rational multiplication is commutative

Johan G. F. Belinfante
2012 August 16

\texttt{In[1]}:= \texttt{SetDirectory["1:"]; \texttt{\textless \textless goedel.12aug11a}}

:Package Title: goedel.12aug11a 2012 August 11 at 8:25 p.m.
Loading takes about sixteen minutes, half that time due to builtin pauses.
It is now: 2012 Aug 16 at 14:48
Loading Simplification Rules
TOOLS.M is now incorporated in the GOEDEL program as of 2010 September 3
weightlimit = 40
Loading completed.
It is now: 2012 Aug 16 at 15:3

\textbf{summary}

An explicit formula for the product of two rational number is used to show that rational multiplication is commutative. It is also shown that \texttt{id[Z]} is the neutral element for rational multiplication.

\textbf{temporary abbreviations}

It is suggestive to write fractions as \texttt{d\ n} instead of \texttt{n/d}. The following temporary abbreviation is introduced for the fraction \texttt{x/y}.

\texttt{In[2]}:= \texttt{frac[x_, y_] := composite[inverse[inttimes[x]], inttimes[y]]}

In addition, the following temporary abbreviation saves some writing.

\texttt{In[3]}:= \texttt{rat[x_] := frac[first[x], second[x]]}
 derivation

Multiplication of fractions involves two numerators and two denominators. Each rational number is a straight line through the origin in the integer plane \(\mathbb{Z} \times \mathbb{Z} \). To reduce the number of variables, it is convenient to introduce just one variable for each fraction, representing some point \(x \) other than the origin on the straight line for that fraction. The denominator is then written as \(\text{first}[x] \), and the numerator as \(\text{second}[x] \). The fraction itself can be written as \(\text{APPLY}[\text{RATIO}, x] \) or as \(\text{rat}[x] \). These are equal only when \(x \in \text{domain}[\text{RATIO}] \). The following two lemmas reflect the definition of rational multiplication, using each of these two ways of writing a fraction.

Lemma. (Rewriting the hull of a composite as a rational product.)

\[
\text{In}[4] := \text{SubstTest}[ext{implies, and}[ext{member}[u, \text{RATS}], \text{member}[v, \text{RATS}]],
\text{equal}[ext{hull}[\text{RATS}, \text{composite}[u, v]], \text{ratmul}[u, v]],
\{u \rightarrow \text{APPLY}[\text{RATIO}, x], v \rightarrow \text{APPLY}[\text{RATIO}, y]\}] // \text{Reverse}
\]

\[
\text{Out}[4] = \text{or}[\text{equal}[ext{first}[x], \text{id}[ext{omega}]], \text{equal}[ext{first}[y], \text{id}[ext{omega}]],
\text{equal}[ext{hull}[\text{RATS}, \text{composite}[ext{APPLY}[\text{RATIO}, x], \text{APPLY}[\text{RATIO}, y]]],
\text{ratmul}[ext{APPLY}[\text{RATIO}, x], \text{APPLY}[\text{RATIO}, y]],
\text{not}[ext{member}[ext{first}[x], \mathbb{Z}]],
\text{not}[ext{member}[ext{first}[y], \mathbb{Z}], \text{not}[ext{member}[ext{second}[x], \mathbb{Z}], \text{not}[ext{member}[ext{second}[y], \mathbb{Z}]]) = \text{True}
\]

\[
\text{In}[5] := (\% /. \{x \rightarrow x_, y \rightarrow y_\}) /. \text{Equal} \rightarrow \text{SetDelayed}
\]

Lemma. (Rewriting the hull of a composite as a rational product.)

\[
\text{In}[6] := \text{SubstTest}[ext{implies, and}[ext{member}[u, \text{RATS}], \text{member}[v, \text{RATS}]],
\text{equal}[ext{hull}[\text{RATS}, \text{composite}[u, v]], \text{ratmul}[u, v]], \{u \rightarrow \text{rat}[x], v \rightarrow \text{rat}[y]\}] // \text{Reverse}
\]

\[
\text{Out}[6] = \text{or}[\text{equal}[ext{first}[x], \text{id}[ext{omega}]], \text{equal}[ext{first}[y], \text{id}[ext{omega}]],
\text{equal}[ext{hull}[\text{RATS}, \text{composite}[ext{inverse}[ext{inttimes}[ext{first}[x]]],
\text{inttimes}[ext{second}[x]], \text{inttimes}[ext{second}[y]]],
\text{ratmul}[ext{composite}[ext{inverse}[ext{inttimes}[ext{first}[y]]],
\text{inttimes}[ext{second}[x]]],
\text{composite}[ext{inverse}[ext{inttimes}[ext{first}[y]],
\text{inttimes}[ext{second}[y]]],
\text{not}[ext{member}[ext{first}[x], \mathbb{Z}], \text{not}[ext{member}[ext{first}[y], \mathbb{Z}],
\text{not}[ext{member}[ext{second}[x], \mathbb{Z}], \text{not}[ext{member}[ext{second}[y], \mathbb{Z}]]) = \text{True}
\]

\[
\text{In}[7] := (\% /. \{x \rightarrow x_, y \rightarrow y_\}) /. \text{Equal} \rightarrow \text{SetDelayed}
\]

The following result relates rational multiplication to integer multiplication. It says that \((a \backslash b) \cdot (c \backslash d) = (a \cdot c) \backslash (b \cdot d) \).

