divisors of 1

Johan G. F. Belinfante
2002 September 3

summary

The goal in this notebook is to derive the elementary fact that $1 = \text{singleton}[0]$ is the only divisor of 1, and the related fact that any factorization of 1 must be trivial. The latter result is stated first without variables, and then with variables.

divisors of 1

The key to determining the set of divisors of 1 is to make use of the connection between the divisibility relation DIV and the subclass relation S.

SubstTest[implies, subclass[u, v], subclass[image[inverse[u], w], image[inverse[v], w]],
{u -> DIV, v -> union[S, cart[omega, singleton[0]]], w -> singleton[singleton[0]]}]
subclass[image[inverse[DIV], singleton[singleton[0]]], succ[singleton[0]]] == True
subclass[image[inverse[DIV], singleton[singleton[0]]], succ[singleton[0]]] := True

Note that the class $\text{succ}[\text{singleton}[0]]$ only has two elements:

pairset[0, singleton[0]]
succ[singleton[0]]

The only thing left to do therefore is to rule out the possibility that 0 is a divisor of 1. This follows from the known fact that the only multiple of 0 is 0.

SubstTest[member, singleton[0], image[DIV, singleton[x]], x -> 0] // Reverse
member[pair[0, singleton[0]], DIV] == False

member[pair[0, singleton[0]], DIV] := False
Thus the set of divisors of 1 is contained in the singleton of 1.

```math
SubstTest[subclass, image[inverse[DIV], singleton[singleton[0]]],
    intersection[u, v],
    \{ u -> succ[singleton[0]], v -> complement[singleton[0]] \}]
subclass[image[inverse[DIV], singleton[singleton[0]]], singleton[singleton[0]]] = True
subclass[image[inverse[DIV], singleton[singleton[0]]], singleton[singleton[0]]] =: True
```

This containment can be strengthened to an equation as follows.

```math
SubstTest[member, singleton[0], image[DIV, singleton[x]], x -> singleton[0]] // Reverse
member[pair[singleton[0], singleton[0]], DIV] = True
member[pair[singleton[0], singleton[0]], DIV] =: True
```

We use the fact that two classes are equal if each is contained in the other:

```math
SubstTest[and, subclass[u, v], subclass[v, u],
    \{ u -> singleton[singleton[0]], v -> image[inverse[DIV], singleton[singleton[0]]] \}]
True = equal[image[inverse[DIV], singleton[singleton[0]]], singleton[singleton[0]]]
```

This is the final result.

```math
image[inverse[DIV], singleton[singleton[0]]] =: singleton[singleton[0]]
```

all factorizations of 1 are trivial

From the theorem about divisors of 1 one can derive that fact that factorizations of 1 are trivial. A key step used in establishing this corollary turned out to be something one might not have expected:

```math
IminComp[NATMUL, id[cart[V, V]], x] // Reverse
composite[Id, image[inverse[NATMUL], x]] = image[inverse[NATMUL], x]
composite[Id, image[inverse[NATMUL], x]] =: image[inverse[NATMUL], x]
```

The reason this fact is so important is that the GOEDEL program contains some conditional rewrite rules that apply only to relations. In these rewrite rules the condition `composite[Id,x] == x` is used to determine whether a given class `x` is a relation. The entire derivation can now be done in one step:

```math
SubstTest[and, subclass[u, v], subclass[v, u],
    \{ u -> id[singleton[singleton[0]]],
    v -> image[inverse[NATMUL], singleton[singleton[0]]] \}]
True = equal[cart[singleton[singleton[0]], singleton[singleton[0]]],
    image[inverse[NATMUL], singleton[singleton[0]]]]
```

This establishes a variable-free version of the corollary:

```math
image[inverse[NATMUL], singleton[singleton[0]]] :=
cart[singleton[singleton[0]], singleton[singleton[0]]]
```
reformulating the corollary

We now derive a restatement of the theorem about factoring 1 using two variables. First we have to derive the fact that any factorization of 1 must use natural numbers as factors:

SubstTest[implies, and[equal[u, v], member[v, V]], member[u, V],
 {u -> natmul[x, y], v -> singleton[0]}]

or[and[member[x, omega], member[y, omega]],
 not[equal[natmul[x, y], singleton[0]]]] == True

or[and[member[x_, omega], member[y_, omega]],
 not[equal[natmul[x_, y_], singleton[0]]]] := True

The following observation ...

equiv[and[equal[natmul[x, y], singleton[0]], member[x, omega], member[y, omega]],
 equal[natmul[x, y], singleton[0]]]

True

... justifies adding this temporary simplification rule:

and[equal[natmul[x_, y_], singleton[0]], member[x_, omega], member[y_, omega]] :=
 equal[natmul[x, y], singleton[0]]

The first version of the corollary now is used to deduce an alternate version of it:

SubstTest[member, pair[x, y], image[inverse[NATMUL], w],
 w -> singleton[singleton[0]]] // Reverse

equal[natmul[x, y], singleton[0]] == and[equal[x, singleton[0]], equal[y, singleton[0]]]

Thus 1 is the product of x and y if and only if x = y = 1:

equal[natmul[x_, y_], singleton[0]] :=
 and[equal[x, singleton[0]], equal[y, singleton[0]]]