No books or notes allowed. No laptop or wireless devices allowed. Show all your work for full credit. Write clearly and legibly.

Name (print): \qquad

Question:	1	2	3	4	5	Total
Points:	40	20	30	20	0	110
Score:						

Question:	1	2	3	4	5	Total
Bonus Points:	0	0	0	0	20	20
Score:						

Question 1... 40 point
Let X be a continuous r.v. with p.d.f. given by

$$
f(x)= \begin{cases}p+2(1-p) x & 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

where p is a parameter.
(a) (10 points) for which value of p is f a valid p.d.f. (Hint: remember that there are 2 conditions you should check.)

Solution: We have

$$
\int_{0}^{1} f(x) d x=1
$$

for every p so that we just need to check that $f(x)>0$. Since f is linear in x it is enough that $f(0)>0$ and $f(1)>0$. Thus we get

$$
0 \leq p \leq 2 .
$$

(b) (15 points) Compute the expected value $\mathbb{E}(X)$ and the variance $V(X)$ of X.

Solution: We have

$$
\mathbb{E}(X)=\int_{0}^{1} x f(x) d x=p \int_{0}^{1} x d x+2(1-p) \int_{0}^{1} x^{2} d x=\frac{p}{2}+\frac{2}{3}(1-p)=\frac{2}{3}-\frac{p}{6}
$$

and

$$
\mathbb{E}\left(X^{2}\right)=\int_{0}^{1} x^{2} f(x) d x=p \int_{0}^{1} x^{2} d x+2(1-p) \int_{0}^{1} x^{3} d x=\frac{p}{3}+\frac{1}{2}(1-p)=\frac{1}{2}-\frac{p}{6}
$$

so that

$$
V(x)=\frac{1}{36}(p(2-p)+2)
$$

(c) (15 points) Show that

$$
\mathbb{E}\left(\left(X-\frac{2}{3}\right)^{2}\right) \geq\left(\frac{p}{6}\right)^{2}
$$

(Hint: use Jensen inequality.)
Solution: Use Jensen inequality to get

$$
\mathbb{E}\left(\left(X-\frac{2}{3}\right)^{2}\right) \geq\left(\mathbb{E}(X)-\frac{2}{3}\right)^{2}=\left(\frac{1}{2}-\frac{p}{6}-\frac{1}{2}\right)^{2}
$$

Let $N_{k}, k=1,2,3, \ldots$, be an infinite sequence of geometric random variable with parameter $p_{k}=\frac{\lambda}{k}$, that is

$$
\mathbb{P}\left(N_{k}=n\right)=\left(1-p_{k}\right)^{n-1} p_{k} \quad \text { for } n \geq 1
$$

and $\mathbb{P}\left(N_{k}=n\right)=0$ for $n<1$. Moreover let Y be an exponential r.v. with parameter λ, that is

$$
f_{Y}(y)=\lambda e^{-\lambda y} \quad \text { for } y \geq 0
$$

and $f_{Y}(y)=0$ for $y<0$.
Show that $Z_{k}=N_{k} / k$ converge in distribution to Y as $k \rightarrow \infty$. (Hint: compute the c.d.f. of Z_{k}, that is $F_{k}(x)=\mathbb{P}\left(Z_{k} \leq x\right)$ for every real number x.)

Solution: Observe that we have

$$
\mathbb{P}\left(Z_{k} \leq x\right)=\mathbb{P}\left(N_{k} \leq k x\right)=\sum_{i=1}^{\lfloor k x\rfloor}\left(1-p_{k}\right)^{i-1} p_{k}=1-\left(1-p_{k}\right)^{\lfloor k x\rfloor-1}=\left(1-\frac{\lambda}{k}\right)^{\lfloor k x\rfloor-1}
$$

while

$$
\mathbb{P}(Y \leq y)=1-e^{-\lambda y}
$$

Observe that

$$
\frac{\lfloor k x\rfloor-1}{k} \rightarrow x
$$

as $k \rightarrow \infty$ so that

$$
\left(1-\frac{\lambda}{k}\right)^{\lfloor k x\rfloor-1}=\left(\left(1-\frac{\lambda}{k}\right)^{k}\right)^{\frac{\lfloor k x\rfloor-1}{k}} \rightarrow_{k \rightarrow \infty} e^{-\lambda x}
$$

for every x.