Theorem. An explicit formula for the product of two rational numbers.
In[8]:= Map[not, SubstTest[and, implies[p1, p2], implies[p1, p3], implies[and[p2, p3], p4],
not[implies[p1, p4]], {p1 -> and[member[x, domain[RATIO]], member[y, domain[RATIO]]],
p2 -> equal[hull[RATS, composite[rat[x], rat[y]]],
frac[intmul[first[x], first[y]], intmul[second[x], second[y]]]],
p3 -> equal[hull[RATS, composite[rat[x], rat[y]]], ratmul[rat[x], rat[y]]],
p4 -> equal[ratmul[rat[x], rat[y]],
frac[intmul[first[x], first[y]], intmul[second[x], second[y]]]]], // Reverse
Out[8]= or[equal[composite[inverse[inttimes[intmul[first[x], first[y]]]]],
inttimes[intmul[second[x], second[y]]]],
ratmul[composite[inverse[inttimes[first[x]]]], inttimes[second[x]]],
composite[inverse[inttimes[first[y]]], inttimes[second[y]]]],
equal[first[x], id[omega]], equal[first[y], id[omega]],
not[member[first[x], Z]], not[member[first[y], Z]],
not[member[second[x], Z]], not[member[second[y], Z]]] = True

In[9]:= (% /. {x -> x_, y -> y_}) /. Equal -> SetDelayed

The following corollary restates theorem using APPLY[RATIO, x] instead of rat[x] for each fraction. This makes it easier to later to eliminate the variables.

Corollary. Another explicit formula for the product of two rational numbers.

In[10]:= Map[not, SubstTest[and, implies[p1, p2], implies[p1, p3],
implies[p1, p4], implies[and[p2, p3, p4], p5], not[implies[p1, p5]],
{p1 -> and[member[x, domain[RATIO]], member[y, domain[RATIO]]],
p2 -> equal[ratmul[rat[x], rat[y]],
frac[intmul[first[x], first[y]], intmul[second[x], second[y]]]],
p3 -> equal[APPLY[RATIO, x], rat[x]], p4 -> equal[APPLY[RATIO, y], rat[y]],
p5 -> equal[ratmul[APPLY[RATIO, x], APPLY[RATIO, y]],
frac[intmul[first[x], first[y]], intmul[second[x], second[y]]]]], // Reverse
Out[10]= or[equal[composite[inverse[inttimes[intmul[first[x], first[y]]]]],
inttimes[intmul[second[x], second[y]]]], ratmul[APPLY[RATIO, x], APPLY[RATIO, y]],
equal[first[x], id[omega]], equal[first[y], id[omega]], not[member[first[x], Z]],
not[member[first[y], Z]], not[member[second[x], Z]], not[member[second[y], Z]]] = True

In[11]:= (% /. {x -> x_, y -> y_}) /. Equal -> SetDelayed

It is possible, but difficult, to eliminate the variables x and y in this result. This will be done in a separate notebook. For now, a corollary will be derived that does not involve the constructor intmul. It depends only on the fact that integer multiplication is commutative.

Theorem. A form of the commutative law for multiplying fractions that involves two variables.
Normality

In[12]:= Map[not, SubstTest[and, implies[p1, p2], implies[p1, p3], implies[and[p2, p3], p4],
 not[implies[p1, p4]], (p1 -> and[member[x, domain[RATIO]], member[y, domain[RATIO]]],
 p2 -> equal[ratmul[APPLY[RATIO, x], APPLY[RATIO, y]],
 frac[intmul[first[x], first[y]], intmul[second[x], second[y]]]],
 p3 -> equal[ratmul[APPLY[RATIO, y], APPLY[RATIO, x]],
 frac[intmul[first[x], first[y]], intmul[second[x], second[y]]]],
 p4 -> equal[ratmul[APPLY[RATIO, x], APPLY[RATIO, y]],
 ratmul[APPLY[RATIO, y], APPLY[RATIO, x]]]]] // Reverse

Out[12]= or[equal[first[x], id[omega]], equal[first[y], id[omega]],
 equal[ratmul[APPLY[RATIO, x], APPLY[RATIO, y]],
 ratmul[APPLY[RATIO, y], APPLY[RATIO, x]]], not[member[first[x], Z]],
 not[member[first[y], Z]], not[member[second[x], Z]], not[member[second[y], Z]]] = True

In[13]:= (% /. {x -> x_, y -> y_}) /. Equal -> SetDelayed

Theorem. A simplification rule. (The rational product of two classes is a set exactly when both classes are rational numbers.)

