x has no infinite subsets iff P[x] does not

Johan G. F. Belinfante
2006 March 2

In[1]: = SetDirectory["1: "; << goedel79.01a; << tools.m
:Package Title: goedel79.01a 2006 March 1 at 6:30 p.m.
It is now: 2006 Mar 2 at 14:54
Loading Simplification Rules
TOOLS.M Revised 2006 February 3
weightlimit = 40

summary

A class has no infinite subsets if and only if its power class has no infinite subsets.

derivation

If y is an infinite subset of x, then P[y] is an infinite subset of P[x].

In[2]: = SubstTest[implies, subclass[u, v], subclass[image[w, u], image[w, v]],
 {u -> P[P[x]], v -> FINITE, w -> inverse[POWER]}]
Out[2]= or[not{subclass[P[P[x]], FINITE]}, subclass[P[x], FINITE]] = True

In[3]: = (% /. x -> x_)/. Equal -> SetDelayed

The converse also holds:

In[4]: = SubstTest[implies, subclass[u, v],
 subclass[image[w, u], image[w, v]], {u -> P[x], v -> FINITE, w -> inverse[BIGCUP]}]
Out[4]= or[not{subclass[P[x], FINITE]}, subclass[P[x], FINITE]] = True

In[5]: = (% /. x -> x_)/. Equal -> SetDelayed

Combining these two results yields an interesting rewrite rule:

In[6]: = equiv[subclass[P[P[x]], FINITE], subclass[P[x], FINITE]]
In[7]:= \text{subclass}[\text{P}[x_\text{_}], \text{FINITE}] := \text{subclass}[\text{P}[x], \text{FINITE}]

the case of a set

When \(x \) is a set, the condition \(\text{subclass}[\text{P}[x], \text{FINITE}] \) is equivalent to the statement that \(x \) is finite.

\text{In[8]}:= \text{SubstTest}[\text{implies},\text{and}[[\text{member}[y, V], \text{subclass}[\text{P}[y], \text{FINITE}]],\text{member}[y, \text{FINITE}], y \to \text{setpart}[x]]

\text{Out[8]}= \text{or}[\text{member}[\text{setpart}[x], \text{FINITE}], \text{not}[\text{subclass}[\text{P}[\text{setpart}[x]], \text{FINITE}]]] = \text{True}

\text{In[9]}:= (\% / . x_\text{_} / . \text{Equal} \to \text{SetDelayed})

\text{In[10]}= \text{equiv}[\text{subclass}[\text{P}[\text{setpart}[x]], \text{FINITE}], \text{member}[\text{setpart}[x], \text{FINITE}]]

\text{Out[10]}= \text{True}

\text{In[11]}= \text{subclass}[\text{P}[\text{setpart}[x_\text{_}]], \text{FINITE}] := \text{member}[\text{setpart}[x], \text{FINITE}]

On account of this, the rewrite rule derived in the preceding section could be deduced for the case of sets from this fact:

\text{In[12]}= \text{member}[\text{P}[x], \text{FINITE}]

\text{Out[12]}= \text{member}[x, \text{FINITE}]

a further comment

According to Harvey Friedman's response to a question posted by the author on the Foundations of Mathematics (FOM) newsgroup, the statement \(\text{subclass}[\text{P}[x], \text{FINITE}] \) is also equivalent to the statement that \(x \) is finite when one assumes the axiom of regularity. In the \text{GOEDEL} program, the axiom of regularity is not automatically assumed to be true, but one could consider adding the hypothesis that \(x \) be regular. This matter will not be pursued further here.