 APPLY rules for MONOIDS

Johan G. F. Belinfante
2009 January 1

In[1]:= SetDirectory["l:"]; << goedel.09jan01a; << tools.m

:Package Title: goedel.09jan01a 2009 January 1 at 5:00 p.m.

It is now: 2009 Jan 1 at 17:6

Loading Simplification Rules

TOOLS.M Revised 2008 December 26

weightlimit = 40

summary

To facilitate the kind of reasoning about monoids that one finds in the literature, it is convenient to restate various properties of monoids using elements and APPLY. If \(x \) is a monoid operation, then \(\text{range}[x] \) is the underlying set on which this operation acts. If \(u \) and \(v \) are elements of \(\text{range}[x] \), then \(\text{APPLY}[x, \text{PAIR}[u, v]] \) is their product, usually denoted in the literature by \(u \cdot v \). In this notebook, the usual formulation of the definition (axioms) for a monoid are derived.

monoids as mappings

Theorem.

In[2]:= Map[not, SubstTest[and, implies[p1, p2],
 implies[p2, p3], implies[and[p1, p3], p4], not[implies[p1, p4]],
 {p1 -> member[x, MONOIDS], p2 -> equal[range[x], fix[domain[x]]], p3 -> equal[
 map[cartsq[range[x]], range[x]], map[cartsq[fix[domain[x]]], fix[domain[x]]]],
 p4 -> member[x, map[cart[range[x], range[x]], range[x]]]]]] // Reverse

Out[2]= or[member[x, map[cart[range[x], range[x]], range[x]]], not[member[x, MONOIDS]]] = True

In[3]:= or[member[x_, map[cart[range[x_], range[x_]], range[x_]]],
 not[member[x_, MONOIDS]]] := True

Corollary.

In[4]:= Map[not, SubstTest[and, implies[p1, p2], implies[p2, p3], not[implies[p1, p3]],
 {p1 -> member[x, MONOIDS], p2 -> member[x, map[cartsq[range[x]], range[x]]],
 p3 -> equal[cart[range[x], range[x]], domain[x]]]}] // Reverse

Out[4]= or[equal[cart[range[x], range[x]], domain[x]], not[member[x, MONOIDS]]] = True
In[5]:= or[equal[cart[range[x_], range[x_]], domain[x_]], not[member[x_, MONOIDS]]] := True

closure

Lemma.

In[6]:= SubstTest[implies, and[member[w, map[t, z]], member[s, t]],
 member[APPLY[w, s], z], {s -> PAIR[u, v], t -> cart[x, y]}] // Reverse

Out[6]= or[member[APPLY[w, PAIR[u, v]], z], not[member[u, x]],
 not[member[v, y]], not[member[w, map[cart[x, y], z]]]] := True

In[7]:= or[member[APPLY[w_, PAIR[u_, v_]], z_], not[member[u_, x_]],
 not[member[v_, y_]], not[member[w_, map[cart[u_, v_], z_]]]] := True

Theorem. (Closure property.) For any monoid \(x\), one has: \(u \in \text{range}[x] \& v \in \text{range}[x] \implies u \cdot v \in \text{range}[x]\).

In[8]:= Map[not, SubstTest[and, implies[p1, p2], implies[and[p1, p2], p3],
 not[implies[p1, p3]],
 {p1 -> and[member[x, MONOIDS], member[u, range[x]], member[v, range[x]]],
 p2 -> member[x, map[cart[range[x], range[x]], range[x]]],
 p3 -> member[APPLY[x, PAIR[u, v]], range[x]]}] // Reverse

Out[8]= or[member[APPLY[x, PAIR[u, v]], range[x]], not[member[u, range[x]]],
 not[member[v, range[x]]], not[member[x, MONOIDS]]] := True

In[9]:= or[member[APPLY[x_, PAIR[u_, v_]], range[x_]], not[member[u_, range[x_]]],
 not[member[v_, range[x_]]], not[member[x_, MONOIDS]]] := True

associativity

Theorem. Associative law: \((u \cdot v) \cdot w = u \cdot (v \cdot w)\). Note that this rewrite rule does not need explicit hypotheses that the three variables \(u\), \(v\) and \(w\) are members of \(\text{range}[x]\) because if this is not the case the equation reduces to \(V = V\).

