Addition of natural numbers: rewrite rules and attributes for natadd.

Johan G. F. Belinfante
2002 July 28

In this notebook, basic rewrite rules involving natadd[x,y] are derived. Old rules related to the associative law of addition and the additive law of exponents are replaced. Justification is given for setting Flat and Orderless attributes for natadd.

Normality for natadd[x,y]

The Normality rule is needed for just about everything else, so it is a natural place to start.

```
natadd[x, y] // Normality // Reverse
A[image[NATADD, cart[singleton[x], singleton[y]]]] == natadd[x, y]
A[image[NATADD, cart[singleton[x_], singleton[y_]]]] := natadd[x, y]
```

From this it follows that natadd[x,y] is equal to V unless x and y are both natural numbers:

```
SubstTest[equal, V, A[image[NATADD, cart[u, v]]], {u -> singleton[x], v -> singleton[y]}]
equal[V, natadd[x, y]] == or[not(member[x, omega]], not(member[y, omega]])
```

This is added as a rewrite rule, used below to derive the commutative property of natadd.

```
equal[V, natadd[x_, y_]] := or[not(member[x, omega]], not(member[y, omega]])
```
Commutativity and the Orderless attribute

The commutativity of \texttt{NATADD} is used to derive the corresponding property of \texttt{natadd}.

\[
\begin{align*}
\text{SubstTest}[\text{implies, equal}[u, v], \text{equal}[A[u], A[v]],
\{u \rightarrow \text{image}[\text{NATADD}, \text{cart}[\text{singleton}[x], \text{singleton}[y]]],
\quad v \rightarrow \text{image}[\text{NATADD}, \text{cart}[\text{singleton}[y], \text{singleton}[x]]]\}]
\text{equal}[\text{natadd}[x, y], \text{natadd}[y, x]] &= \text{True}
\end{align*}
\]

This commutative property justifies adding the attribute \texttt{Orderless} to \texttt{natadd}.

\texttt{SetAttributes[natadd, Orderless]}

Now \textit{Mathematica} recognizes that \texttt{natadd} is commutative without needing to add any rewrite rules.

\[
\text{equal}[\text{natadd}[x, y], \text{natadd}[y, x]]
\]

\text{True}

Vertical section rule for NATADD

A vertical section rule for the binary function \texttt{NATADD} is deduced by using rules for \texttt{PAIR}:

\[
\begin{align*}
\text{SubstTest}[\text{implies, FUNCTION}[z],
\text{equal}[\text{image}[z, \text{singleton}[w]], \text{singleton}[A[\text{image}[z, \text{singleton}[w]]]],
\quad \{z \rightarrow \text{NATADD}, w \rightarrow \text{PAIR}[x, y]\}]
\text{equal}[\text{image}[\text{NATADD}, \text{cart}[\text{singleton}[x], \text{singleton}[y]]], \text{singleton}[\text{natadd}[x, y]]] &= \text{True}
\end{align*}
\]

This justifies adding the following rewrite rule:

\[
\text{image}[\text{NATADD}, \text{cart}[\text{singleton}[x__], \text{singleton}[y__]]] := \text{singleton}[\text{natadd}[x, y]]
\]

Sethood rule

From the vertical section rule one easily deduces a sethood rule:

\[
\text{Map}[\text{not, SubstTest}[\text{equal, 0}, \text{image}[\text{NATADD}, \text{singleton}[z]], z \rightarrow \text{PAIR}[x, y]]]
\text{member}[\text{natadd}[x, y], V] &= \text{and}[\text{member}[x, \omega], \text{member}[y, \omega]]
\text{member}[\text{natadd}[x__, y__], V] := \text{and}[\text{member}[x, \omega], \text{member}[y, \omega]]
\]

The following corollary is worth noting.
image[V, singleton[natadd[x, y]]] // Normality

image[V, singleton[natadd[x, y]]] ==
intersection[image[V, intersection[omega, singleton[x]]],
image[V, intersection[omega, singleton[y]]]]

image[V, singleton[natadd[x_, y_]]] :=
intersection[image[V, intersection[omega, singleton[x]]],
image[V, intersection[omega, singleton[y]]]]

This rewrite rule causes problems unless it is supplemented an additional rule. The **GOEDEL** program recognizes this truth:

equal[union[complement[image[V, intersection[omega, singleton[x]]]], natadd[x, y]],
natadd[x, y]]

True

On account of this, one is justified in adding a corresponding rewrite rule:

union[complement[image[V, intersection[omega, singleton[x_]]]], natadd[x_, y_]] :=
natadd[x, y]

- **A consequence of the associative law**

There is an old rewrite rule that follows from the associative law:

composite[NATADD, RIGHT[x], NATADD, RIGHT[y]]

composite[NATADD, RIGHT[natadd[x, y]]]

This rule can be generalized. First, the old rule is removed:

composite[NATADD, RIGHT[x_], NATADD, RIGHT[y_]] =.

