spine[x,y]

Johan G. F. Belinfante
2007 June 10

In[1]:= SetDirectory["l:"]; << goedel94.09a; << tools.m

:Package Title: goedel94.09a 2007 June 9 at 8:50 p.m.

It is now: 2007 Jun 10 at 11:27

Loading Simplification Rules

TOOLS.M Revised 2007 June 6

weightlimit = 40

summary

In this notebook, the constructor spine[x,y] is defined, and some of its basic properties are derived. The author had introduced the concept of spine in July 1972 in a handout for an algebra class at Carnegie-Mellon University that contained a proof of Zorn's lemma from the axiom of choice. That this constructor can serve as a wrapper for chains follows from the observation that, more generally, the constructors least[x, y] and greatest[x, y] can function as wrappers for cliques.

definition

The constructor spine[x,y] is defined by the following membership rule.

In[2]:= member[w_, spine[x__, y__]] :=
 and[member[w, y], subclass[y, union[image[x, set[w]], image[inverse[x], set[w]]]]]

normalization

The constructor spine[x,y] is normalized by the following rewrite rule:

In[3]:= spine[x, y] // Normality // Reverse

Out[3]= intersection[y, complement[fix[composite[complement[x], id[y], complement[x]]]]] =
 spine[x, y]

In[4]:= intersection[y__, complement[fix[composite[complement[x__], id[y__], complement[x__]]]]] :=
 spine[x, y]
The class \(\text{spine}[x,y] \) is the class of all members of \(y \) that are comparable with every member of \(y \) with respect to the relation \(x \).

\[
\text{In [5]} := \text{class[u, and[member[u, y],
 forall[v, implies[member[v, y], or[member[pair[u, v], x], member[pair[v, u], x]]]]]]}
\]

\[
\text{Out [5]} = \text{spine}[x, y]
\]

spine as least or greatest

Much of the theory of \(\text{spine}[x, y] \) can be derived from that of \(\text{greatest}[x, y] \). These concepts are related as follows:

\[
\text{In [6]} := \text{greatest[union[x, inverse[x]], y] // Normality}
\]

\[
\text{Out [6]} = \text{intersection[y, ub[union[x, inverse[x]], y]] = spine[x, y]}
\]

\[
\text{In [7]} := \text{intersection[y_, ub[union[x_, inverse[x_]], y_]] := spine[x, y]}
\]

One could also use \(\text{least}[x, y] \) instead:

\[
\text{In [8]} := \text{least[union[x, inverse[x]], y] // Normality}
\]

\[
\text{Out [8]} = \text{intersection[y, lb[union[x, inverse[x]], y]] = spine[x, y]}
\]

\[
\text{In [9]} := \text{intersection[y_, lb[union[x_, inverse[x_]], y_]] := spine[x, y]}
\]

basic properties

The spine of a class is a subclass.

\[
\text{In [10]} := \text{SubstTest[subclass, least[t, y], y, t \rightarrow union[x, inverse[x]]] // Reverse}
\]

\[
\text{Out [10]} = \text{subclass[spine[x, y], y] = True}
\]

\[
\text{In [11]} := \text{subclass[spine[x_, y_], y_] := True}
\]

Corollary.

\[
\text{In [12]} := \text{equal[intersection[spine[x, y], y], spine[x, y]]}
\]

\[
\text{Out [12]} = \text{True}
\]

\[
\text{In [13]} := \text{intersection[y_, spine[x_, y_]] := spine[x, y]}
\]

It does not matter if one replaces \(x \) with \(\text{composite[Id, x]} \).

\[
\text{In [14]} := \text{spine[composite[Id, x], y] // Normality}
\]

\[
\text{Out [14]} = \text{spine[composite[Id, x], y] = spine[x, y]}
\]
In[15]:= spine[composite[Id, x_], y_] := spine[x, y]

It also does not matter if one replaces \(x \) with its inverse.

In[16]:= spine[inverse[x], y] // Normality
Out[16]= spine[inverse[x], y] = spine[x, y]
In[17]:= spine[inverse[x_], y_] := spine[x, y]

idempotence

Theorem. The spine of a spine is itself. Comment. A similar property holds for the constructors `least` and `greatest`.

In[18]:= SubstTest[least, t, least[t, y], t → union[x, inverse[x]]] // Reverse
Out[18]= spine[x, spine[x, y]] = spine[x, y]
In[19]:= spine[x_, spine[x_, y_]] := spine[x, y]

wrapper properties

One can regard the constructor `spine[x, y]` as a wrapper for a generic \(x \)-chain. In this section the basic wrapper properties are derived. More generally, both `least[x, y]` and `greatest[x, y]` can be regarded as wrappers for generic \(x \)-cliques, and this fact is used to derive the corresponding rewrite rules for `spine`. For `greatest` and `least`, the following wrapper-removal rules are available:

In[20]:= equal[y, greatest[x, y]]
Out[20]= subclass[cart[y, y], x]
In[21]:= equal[y, least[x, y]]
Out[21]= subclass[cart[y, y], x]

Theorem. Wrapper removal rule for `spine`.