In[10]:= Map[not, SubstTest[and, implies[p1, p2],
 implies[p2, p3], not[implies[p1, p3]],
 {p1 -> member[x, MONOIDS],
 p2 -> member[x, SEMIGPS], p3 -> equal[APPLY[x, PAIR[u, APPLY[x, PAIR[v, w]]]]],
 APPLY[x, PAIR[APPLY[x, PAIR[u, v]], w]]}] // Reverse

Out[10]= or[equal[APPLY[x, PAIR[u, APPLY[x, PAIR[v, w]]]]],
 APPLY[x, PAIR[APPLY[x, PAIR[u, v]], w]], not[member[x, MONOIDS]]] := True

In[11]:= or[equal[APPLY[x_, PAIR[APPLY[x_, PAIR[u_, v_]], w_]],
 APPLY[x_, PAIR[u_, APPLY[x_, PAIR[v_, w_]]]]], not[member[x_, MONOIDS]]] := True
left unital law

Lemma.

\[\text{In[15]:=} \quad \text{Map}[\text{or}[\#, \text{equal}[z, \text{APPLY}[y, z]]], \text{not}[\text{member}[z, \text{range}[x]]]] \&,
\quad \text{SubstTest}[\text{implies}, \text{equal}[u, v], \text{equal}[\text{APPLY}[u, z], \text{APPLY}[v, z]],
\quad \{u \rightarrow \text{composite}[x, \text{LEFT}[y]], v \rightarrow \text{id}[\text{range}[x]]\}] \quad \text{// Reverse}
\]

\[\text{Out[15]=} \quad \text{or}[\text{equal}[z, \text{APPLY}[x, \text{PAIR}[y, z]]],
\quad \text{not}[\text{equal}[\text{composite}[x, \text{LEFT}[y]], \text{id}[\text{range}[x]]], \text{not}[\text{member}[z, \text{range}[x]]]] \quad \text{=} \quad \text{True}
\]

\[\text{In[16]=} \quad (\% \/. \{x \rightarrow x__, y \rightarrow y_, z \rightarrow z_\}) \/. \text{Equal} \rightarrow \text{SetDelayed}
\]

Theorem.

\[\text{In[20]:=} \quad \text{Map}[\text{not}, \text{SubstTest}[\text{and}, \text{implies}[p1, p3], \text{implies}[\text{and}[p2, p3], p4],
\quad \text{not}[\text{implies}[\text{and}[p1, p2], p4]], \{p1 \rightarrow \text{member}[x, \text{MONOIDS}],
\quad p2 \rightarrow \text{member}[w, \text{range}[x]], p3 \rightarrow \text{equal}[\text{composite}[x, \text{LEFT}[e[x]]], \text{id}[\text{range}[x]]],
\quad p4 \rightarrow \text{equal}[w, \text{APPLY}[x, \text{PAIR}[e[x], w]]]]}] \quad \text{// Reverse}
\]

\[\text{Out[20]=} \quad \text{or}[\text{equal}[w, \text{APPLY}[x, \text{PAIR}[e[x], w]]],
\quad \text{not}[\text{member}[w, \text{range}[x]]], \text{not}[\text{member}[x, \text{MONOIDS]}}] \quad \text{=} \quad \text{True}
\]

\[\text{In[21]=} \quad \text{or}[\text{equal}[w__, \text{APPLY}[x__, \text{PAIR}[e[x__], w_]_]],
\quad \text{not}[\text{member}[w__, \text{range}[x__]]], \text{not}[\text{member}[x__, \text{MONOIDS]}}] \quad \text{=} \quad \text{True}
\]

right unital law

The right unital law will be derived using \text{flip}. This approach requires two lemmas.