Instead of restoring it, we deduce a more general rewrite rule:

Assoc[composite[NATADD, cross[Id, NATADD]], ASSOC, RIGHT[x]] // Reverse

composite[NATADD, RIGHT[x], NATADD] ==
composite[NATADD, cross[Id, composite[NATADD, RIGHT[x]]]]

composite[NATADD, RIGHT[x_], NATADD] :=
composite[NATADD, cross[Id, composite[NATADD, RIGHT[x]]]]

The old rule follows from this new rule as a special case:

composite[NATADD, RIGHT[x], NATADD, RIGHT[y]]

composite[NATADD, RIGHT[natadd[x, y]]]

- **New additive law of exponents**

The **GOEDEL** program currently contains the following additive law of exponents which involves **iterate** and **SUCC**:
We remove this old rule preparatory to deriving a better replacement rule.

\[
\text{composite}[\text{image}[\text{power}[x], u], \text{image}[\text{power}[x], v]]
\]

\[
\text{image}[\text{power}[x], \text{image}[\text{iterate}[\text{SUCC}, v], u]]
\]

The RIF version of the additive law of exponents is still available:

\[
\text{composite}[\text{RIF}, \text{cross}[\text{power}[x], \text{power}[x]]]
\]

\[
\text{composite}[\text{SWAP}, \text{power}[x], \text{NATADD}]
\]

From it we can deduce a replacement for the removed additive law of exponents:

\[
\text{ImageComp}[\text{composite}[\text{SWAP}, \text{RIF}], \text{cross}[\text{power}[x], \text{power}[x]], \text{cart}[u, v]] // \text{Reverse}
\]

\[
\text{composite}[\text{image}[\text{power}[x], u], \text{image}[\text{power}[x], v]] == \text{image}[\text{power}[x], \text{image}[\text{NATADD}, \text{cart}[u, v]]]
\]

\[
\text{composite}[\text{image}[\text{power}[x_], u_], \text{image}[\text{power}[x_], v_]] := \text{image}[\text{power}[x], \text{image}[\text{NATADD}, \text{cart}[u, v]]]
\]

The special case of greatest interest is the following, which involves \text{natadd}.

\[
\text{composite}[\text{image}[\text{power}[x], \text{singleton}[u]], \text{image}[\text{power}[x], \text{singleton}[v]]]
\]

\[
\text{image}[\text{power}[x], \text{singleton}[\text{natadd}[u, v]]]
\]

\[\textbf{The sum of natural numbers is a natural number}\]

We start with this result:

\[
\text{ImageComp}[\text{id}[\text{omega}], \text{NATADD}, \text{cart}[\text{singleton}[x], \text{singleton}[y]]] // \text{Reverse}
\]

\[
\text{intersection}[\text{omega}, \text{singleton}[\text{natadd}[x, y]]] == \text{singleton}[\text{natadd}[x, y]]
\]

\[
\text{intersection}[\text{omega}, \text{singleton}[\text{natadd}[x_], y_]] := \text{singleton}[\text{natadd}[x, y]]
\]

From it we deduce a temporary rule:

\[
\text{SubstTest}[\text{equal}, \text{intersection}[\text{omega}, \text{singleton}[w]],
\text{singleton}[w], w \rightarrow \text{natadd}[x, y]] // \text{Reverse}
\]

\[
\text{or}[\text{member}[\text{natadd}[x, y], \text{omega}], \text{not}[\text{member}[x, \text{omega}]], \text{not}[\text{member}[y, \text{omega}]]] == \text{True}
\]

\[
\text{or}[\text{member}[\text{natadd}[x_], y_], \text{omega}], \text{not}[\text{member}[x_], \text{omega}]], \text{not}[\text{member}[y_], \text{omega}]]] := \text{True}
\]

The converse also holds:

\[
\text{or}[\text{and}[\text{member}[x, \text{omega}], \text{member}[y, \text{omega}]],
\text{not}[\text{member}[\text{natadd}[x, y], \text{omega}]]] // \text{AssertTest}
\]

\[
\text{or}[\text{and}[\text{member}[x, \text{omega}], \text{member}[y, \text{omega}]], \text{not}[\text{member}[\text{natadd}[x, y], \text{omega}]]] == \text{True}
\]
These two results can be combined into a single rule:

\[
equiv[\text{member}[\text{nata}\text{dd}[x, y, \omega]], \text{and}][\text{member}[x, \omega], \text{member}[y, \omega]]] := \text{True}
\]

Various related facts are automatically recognized as consequences, and do not require additional rules. For example:

\[
\text{or}[\text{equal}][\text{nata}\text{dd}[x, y, V], \text{member}[\text{nata}\text{dd}[x, y, \omega]]]
\]

\[
\text{True}
\]

Associativity and the Flat attribute

The **GOEDEL** program recognizes this truth:

\[
\text{equal}[
\text{union}[
\text{complement}][\text{image}[V, \text{intersection}][\omega, \text{singleton}[y]]], \text{nata}\text{dd}[x, \text{nata}\text{dd}[y, z]]],
\text{nata}\text{dd}[x, \text{nata}\text{dd}[y, z]]]
\]

\[
\text{True}
\]

Consequently one is justified in adding a corresponding rewrite rule:

\[
\text{union}[
\text{complement}][\text{image}[V, \text{intersection}][\omega, \text{singleton}[y]]],
\text{nata}\text{dd}[x, \text{nata}\text{dd}[y, z]]] :=
\text{nata}\text{dd}[x, \text{nata}\text{dd}[y, z]]
\]

With this rule in place, one deduces that **nata**dd is associative.

\[
\text{Map}[
\text{ImageComp}][\text{composite}[\text{NATADD}, \text{RIGHT}[x]], \text{composite}[\text{NATADD}, \text{RIGHT}[y]], \text{singleton}[z]]
\text{nata}\text{dd}[z, \text{nata}\text{dd}[x, y]]] == \text{nata}\text{dd}[x, \text{nata}\text{dd}[y, z]]
\]

This associative property justifies adding the attribute **Flat** to **nata**dd.

\[
\text{SetAttributes}[
\text{nata}\text{dd}, \text{Flat}]
\]

Now **Mathematica** recognizes that **nata**dd is associative without needing to add any rewrite rules.

\[
\text{nata}\text{dd}[z, \text{nata}\text{dd}[x, y]]] == \text{nata}\text{dd}[x, \text{nata}\text{dd}[y, z]]
\]

\[
\text{True}
\]