summary

The fixed point set of any small total order is equipollent to a chain of the subset relation. This fact is already known when \texttt{axch} holds. In that case any set is the fixed point sets of a small total order and any set is equipollent to an ordinal, which is a chain of the subset relation. In this notebook the axiom of choice is not assumed to be true.

rewrite rules for SIMILAR

Theorem.

\begin{align*}
\text{In[2]} &= \text{SubstTest}[\text{implies, and, member[pair[u, v], composite[Id, t]], member[u, x]],} \\
&\quad \text{member[v, image[t, x]], } t \rightarrow \text{SIMILAR} \] // Reverse

\text{Out[2]} &= \text{or[member[v, image[SIMILAR, x]],} \\
&\quad \text{not[member[u, x]], not[member[pair[u, v], SIMILAR]]}] := \text{True}

\text{In[3]} &= \text{or[member[v, image[SIMILAR, x]],} \\
&\quad \text{not[member[u, x]], not[member[pair[u, v], SIMILAR]]}] := \text{True}
\end{align*}

Theorem.
total orders

Theorem. Any set similar to a total order is a total order.

```
In[6]:= SubstTest[implies, and[member[pair[u, v], composite[Id, x]], member[u, image[x, y]],
                          member[v, image[x, y]], {x -> SIMILAR, y -> TO}] // MapNotNot // Reverse
Out[6]= or[not[member[pair[u, v], SIMILAR]], not[TOTALORDER[u]], TOTALORDER[v]] := True
```

Theorem. Any set similar to a total order is a total order.

```
In[7]:= or[not[member[pair[u, v], SIMILAR]], not[TOTALORDER[u]], TOTALORDER[v]] := True
```

Lemma.

```
In[8]:= SubstTest[or, member[u, image[SIMILAR, x]],
              not[member[v, x]], not[member[pair[u, v], SIMILAR]],
              x -> intersection[TO, image[IMAGE[Id[S]], image[CART, Id]]]] // Reverse // MapNotNot
Out[8]= or[member[u, image[SIMILAR, intersection[TO, P[S]]]],
           not[member[pair[u, v], SIMILAR]], not[subclass[v, S]], not[TOTALORDER[v]]] := True
```

Lemma.
Lemma. (Eliminate the variables \(u \) and \(v \).)

\[
\text{Map[empty[composite[Id, complement[#]]] \&, SubstTest[class, pair[u, v],}
\text{ implies[and[member[pair[u, v], s], member[u, t], member[v, r]], member[u, z]],}
\text{ \{x \to image[IMAGE[id[S]], image[CART, Id]], s \to SIMILAR, t \to TO,}
\text{ z \to image[SIMILAR, intersection[TO, image[IMAGE[id[S]], image[CART, Id]]]]\}]]}]
\]

\[
\text{subclass[TO, image[SIMILAR, intersection[TO, P[S]]]] = True}
\]

\[
% /. \{u \to u_, v \to v_\} /. \text{Equal} \to \text{SetDelayed}
\]

Lemma. Every total ordering is similar to a total ordering by inclusion.

\[
\text{SubstTest[and, subclass[u, v], subclass[v, u],}
\text{ \{u \to TO, v \to image[SIMILAR, intersection[TO, P[S]]]\}]}\]

\[
\text{equal[TO, image[SIMILAR, intersection[TO, P[S]]]] = True}
\]

\[
\text{image[SIMILAR, intersection[TO, P[S]]]} = \text{TO}
\]

One-one transforms of total orders

The following rewrite rule was derived 2008 May 17 but was not added to the GOEDEL program at that time. It is rederived here.

Theorem. Application to one-to-one transforms of total orders.
The application of \texttt{reify} done in 2008 needs to be modified slightly, but the final result is still the same.

Lemma. (Eliminating the \texttt{oopart} wrapper.)

\begin{verbatim}
In[22]:= SubstTest[implies, equal[x, oopart[t]],
 invariant[IMAGE[x], image[FIX, TO]], t \to x] // Reverse
Out[22]= or[not[FUNCTION[x]], not[FUNCTION[inverse[x]]],
 subclass[image[IMAGE[x]], image[IMAGE[inverse[DUP]], TO]],
 image[IMAGE[inverse[DUP]], TO]] \Rightarrow True
\end{verbatim}

\begin{verbatim}
In[23]:= (\% / . x \to x _) /. Equal \to SetDelayed
\end{verbatim}

The next step eliminates the variable \(x\) by using \texttt{reify} and \texttt{case}.

