successors of natural numbers

Johan G. F. Belinfante
2009 October 13

In[1]:= SetDirectory["l:"]; << godel.09oct09a;<< tools.m

:Package Title: godel.09oct09a 2009 October 9 at 3:50 p.m.
It is now: 2009 Oct 13 at 11:55
Loading Simplification Rules
TOOLS.M Revised 2009 September 15
weightlimit = 40

summary

This notebook is concerned various characterizations of the successor relation for natural numbers found in the literature. For example, the successor relation for natural numbers can be viewed as the cover relation corresponding to the membership relation on natural numbers. This fact is recognized by the current rules in the GOEDEL program.

In[2]:= cover[composite[id[omega], E]]
Out[2]= composite[id[omega], SUCC]

In the early literature on well-ordering, a general concept of immediate successor was introduced. See for example:

The concept of immediate successor for well-orders can be formulated in several equivalent ways. New rewrite rules are needed for the GOEDEL program to recognize some of these. In this notebook a description given by Patrick Suppes is considered.

a wrapper-free characterization with variables

The following characterization of successor for natural numbers is obtained by removing the nat wrapper from an existing rewrite rule in the GOEDEL program.
Theorem. A characterization of the successor of a natural number.

```
In[5]:= SubstTest[implies, equal[y, nat[t]],
        or[equal[y, succ[x]], member[x, U[y]], not[member[x, y]]], t → y] // Reverse
Out[5]= or[equal[y, succ[x]], member[x, U[y]], not[member[x, y]], not[member[y, omega]]] = True
In[6]:= or[equal[y_, succ[x_]], member[x_, U[y_]],
        not[member[x_, y_]], not[member[y_, omega]]] := True
```

cover[E] rules

Although the GOEDEL program already recognizes the successor relation for natural numbers as the cover relation for the membership relation on natural numbers, some related facts are not yet recognized. For instance, the successor relation on omega is a restriction of the cover relation of the global membership relation.

Theorem.

```
In[7]:= SubstTest[intersection, Di, x,
        complement[composite[intersection[Di, x], intersection[Di, x]]],
        x → composite[id[omega], E]] // Reverse
Out[7]= composite[id[omega], cover[E]] = composite[id[omega], SUCC]
In[8]:= composite[id[omega], cover[E]] := composite[id[omega], SUCC]
```

A similar rule holds for ordinal numbers. One need only replace omega with OMEGA.

Theorem.

```
In[9]:= SubstTest[intersection, Di, x,
        complement[composite[intersection[Di, x], intersection[Di, x]]],
        x → composite[id[OMEGA], E]] // Reverse
Out[9]= composite[id[OMEGA], cover[E]] = composite[id[OMEGA], SUCC]
In[10]:= composite[id[OMEGA], cover[E]] := composite[id[OMEGA], SUCC]
```

The GOEDEL program does not automatically assume the axiom of regularity. In the absence of the axiom of regularity, the membership relation need not be irreflexive. When restricted to the natural numbers, however, membership is irreflexive. The following rewrite rule expresses this fact.

Theorem.

```
In[11]:= AssInt[Di, restrict[S, omega, omega], restrict[E, omega, omega]]
In[12]:= composite[id[omega], intersection[Di, E]] := composite[id[omega], E]
```
PS rules

The membership relation E and the proper-subset relation PS coincide when restricted to the set ω of natural numbers. The cover relation for PS restricted to natural numbers is another characterization of the successor relation that is recognized by the \textsc{GOEDEL} program.

\begin{verbatim}
In[13]:= restrict[cover[PS], omega, omega]
Out[13]= composite[id[omega], SUCC]
\end{verbatim}

When expressions involving the restriction of PS to ω are encountered, the \textsc{GOEDEL} program automatically tries to convert them to corresponding expressions involving the membership relation E. Mixed expressions involving both PS and E may be encountered. The following rewrite rule deals with a situation of this kind.

Theorem.

\begin{verbatim}
In[14]:= AssInt[composite[id[omega], E], S, Di]
Out[14]= composite[id[omega], intersection[E, PS]] = composite[id[omega], E]
In[15]:= composite[id[omega], intersection[E, PS]] := composite[id[omega], E]
\end{verbatim}

Corollary.

\begin{verbatim}
In[16]:= AssInt[composite[id[omega], E], PS, x]
Out[16]= composite[id[omega], intersection[E, PS, x]] = composite[id[omega], intersection[E, x]]
In[17]:= composite[id[omega], intersection[E, PS, x_]] := composite[id[omega], intersection[E, x]]
\end{verbatim}

Lemma.

\begin{verbatim}
In[18]:= SubstTest[composite, restrict[PS, t, t], restrict[PS, t, t], t \rightarrow \omega]
Out[18]= composite[id[omega], inverse[IMAGE[inverse[PS]]], inverse[IMAGE[id[omega]]], E] =
 composite[id[omega], inverse[BIGCUP], E]
In[19]:= % /. Equal \rightarrow SetDelayed
\end{verbatim}

The following rewrite rule is also needed to derive the results in the next section.

Theorem.

\begin{verbatim}
In[20]:= Map[intersection[E, #] &, SubstTest[intersection, Di, x, complement[composite[intersection[Di, x], intersection[Di, x]]], x \rightarrow composite[id[omega], S, id[omega]]]] // Reverse
Out[20]= composite[id[omega], intersection[E, composite[inverse[BIGCUP], complement[E]]]] =
 composite[id[omega], SUCC]
\end{verbatim}
Corollary. Another characterization of the successor relation for natural numbers as the cover relation for the restriction of PS to omega.

Lemma. Patrick Suppes defines the concept of immediate successor for an arbitrary relation r as follows (see page 76, definition 29). An element y is an r-immediate successor of x if x is r-related to y and for all z, if x is r-related to z, then either $y = z$ or y is r-related to z. The following new rewrite rule is needed for the GOEDEL program to recognize this definition of immediate successor for the special case of natural numbers.

The concept of immediate successor for natural numbers is now recognized by the GOEDEL program:
The above rewrite rule is needed when the definition of immediate successor given by Suppes is first formulated for a general relation and then specialized to the case of `composite[id[omega], E]`.