In[22]:= SubstTest[equal, y, least[t, y], t → union[x, inverse[x]]] // Reverse
Out[22]= equal[y, spine[x, y]] = subclass[cart[y, y], union[x, inverse[x]]]

In[23]:= equal[y_, spine[x_, y_]] := subclass[cart[y, y], union[x, inverse[x]]]

Theorem. Spines are chains. This is derived here as a corollary of the idempotence property for `spine`.

In[24]:= SubstTest[equal, t, spine[x, t], t → spine[x, y]]
Out[24]= subclass[cart[spine[x, y], spine[x, y]], union[x, inverse[x]]] = True
In[25]:= subclass[cart[spine[x_, y_], spine[x_, y_]], union[x_, inverse[x_]]] := True

Conditional rule.

In[27]:= implies[subclass[cart[y, y], union[x, inverse[x]]], equal[spine[x, y], y]]
Out[27]= True

In[28]:= spine[x_, y_] := y /; subclass[cart[y, y], union[x, inverse[x]]]]

sethood

Since spine[x, y] is a subclass of y, it is a set when y is a set.

In[29]:= SubstTest[implies, and[subclass[t, y], member[y, z]],
 member[t, V], t + spine[x, y]] // Reverse
Out[29]= or[member[spine[x, y], V], not[member[y, z]]] = True

In[30]:= or[member[spine[x_, y_], V], not[member[y_, z_]]] := True

special cases

No new rewrite rule is needed for this special case:

In[32]:= spine[x, 0]
Out[32]= 0

When the first argument is 0, one has:

In[33]:= spine[0, x] // Normality
Out[33]= spine[0, x] = intersection[x, complement[image[V, x]]]

In[34]:= spine[0, x_] := intersection[x, complement[image[V, x]]]

The spine of a singleton is either itself or is empty.

In[35]:= spine[x, set[y]] // Normality
Out[35]= spine[x, set[y]] = intersection[fix[x], set[y]]

In[36]:= spine[x_, set[y_]] := intersection[fix[x], set[y]]

No new rewrite rule is needed for this special case:
reify rule

The reify rule for spine can be deduced from that for greatest. (Comment. A slightly different, but equivalent, formula is obtained if one uses least instead of greatest.)

```
In[40]:= SubstTest[reify, x, greatest[union[f[x], h[f[x]]], g[x]], h \[\rightarrow\] inverse] // Reverse
Out[40]= reify[x, spine[f[x], g[x]]] =
  composite[Id, intersection[complement[composite[SECOND, intersection[
    composite[inverse[FIRST], reify[x, g[x]]]], composite[inverse[E],
    id[SYM], inverse[LB[complement[reify[x, f[x]]]]]]], reify[x, g[x]]]]
```

Example:

```
In[45]:= reify[y, spine[x, y]]
Out[45]= GREATEST[union[x, inverse[x]]]
```

an example for the reify rule

An example of the use of reify is provided in this section. The conditional rewrite rule applies to the case of any ordinal ord[x], which is a chain of sets with respect to the inclusion relation S.

```
In[46]:= SubstTest[reify, x, spine[S, f[x]], f \[\rightarrow\] ord]
Out[46]= composite[GREATEST[union[S, inverse[S]]], id[OMEGA]] = composite[inverse[E], id[OMEGA]]
```

```
In[47]:= composite[GREATEST[union[S, inverse[S]]], id[OMEGA]] :=
  composite[inverse[E], id[OMEGA]]
```

Corollary.

```
In[48]:= Map[composite[VERTSECT[#], id[ord[x]]] &,
  Assoc[GREATEST[union[S, inverse[S]]], id[OMEGA], id[ord[x]]]]
Out[48]= composite[VERTSECT[GREATEST[union[S, inverse[S]]]], id[ord[x]]] = id[ord[x]]
```

```
In[49]:= composite[VERTSECT[GREATEST[union[S, inverse[S]]]], id[ord[x_]]] := id[ord[x]]
```
The following fact was discovered in the course of this study.

\[\text{In}[50] := \text{equal}[\text{intersection}[\text{GREATEST}[x], \text{composite}[\text{complement}[x], \text{GREATEST}[x]]], 0] \]
\[\text{Out}[50] = \text{True} \]

\[\text{In}[51] := \text{intersection}[\text{composite}[\text{complement}[x_], \text{GREATEST}[x_]], \text{GREATEST}[x_]] := 0 \]