]]

Out[44]= or[equal[hull[x, y], hull[x, hull[x, y]]],
member[y, image[inverse[S, x]]], member[hull[x, y], image[inverse[S, x]]]] == True

In[45]:= (% /. {x -> x_, y -> y_}) /. Equal -> SetDelayed
```

The idempotence result now follows:
miscellaneous hull rules

The rules derived in this section are replacements for existing rewrite rules for `hull`.

examples

Rewrite rules that eliminate `hull` can often be derived using `Normality`. For example:

```
In[55]:= hull[image[S, singleton[x]], y] // Normality
Out[55]= True

In[56]:= hull[image[S, singleton[x]], y] := union[x, y, complement[image[V, singleton[x]]], complement[image[V, singleton[y]]]]
In[57]:= hull[FULL, x] // Normality
Out[57]= True
```
The following rules replace two other existing rules:

```
In[58]:= hull[ACYCLIC, x_] :=
  union[x, complement[image[V, intersection[ACYCLIC, singleton[x]]]]]
```

```
In[59]:= hull[range[POWER], x] // Normality
Out[59]= True
```

```
In[60]:= subclass[trv[x], hull[TRV, x_]] // AssertTest
Out[60]= True
```

```
In[61]:= subclass[hull[TRV, x], cart[V, V]] // AssertTest
Out[61]= True
```

```
In[62]:= subclass[hull[TRV, x_], cart[V, V]] :=
  and[member[x, V], subclass[x, cart[V, V]]]
```

```
In[63]:= subclass[trv[x], hull[TRV, x]] // AssertTest
Out[63]= True
```

```
In[64]:= subclass[trv[x_], hull[TRV, x_]] := True
```

```
In[65]:= SubstTest[implies, and[equal[u, v], equal[v, w]], equal[u, w],
  {u -> A[intersection[TRV, image[S, singleton[x]]]], v -> hull[TRV, x], w -> trv[x]}]
Out[65]= or[equal[hull[TRV, x], trv[x]], not[member[x, V]], not[subclass[x, cart[V, V]]]] = True
```

```
In[66]:= (%/._.*_) /竣工Equal --> SetDelayed
```

```
In[67]:= SubstTest[implies, and[equal[u, v], equal[v, w]], equal[u, w],
  {u -> A[intersection[TRV, image[S, singleton[x]]]], v -> hull[TRV, x], w -> trv[x]}]
Out[67]= or[and[member[x, V], subclass[x, cart[V, V]]], not[equal[hull[TRV, x], trv[x]]]] = True
```

```
In[68]:= (%/._.*_) /竣工Equal --> SetDelayed
```

```
In[69]:=equiv[equal[trv[x], hull[TRV, x]], and[member[x, V], subclass[x, cart[V, V]]]]
Out[69]= True
```

```
In[70]:= equal[hull[TRV, x_], trv[x_]] := and[member[x, V], subclass[x, cart[V, V]]]
```

```
In[71]:= subclass[hull[TRV, x], cart[V, V]] // AssertTest
Out[71]= True
```

```
In[72]:= subclass[hull[TRV, x_], cart[V, V]] := and[member[x, V], subclass[x, cart[V, V]]]
```

