characterizing ordinals using chain unions

Johan G. F. Belinfante
2011 July 19

In[1]:= SetDirectory["l:"]; << goedel.11jul17a

:Package Title: goedel.11jul17a 2011 July 17 at 4:50 a.m.
Loading takes about eleven minutes, half that time due to buildin pauses.
It is now: 2011 Jul 19 at 17:56
Loading Simplification Rules
TOOLS.M is now incorporated in the GOEDEL program as of 2010 September 3
weightlimit = 40
Loading completed.
It is now: 2011 Jul 19 at 18:6

summary

Ernst Zermelo in 1915 characterized ordinals as sets that satisfy \(\text{image}[\text{Succ}, x] \subseteq \text{succ}[x] \) and \(\text{Uclosure}[x] \subseteq \text{succ}[x] \).

In[2]:= \text{implies}[\text{member}[x, V], \text{equiv}[\text{member}[x, \text{OMEGA}], \text{and}[
\text{subclass}[\text{image}[\text{Succ}, x], \text{succ}[x]], \text{subclass}[\text{Uclosure}[x], \text{succ}[x]]]]] \quad \text{not} \quad \text{not} \n

This characterization was derived 2010 June 11 using the GOEDEL program in the posted notebook \texttt{zer-on-3.nb}. An analogous result is derived in this notebook, but with \text{Uchains} in place of \text{Uclosure}. Both results are independent of the axiom of regularity.

derivation

The following elementary theorem will be needed several times.

Theorem. If \(x \in y \) and \(y \subseteq \text{succ}[z] \), then \(x \in \text{succ}[z] \).

In[3]:= \text{SubstTest}[\text{implies}, \text{and}[\text{member}[x, y], \text{subclass}[y, t]], \text{member}[x, t], t \rightarrow \text{succ}[z]] \quad \text{Reverse} \n
Out[3]= or[\text{equal}[x, z], \text{member}[x, z], \text{not}[\text{member}[x, y]], \text{not}[\text{subclass}[y, \text{succ}[z]]]] = True
The easy half of the equivalence is that every ordinal satisfies \(\text{image}[\text{SUCC}, x] \subseteq \text{succ}[x] \) and \(\text{Uchains}[x] \subseteq \text{succ}[x] \). The former inclusion is already available in the \text{GOEDEL} program, while the latter is available using the \text{ord[x]} wrapper. The following theorem provides an unwrapped version of this fact.

Theorem. If \(x \in \Omega \), then \(\text{Uchains}[x] \subseteq \text{succ}[x] \).

For completeness, a slight variant of the above result is given in the following theorem.

Theorem. If \(x \in \Omega \), then \(\text{Uchains}[x] = \text{succ}[\text{U}[x]] \).

Comment. The class \(\Omega \) of all ordinals also satisfies \(\text{image}[\text{SUCC}, x] \subseteq \text{succ}[x] \) and \(\text{Uchains}[x] \subseteq \text{succ}[x] \). In this case, one can simplify the inclusions since \(\text{succ}[x] = x \) when \(x \) is a proper class. The following converse is due to Sion and Willmott.

Reference.

This result of Sion and Willmott was derived 2008 April 1 using the \text{GOEDEL} program in the posted notebook \text{uch-on.nb}.

a useful rewrite rule

In this section a rewrite rule needed later is derived.

Lemma.

In this section a rewrite rule needed later is derived.
The class \(\bigcup (\cap (\Omega \cap x)) \) is an ordinal if and only if \(\Omega \) and \(x \) are not disjoint.

\[
\text{equiv}[\text{member}[\text{U}[\text{intersection}[\Omega, x]], \Omega], \\
\text{not}[\text{equal}[0, \text{intersection}[\Omega, x]]]]
\]

\[
\text{member}[\text{U}[\text{intersection}[\Omega, x]], \Omega] := \text{not}[\text{equal}[0, \text{intersection}[\Omega, x]]]
\]

the main theorem

Since any set of ordinals is a chain, the union of any subset \(x \subseteq \Omega \cap y \) belongs to \(\text{Uchains}[y] \).