Lemma.

\begin{verbatim}
In[24]:= Map[equal[V, domain[#]] &,
 SubstTest[reify, x, case[implies[subclass[P[x], u], invariant[IMAGE[x], v]]],
 \{u \to BIJ, v \to image[FIX, TO]\}]]
Out[24]= subclass[image[Q, image[IMAGE[inverse[DUP]], TO]],
 image[IMAGE[inverse[DUP]], TO]] \Rightarrow True
\end{verbatim}

\begin{verbatim}
In[25]:= \% / . Equal \to SetDelayed
\end{verbatim}

The inclusion in the lemma can be strengthened to an equation that can be made into a rewrite rule.

Theorem. Any set equipollent to the fixed point set of a total ordering is the fixed point set of a total ordering,

\begin{verbatim}
In[26]:= SubstTest[and, subclass[u, v], subclass[v, u],
 \{u \to image[Q, image[IMAGE[inverse[DUP]], TO]], v \to image[IMAGE[inverse[DUP]], TO]\}]
Out[26]= equal[image[Q, image[IMAGE[inverse[DUP]], TO]], image[IMAGE[inverse[DUP]], TO]] \Rightarrow True
\end{verbatim}

\begin{verbatim}
In[27]:= image[Q, image[IMAGE[inverse[DUP]], TO]] := image[IMAGE[inverse[DUP]], TO]
\end{verbatim}

\textbf{main theorem}

In this section it is shown that the fixed point set of any small total ordering is equipollent to a chain of the subset relation.
Theorem. (An inclusion in one direction.)

```
In[28]:= SubstTest[implies, subclass[u, v], subclass[image[t, u], image[t, v]],
   {t -> Q, u -> chains[S], v -> image[IMAGE[inverse[DUP]], TO]}] // Reverse
Out[28]= subclass[image[Q, chains[S]], image[IMAGE[inverse[DUP]], TO]] = True
```

In[29]:= % /. Equal -> SetDelayed

Theorem. Similar relations have equipollent fixed point sets.

```
In[30]:= SubstTest[implies, subclass[u, v], subclass[composite[t, u], composite[t, v]],
   {t -> composite[IMAGE[inverse[DUP]], SIMILAR],
    u -> Id, v -> composite[inverse[FIX], FIX]}] // Reverse
Out[30]= subclass[composite[IMAGE[inverse[DUP]], SIMILAR],
    composite[Q, IMAGE[inverse[DUP]]]] = True
```

```
In[31]:= subclass[composite[IMAGE[inverse[DUP]], SIMILAR],
    composite[Q, IMAGE[inverse[DUP]]]] := True
```

Theorem. The fixed point set for a total ordering by inclusion is a chain of the subset relation.

```
In[32]:= ImageComp[FIX, IMAGE[id[S]]], image[CART, id[chains[S]]]]] // Reverse
Out[32]= image[IMAGE[inverse[DUP]], intersection[TO, P[S]]] = chains[S]
```

```
In[33]:= image[IMAGE[inverse[DUP]], intersection[TO, P[S]]] := chains[S]
```

Lemma. An inclusion in the opposite direction.

```
In[34]:= SubstTest[implies, subclass[u, v], subclass[image[u, w], image[v, w]],
   {u -> composite[IMAGE[inverse[DUP]], SIMILAR],
    v -> composite[Q, IMAGE[inverse[DUP]]], w -> intersection[TO, P[S]]}] // Reverse
Out[34]= subclass[image[IMAGE[inverse[DUP]], TO], image[Q, chains[S]]] = True
```

In[35]:= % /. Equal -> SetDelayed

Comment. It is not clear how best to orient the following rewrite rule.

Main Theorem. The fixed point set of any small total ordering is equipollent to a chain of the subset relation.

```
In[36]:= SubstTest[and, subclass[u, v], subclass[v, u],
   {u -> image[IMAGE[inverse[DUP]], TO], v -> image[Q, chains[S]]})
Out[36]= equal[image[Q, chains[S]], image[IMAGE[inverse[DUP]], TO]] = True
```

```
In[37]:= image[Q, chains[S]] := image[IMAGE[inverse[DUP]], TO]
```

Corollary.
In[38]:= SubstTest[implies, subclass[u, v],
 subclass[image[t, u], image[t, v]], {t → Q, u → OMEGA, v → chains[S]}] // Reverse

Out[38]= subclass[image[Q, OMEGA], image[IMAGE[inverse[DUP]], TO]] == True

In[39]:= subclass[image[Q, OMEGA], image[IMAGE[inverse[DUP]], TO]] := True

Comment. If follows from this result that when \texttt{axch} holds, \texttt{image[Q, Ω]} = V, so in that case \texttt{image[FIX, TO]} = V, a result already known. It is unclear from what has been derived here whether the statement that any set can be totally ordered is weaker than the axiom of choice.