Lemma.

\[\text{In[23]:=} \quad \text{SubstTest}[\text{implies}, \text{and}[\text{member}[w, \text{range}[t]]], \text{member}[t, \text{MONOIDS}],
\quad \text{equal}[w, \text{APPLY}[t, \text{PAIR}[e[t], w]]], t \rightarrow \text{flip}[x]] \quad \text{// Reverse}
\]

\[\text{Out[23]=} \quad \text{or}[\text{equal}[w, \text{APPLY}[x, \text{PAIR}[w, e[x]]]], \text{not}[\text{member}[w, \text{image}[x, \text{cart}[V, V]]]],
\quad \text{not}[\text{member}[\text{composite}[x, \text{SWAP}], \text{MONOIDS]}}] \quad \text{=} \quad \text{True}
\]

\[\text{In[24]=} \quad (\% \/. \{w \rightarrow w_, x \rightarrow x_\}) \/. \text{Equal} \rightarrow \text{SetDelayed}
\]

Lemma.

\[\text{In[26]:=} \quad \text{SubstTest}[\text{implies}, \text{equal}[x, \text{binop}[t]],
\quad \text{equal}[\text{image}[x, \text{cart}[V, V]], \text{range}[x]], t \rightarrow x] \quad \text{// Reverse}
\]

\[\text{Out[26]=} \quad \text{or}[\text{equal}[\text{image}[x, \text{cart}[V, V]], \text{range}[x]], \text{not}[\text{member}[x, \text{BINOPS]}}] \quad \text{=} \quad \text{True}
\]

\[\text{In[27]=} \quad \text{or}[\text{equal}[\text{image}[x__, \text{cart}[V, V]], \text{range}[x__]], \text{not}[\text{member}[x__, \text{BINOPS]}}] \quad \text{=} \quad \text{True}
\]
Theorem.

\texttt{In[29]} := \texttt{Map[not, SubstTest[and, implies[p1, p3], implies[p1, p5],}
\texttt{implies[p3, p4], implies[and[p2, p4, p5], p6], not[implies[and[p1, p2], p6]],}
\texttt{p1 \rightarrow member[x, MONOIDS], p2 \rightarrow member[w, range[x]], p3 \rightarrow member[x, BINOPS], p4 \rightarrow}
\texttt{equal[image[x, cart[V, V]], range[x]], p5 \rightarrow member[composite[x, SWAP], MONOIDS],}
\texttt{p6 \rightarrow equal[w, APPLY[x, PAIR[w, e[x]]]]] // Reverse}

\texttt{Out[29]} = \texttt{or[equal[w, APPLY[x, PAIR[w, e[x]]]],}
\texttt{not[member[w, range[x]]], not[member[x, MONOIDS]]] := True}

\texttt{In[31]} := \texttt{or[equal[APPLY[x_, PAIR[w_, e[x_]]], w_],}
\texttt{not[member[w_, range[x_]]], not[member[x_, MONOIDS]]] := True}

a corollary

Theorem.

\texttt{In[36]} := \texttt{Map[not, SubstTest[and, implies[p1, p2],}
\texttt{implies[and[p1, p2], p3], not[implies[p1, p3]], p1 \rightarrow member[x, MONOIDS],}
\texttt{p2 \rightarrow member[e[x], ids[x]], p3 \rightarrow member[e[x], range[x]]] // Reverse}

\texttt{Out[36]} = \texttt{or[member[e[x], range[x]], not[member[x, MONOIDS]]] := True}

\texttt{In[37]} := \texttt{or[member[e[x_], range[x_]], not[member[x_, MONOIDS]]] := True}

Corollary. If \(x \) is a monoid, then \(e[x] \cdot e[x] = e[x] \).

\texttt{In[39]} := \texttt{Map[not, SubstTest[and, implies[p1, p2], implies[and[p1, p2], p3],}
\texttt{not[implies[p1, p3]], p1 \rightarrow member[x, MONOIDS], p2 \rightarrow member[e[x], range[x]],}
\texttt{p3 \rightarrow equal[APPLY[x, PAIR[e[x], e[x]]], e[x]]] // Reverse}

\texttt{Out[39]} = \texttt{or[equal[APPLY[x, PAIR[e[x], e[x]]], e[x]], not[member[x, MONOIDS]]] := True}

\texttt{In[41]} := \texttt{or[equal[APPLY[x_, PAIR[e[x_], e[x_]]], e[x_]], not[member[x_, MONOIDS]]] := True}