cliques of a thin relation

Johan G. F. Belinfante
2011 October 4

summary

Every clique of a thin relation is a set. This fact is derived by introducing a temporary variable and then eliminating it using a combination of \texttt{reify} and \texttt{case}.

introduction

For convenience to the reader, some basic definitions and facts are reviewed in this section, but nothing new is derived here. The advantage of using the recently introduced \texttt{case} constructor is illustrated by a simple example here. In the final section, an attempt is made to demystify this by considering more general types of statements.

Recall that the \texttt{vertical section} of x at a set u is the image under x of the singleton of u.

$$\texttt{In[2]:=}\quad \texttt{class[v, and[member[u, V], member[pair[u, v], x]]]}$$

$$\texttt{Out[2]=}\quad \texttt{image[x, set[u]]}$$

The function \texttt{VERTSECT[x]} takes a set u to the vertical section $v = \texttt{image[x, \{u\}]}$ whenever the latter is a set.

$$\texttt{In[3]:=}\quad \texttt{member[pair[u, v], VERTSECT[x]]}$$

$$\texttt{Out[3]=}\quad \texttt{and[equal[v, image[x, set[u]]], member[u, V], member[v, V]]}$$

A relation x is \texttt{thin} if every vertical section is a set. The condition that x is thin can be stated as follows:
It has been observed that eliminating set variables can often be significantly speeded up by making use of \texttt{reify}. For any class expression \(f[x] \) that may involve a set variable \(x \), the relation \(\texttt{reify}(x, f[x]) \) is the class \(\{ \text{pair}(x, y) \colon \text{pair}(x, y) \in f[x] \} \). The special rewrite rules for \texttt{reify} in the \texttt{GOEDEL} program generally execute much faster than the more general class rules, probably because they do not affect terms that do not involve the variable \(x \).

Although reification can only be used to eliminate set variables in class expressions, one can eliminate set variables in statements by using \texttt{case} to convert statements to classes. For any statement \(p \), the class \(\texttt{case}(p) \) is equal to \(V \) if \(p \) is true, and is empty if \(p \) is false. The particular instance of quantification considered above is equivalent to the following, which executes about six times faster:

\begin{verbatim}
In[5]:= equal[V, domain[reify[w, case[member[image[x, set[w]], V]]]]] // Timing
Out[5]= {0.125 Second, equal[V, domain[VERTSECT[x]]]}
\end{verbatim}

derivation

A class \(y \) is a \textbf{clique} of \(x \) if \(y \times y \subseteq x \). In this section it is shown that every clique of a thin relation is a set. The entire derivation is done all at once. A temporary variable \(w \) is introduced, and then eliminated using a combination of \texttt{reify} and \texttt{case}. Rewrite rules in the \texttt{GOEDEL} program can sometimes make up for missing proof steps. In this derivation, to speed up execution, one proof step was omitted, as indicated with \((*) \ldots (*) \).

Theorem. Every clique of a thin relation is a set.

\begin{verbatim}
In[7]:= Map[equal[V, domain[reify[w, case[#]]]] &,
 Map[not, SubstTest[and, implies[and[p1, p2], p4], implies[p3, p5],
 (* implies[and[p4,p5],p6], *) not[implies[and[p1, p2, p3], p6]],
 {p1 \rightarrow member[w, y], p2 \rightarrow subclass[cart[y, y], x],
 p3 \rightarrow equal[V, domain[VERTSECT[x]]], p4 \rightarrow subclass[y, image[x, set[w]]],
 p5 \rightarrow member[image[x, set[w]], V], p6 \rightarrow member[y, V]]]]] // Reverse
Out[7]= or[member[y, V], not[equal[V, domain[VERTSECT[x]]]], not[subclass[cart[y, y], x]]] := True
In[8]:= or[member[y_, V], not[equal[V, domain[VERTSECT[x_]]]],
 not[subclass[cart[y_, y_], x_]]] := True
\end{verbatim}
final remarks

In this final section, an attempt is made to show the equivalence of quantification with the use of \texttt{reify} and \texttt{case}, at least for certain special types of statements. The following temporary rewrite rule is introduced here to automatically convert certain types of \texttt{class} expressions to \texttt{reify} expressions. It should be noted that making this rule permanent would not be a good idea because the \texttt{reify} rules currently in the \texttt{GOEDEL} program are not complete, whereas Gödel proved that his \texttt{class} rules are complete.

\begin{verbatim}
In[9]:= class[pair[x_, y_], member[y_, z_]] := reify[x, z]
\end{verbatim}

The following computations show the equivalence of quantification with a certain expression involving \texttt{reify} and \texttt{case} for membership statements.

\begin{verbatim}
In[10]:= assert[forall[x, member[f[x], g[x]]]] // Timing
Out[10]= {0.438 Second,
 equal[V, fix[composite[inverse[reify[x, g[x]]]], VERTSECT[reify[x, f[x]]]]]]

In[11]:= equal[V, domain[reify[x, case[member[f[x], g[x]]]]]] // Timing
Out[11]= {0.109 Second,
 equal[V, fix[composite[inverse[reify[x, g[x]]]], VERTSECT[reify[x, f[x]]]]]]
\end{verbatim}

A similar computation can be done for equality statements. Note that the use of \texttt{reify} is much less effective for equality statements.

\begin{verbatim}
In[12]:= assert[forall[x, equal[f[x], g[x]]]] // Timing
Out[12]= {0.313 Second, equal[composite[Id, reify[x, f[x]]], composite[Id, reify[x, g[x]]]]}

In[13]:= equal[V, domain[reify[x, case[equal[f[x], g[x]]]]]] // Timing
Out[13]= {0.859 Second, equal[composite[Id, reify[x, f[x]]], composite[Id, reify[x, g[x]]]]}
\end{verbatim}