In[14]:= image[V, set[ratmul[x, y]]] // Normality

Out[14]= image[V, set[ratmul[x, y]]] = intersection[
 image[V, intersection[RATS, set[x]]], image[V, intersection[RATS, set[y]]]]

In[15]:= image[V, set[ratmul[x_, y_]]] = intersection{
 image[V, intersection[RATS, set[x]]], image[V, intersection[RATS, set[y]]]]

Theorem. A simplification rule. (The fraction APPLY[RATIO, x] is a rational number exactly when x ∈ domain[RATIO].)

In[16]:= SubstTest[case, member[t, RATS], t -> APPLY[RATIO, x]]

Out[16]= image[V, intersection[RATS, set[APPLY[RATIO, x]]]] =
 case[and[member[first[x], Z], member[second[x], Z], not[equal[first[x], id[omega]]]]]

In[17]:= image[V, intersection[RATS, set[APPLY[RATIO, x_]]]] =
 case[and[member[first[x], Z], member[second[x], Z], not[equal[first[x], id[omega]]]]]

Lemma. (Eliminating both variables at the same time. This takes a while.)

In[18]:= Map[equal[V, domain[#]] &,
 SubstTest[reify, x, case[implies[member[x, u], equal[APPLY[funpart[v],
 PAIR[APPLY[funpart[w], first[x]], APPLY[funpart[w], second[x]]]],
 APPLY[funpart[v], PAIR[APPLY[funpart[w], second[x]], APPLY[funpart[w], first[x]]]]]],
 {u -> cartsq[domain[RATIO]], v -> RATMUL, w -> RATIO}]]

 cart[intersection[Z, complement[set[id[omega]]]], Z]], composite[
 inverse[RATIO], fix[composite[inverse[RATMUL], RATMUL, SWAP]], RATIO]] = True

In[19]:= % /. Equal -> SetDelayed

Lemma. A better variable-free statement.
the neutral element for rational multiplication

It has been shown earlier that \(\text{id}[\mathbb{Z}] \) is right-neutral for rational multiplication. A variable-free statement of this will now be derived.

Lemma. Eliminating a variable.

\[
\text{Map}[\text{equal}[ext{ratmul}[x, y], \#] \&, \text{ApComp}[\text{RATMUL}, \text{SWAP}, \text{PAIR}[x, y]]] = \text{True}
\]

\[
\text{equal}[ext{ratmul}[x, y], \text{ratmul}[y, x]] = \text{True}
\]

\[
\text{equal}[ext{ratmul}[x_, y_], \text{ratmul}[y_, x_]] = \text{True}
\]
Theorem. A better formulation.

In[30]:- \texttt{SubstTest[subclass, domain[funpart[t]],}
\texttt{fix[funpart[t]], t \to composite[RATMUL, \text{RIGHT[id[Z]]}]]}

In[31]:- \% \texttt{/. Equal \to SetDelayed}

A still better rule can be obtained by replacing the above inclusion by an equation.

Corollary. Right-neutrality of \texttt{id[Z]}.

In[33]:- \texttt{composite[RATMUL, \text{RIGHT[id[Z]]}] := id[RATS]}

Since \texttt{RATMUL} is commutative, \texttt{id[Z]} is also left-neutral.

Corollary.

In[34]:- \texttt{Assoc[RATMUL, SWAP, \text{RIGHT[id[Z]]}]}\]
Out[34]= composite[RATMUL, LEFT[id[Z]]] = id[RATS]

Theorem. The rational number \texttt{id[Z]} is a neutral element for rational multiplication.

In[36]:- \texttt{member[id[Z] \to ids[RATMUL]] // AssertTest}
Out[36]= member[id[Z], ids[RATMUL]] = True

In[37]:- \% \texttt{/. Equal \to SetDelayed}

Since \texttt{RATMUL} is a binary operation, \texttt{id[Z]} is the only neutral element.

Theorem.

In[38]:- \texttt{SubstTest[implies, and\{member[x, BINOPS], member[y, ids[x]]\],}
\texttt{equal[ids[x], set[y]], \{x \to RATMUL, y \to id[Z]\]] // Reverse}
Out[38]= equal[ids[RATMUL], set[id[Z]]] = True

In[39]:- \texttt{ids[RATMUL] := set[id[Z]]}

Corollary. The neutral element for rational multiplication is \texttt{id[Z]}.
\(\text{In}[40]:= \text{SubstTest}[A, \text{ids}[x], x \rightarrow \text{RATMUL}]\)

\(\text{Out}[40]= \text{e[RATMUL]} = \text{id[Z]}\)

\(\text{In}[41]:= \text{e[RATMUL]} := \text{id[Z]}\)