Theorem. If \(x \in \text{P}[\Omega \cap y] \), then \(\text{U}[x] \in \text{Uchains}[y] \).

\[
\text{Map}[\text{not}, \text{SubstTest}[\text{and}, \text{implies}[\text{and}[p0, p1, p3], p4], \\
\text{implies}[p2, p3], \text{not}[\text{implies}[\text{and}[p0, p1, p2], p4]], \\
\{p0 \rightarrow \text{member}[x, z], p1 \rightarrow \text{subclass}[x, y], p2 \rightarrow \text{subclass}[x, \Omega], \\
p3 \rightarrow \text{subclass}[\text{P}[x], \text{chains}[S]], p4 \rightarrow \text{member}[\text{U}[x], \text{Uchains}[y]]\}] // \text{Reverse}
\]

Out[15]= or[\text{member}[\text{U}[x], \text{Uchains}[y]], \text{not}[\text{member}[x, z]], \\
\text{not}[\text{subclass}[x, \Omega]], \text{not}[\text{subclass}[x, y]]] = \text{True}

\[
\text{or}[\text{member}[\text{U}[x], \text{Uchains}[y]], \text{not}[\text{member}[x, z]], \\
\text{not}[\text{subclass}[x, \Omega]], \text{not}[\text{subclass}[x, y]]] := \text{True}
\]

The abbreviation \(t = \cap (\Omega - x) \) will be used in the following for the least ordinal that does not belong to \(x \). Applying the above theorem to this subset of \(x \) yields the following.

Corollary.

\[
\text{SubstTest}[\text{or}, \text{member}[\text{U}[t], \text{Uchains}[x]], \text{not}[\text{member}[t, V]], \\
\text{not}[\text{subclass}[t, \Omega]], \text{not}[\text{subclass}[t, x]], t \rightarrow \text{A}[\text{dif}[\Omega, x]]] // \text{Reverse}
\]

Out[17]= or[\text{member}[\text{U}[\text{intersection}[\Omega, \text{complement}[x]]], \text{Uchains}[x]], \text{subclass}[\Omega, x]] = \text{True}

\[
(\% /. x \rightarrow x__] /. \text{Equal} \rightarrow \text{SetDelayed}
\]

Lemma. If \(\text{Uchains}[x] \subseteq \text{succ}[x] \) and \(t = \cap (\Omega - x) \) is a set, then \(\text{U}[t] \in \text{succ}[x] \).
Lemma. If $x = \text{U}[t]$, then $x \in \Omega$ or $\Omega \subseteq x$.

Lemma. If $\text{Uchains}[x] \subseteq \text{succ}[x]$ and $\text{U}[t] \in x$, then $x \in \Omega$ or $\Omega \subseteq x$.

Lemma. If $x = \text{succ}[\text{U}[t]]$ then either $x \in \Omega$ or $\Omega \subseteq x$.

Lemma. A consequence of the hypothesis $\text{image}[ext{SUCC}, x] \subseteq \text{succ}[x]$.
Main Theorem. If $\text{image(SUCC, x)} \subseteq \text{succ(x)}$ and $\text{Uchains(x)} \subseteq \text{succ(x)}$, then either $x \in \Omega$ or $\Omega \subseteq x$.

Lemma. If $t = \bigcap (\Omega - x)$ is an ordinal, either $U[t] = t$ or $\text{succ(U[t])} = t$.

Corollary. Any set x satisfying $\text{image(SUCC, x)} \subseteq \text{succ(x)}$ and $\text{Uchains(x)} \subseteq \text{succ(x)}$ is an ordinal.
a variable-free formulation

In this section a variable-free formula is derived that combines the main theorem with its converse.

Theorem. A membership rule for the class of all sets satisfying \(\text{Uchains}[x] \subset \text{succ}[x] \).

Lemma. A formula for the class of ordinals.
In[41]:= SubstTest[and, subclass[u, v], subclass[v, u],
 {u -> intersection[fix[composite[inverse[SUCC]], S, UCHAINS]],
 fix[composite[inverse[SUCC]], S, IMAGE[SUCC]]}, v -> OMEGA]

Out[41]= equal[OMEGA, intersection[fix[composite[inverse[SUCC]], S, UCHAINS]],
 fix[composite[inverse[SUCC]], S, IMAGE[SUCC]]] = True

In[42]:= intersection[fix[composite[inverse[SUCC]], S, UCHAINS]],
 fix[composite[inverse[SUCC]], S, IMAGE[SUCC]]] := OMEGA