```
In[73]:= hull[FULL, x_] :=
  union[complement[image[V, singleton[x]]], tc[x]]
```

The case of hull[TRV,x] is of special interest in connection with the transitive closure trv[x]. For sets, these are equal, but not for proper classes.
In[73]:= Map[equal[0, fix[#]] &, hull[TRV, x] // Normality]
Out[73]= True

In[74]:= equal[0, fix[hull[TRV, x_]]] :=
 and[equal[0, fix[trv[x]]], member[x, V], subclass[x, cart[V, V]]]
In[75]:= TRANSITIVE[composite[Id, hull[TRV, x]]] // AssertTest
Out[75]= TRANSITIVE[composite[Id, hull[TRV, x]]] == True

In[76]:= TRANSITIVE[composite[Id, hull[TRV, x_]]] := True
In[77]:= TRANSITIVE[hull[TRV, x]] // AssertTest
Out[77]= TRANSITIVE[hull[TRV, x]] == and[member[x, V], subclass[x, cart[V, V]]]

In[78]:= TRANSITIVE[hull[TRV, x_]] := and[member[x, V], subclass[x, cart[V, V]]]

union rules

To derive rewrite rules in which hull appears on the right side, it is convenient to normalize this constructor:

In[79]:= hull[x, y] // Normality // Reverse
 Reverse::normal : Nonatomic expression expected at position 1 in Reverse[True]. More...
Out[79]= Reverse[True]

In[80]:= A[intersection[x_, image[S, singleton[y_]]]] := hull[x, y]

For example, one can derive this rule:

In[81]:= hull[union[x, y], z] // Normality
Out[81]= True

In[82]:= hull[union[x_, y_], z_] := intersection[hull[x, z], hull[y, z]]

Aclosure rules

In[83]:= hull[Aclosure[x], y] // Normality
Out[83]= True

In[84]:= hull[Aclosure[x_], y_] := hull[x, y]

In[85]:= SubstTest[implies, member[y, fix[z]], member[pair[y, y], z], z -> HULL[x]] // MapNotNot
Out[85]= or[equal[y, hull[x, y]], not[member[y, fix[HULL[x]]]]] == True

In[86]:= or[equal[y_, hull[x_, y_]], not[member[y_, fix[HULL[x_]]]]] := True
The following rule is new:

In[89]:= hull[x_, union[y_, complement[composite[v, z]]]] :=

Out[89]= True

In[90]:= hull[x_, union[y_, complement[composite[v, z]]]] :=

union[member[composite[v, z]], hull[x, y]]

rules with hull on the right side

There are a few rewrite rules in which \texttt{hull[x,y]} appears only on the right side. Here are two of these:

In[91]:= member[x, hull[y]]

Out[91]= and[equal[hull[y, first[x]], second[x]], member[first[x], image[inverse[S], y]]]

In[92]:= member[pair[x, y], hull[z]]

Out[92]= and[equal[y, hull[z, x]], member[x, V], member[y, V]]

The existing rules that will be removed are:

In[93]:= InfoMatch[member[x_, HoldPattern[hull[y_]]]]

Out[93]//TableForm=

The old rules are removed, and replaced with new ones:

In[94]:= member[x_, hull[y_]] =.

In[95]:= member[x_, hull[y_]] :=

and[equal[hull[y, first[x]], second[x]], member[first[x], image[inverse[S], y]]]

In[96]:= member[pair[x, y], hull[z]] =.

In[97]:= member[pair[x, y], hull[z]] := and[equal[y, hull[z, x]], member[x, V], member[y, V]]

There are some related rules of the same type.

In[98]:= member[x_, composite[y_, hull[z_]]] =.

In[99]:= member[x, composite[y, hull[z]]] // AssertTest

Out[99]= member[x, composite[y, hull[z]]] = and[member[first[x], image[inverse[S], z]],

member[pair[hull[z, first[x]], second[x]], y]]
In[100]:=
 member[x_, composite[y_, HULL[z_]]] := and[
 member[first[x], image[inverse[S], z]], member[pair[hull[z, first[x]], second[x]], y]]

In[101]:=
 member[x_, composite[inverse[HULL[y_]], z_]] =.

In[102]:=
 member[x, composite[inverse[HULL[y]], z]] // AssertTest

Out[102]=
 member[x, composite[inverse[HULL[y]], z]] =
 and[member[pair[first[x], hull[y, second[x]]], z],
 member[second[x], image[inverse[S], y]]]

In[103]:=
 member[x_, composite[inverse[HULL[y_]], z_]] :=
 and[member[pair[first[x], hull[y, second[x]]], z],
 member[second[x], image[inverse[S], y]]]

inverse image rule

Here is another one that needs to be replaced:

In[104]:=
 member[x, image[inverse[HULL[y]], z]]

Out[104]=
 and[member[x, V], member[hull[y, x], z]]

In[105]:=
 member[x_, image[inverse[HULL[y_]], z_]] =.

The replacement rule is simpler:

In[106]:=
 member[x, image[inverse[HULL[y]], z]] // AssertTest

Out[106]=
 member[x, image[inverse[HULL[y]], z]] = member[hull[y, x], z]

In[107]:=
 member[x_, image[inverse[HULL[y_]], z_]] := member[hull[y, x], z]

Note that when hull[y,x] is a set, then x also must be a set because x is contained in hull[y,x].

In[108]:=
 SubstTest[implies, and[subclass[y, v], member[v, z]], member[y, V], v -> hull[x, y]]

Out[108]=
 or[member[y, V], not[member[hull[x, y], z]]] = True

In[109]:=
 or[member[y_, V], not[member[hull[x_, y_], z_]]] = True

In[110]:=
 equiv[and[member[y, V], member[hull[x, y], z]], member[hull[x, y], z]]

Out[110]=
 True
the APPLY rule

The APPLY rule is another rule that will need to be replaced. The old rule produces this result:

```
In[112]:= APPLY[HULL[x], y]
Out[112]= hull[x, y]
```

To derive the replacement, some lemmas are needed.

```
In[114]:= image[V, singleton[hull[x, y]]] // Normality
Out[114]= image[V, singleton[hull[x, y]]] = image[V, intersection[x, image[S, singleton[y]]]]
```

```
In[115]:= image[V, singleton[hull[x_, y_]]] := image[V, intersection[x, image[S, singleton[y]]]]
```

```
In[116]:= equal[union[complement[image[V, intersection[x, image[S, singleton[y]]]]], hull[x, y]], hull[x, y]]
Out[116]= True
```

```
In[117]:= union[complement[image[V, intersection[x_, image[S, singleton[y]]]]], hull[x_, y_]] := hull[x, y]
```

```
In[118]:= SubstTest[A, image[w, singleton[y]], w -> HULL[x]] // Reverse
Out[118]= APPLY[HULL[x], y] = hull[x, y]
```

The vertical section rule is closely related:

```
In[120]:= image[HULL[x], singleton[y]]
Out[120]= singleton[hull[x, y]]
```

```
In[121]:= image[HULL[x_], singleton[y_]] =.
```

The new APPLY rule can be used to derive the replacement rule:
In[122]:=
SubstTest[image, funpart[w], singleton[y], w -> HULL[x]]

Out[122]=
image[HULL[x], singleton[y]] = singleton[hull[x, y]]

In[123]:=
image[HULL[x_], singleton[y_]] := singleton[hull[x, y]]

reify rule

In[124]:=
SubstTest[reify, x_, A[intersection[f[x], image[z, singleton[g[x]]]], z -> S]

Out[124]=
reify[x, hull[f[x], g[x]]] = composite[Id, complement[composite[complement[complement[inverse[E]]],
intersection[composite[S, VERTSECT[reify[x, g[x]], reify[x, f[x]]]]]]

In[125]:=
reify[x_, hull[y_, z_]] := composite[Id, complement[composite[complement[complement[inverse[E]]],
intersection[composite[S, VERTSECT[reify[x, z]], reify[x, y]]]]}