Question 3

 30 pointA student is attempting a multiple choices exam. For each question there are 4 possible answers. He has a probability of 0.75 of knowing the correct answer. If he does not know the answer he chooses one answer uniformly and randomly. All questions and answers are independent.

To get a B he need to answer correctly 85% of the questions while to get an A he needs to answer correctly 95% of the questions.
(a) (15 points) If the test contains 40 questions, use a normal approximation (CLT) and the table provided to compute the probability p_{B} that the student will get at least a B and the probability p_{A} that the student will get a A .

Solution: Let p be the probability that the student give a correct answer. We have

$$
p=0.75+0.25 \cdot 0.25=0.8125
$$

Let X_{i} be 1 if he answer correctly to the i-th question and 0 otherwise. Thus $\mathbb{E}\left(X_{i}\right)=0.8125$ and $V\left(X_{i}\right)=0.1523$. We get

$$
\begin{aligned}
p_{B} & =\mathbb{P}\left(\sum_{i=1}^{40} X_{i}>0.85 \cdot 40\right)= \\
& =\mathbb{P}\left(\frac{\sum_{i=1}^{40} X_{i}-0.8125 \cdot 40}{0.390 \sqrt{40}}>\frac{(0.85-0.8125) \cdot 40}{0.390 \sqrt{40}}\right)= \\
& =1-\Phi(0.60)=0.274
\end{aligned}
$$

while

$$
\begin{aligned}
p_{B} & =\mathbb{P}\left(\sum_{i=1}^{40} X_{i}>0.95 \cdot 40\right)= \\
& =\mathbb{P}\left(\frac{\sum_{i=1}^{40} X_{i}-0.8125 \cdot 40}{0.390 \sqrt{40}}>\frac{(0.95-0.8125) \cdot 40}{0.390 \sqrt{40}}\right)= \\
& =1-\Phi(2.23)=0.013 .
\end{aligned}
$$

(b) (15 points) Let p_{B} be the probability that a student that knows 75% of the answers will get a B or more. If the teacher wants p_{B} to be less than 0.025 , how many question should there be on the exam.

Solution: He wants to find N such that

$$
\mathbb{P}\left(\sum_{i=1}^{N} X_{i}>0.85 \cdot N\right) \leq 0.025
$$

This means

$$
\mathbb{P}\left(\frac{\sum_{i=1}^{N} X_{i}-0.8125 \cdot N}{0.390 \sqrt{N}}>\frac{(0.85-0.8125) \cdot \sqrt{N}}{0.390}\right)=1-\Phi(0.096 \cdot \sqrt{N}) \leq 0.025
$$

From the table we

$$
\Phi(1.96)=0.975
$$

so that he needs

$$
N>\left(\frac{1.96}{0.096}\right)^{2}=416
$$

questions.

Let Z be a standard normal random variable. Find the n-th moment $m_{n}=\mathbb{E}\left(Z^{n}\right)$ of Z, for every n. (Hint: you can use integration by part to relate m_{n} with m_{n-2} and then use induction. Alternatively you can use the Taylor expansion around 0 of the m.g.f of a normal standard.)

Solution: By symmetry we just need to look at even n, that is $n=2 k$.
First method: integrating by part we get

$$
\begin{aligned}
m_{2 k} & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} z^{2 k} e^{-\frac{z^{2}}{2}} d z=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} z^{2 k-1} z e^{-\frac{z^{2}}{2}} d z= \\
& =(2 k-1) \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} z^{2 k-2} e^{-\frac{z^{2}}{2}} d z=(2 k-1) m_{2 k-2}
\end{aligned}
$$

we know that $m_{0}=1$ so that

$$
m_{2 k}=(2 k-1)(2 k-3)(2 k-5) \cdots 5 \cdot 3 \cdot 1
$$

Second method: We know that the moment generating function of Z is

$$
M_{Z}(t)=e^{\frac{t^{2}}{2}}=\sum_{k=0}^{\infty} \frac{t^{2 k}}{2^{k} k!}
$$

so that

$$
\left.\frac{d^{k}}{d t^{k}} M_{Z}(t)\right|_{t=0}=\frac{(2 k)!}{2^{k} k!}=(2 k-1)(2 k-3)(2 k-5) \cdots 5 \cdot 3 \cdot 1
$$

5. (20 points (bonus)) Let N_{1}, N_{2} and N_{3} be discrete random variables with joint probability mass function

$$
p\left(n_{1}, n_{2}, n_{3}\right)=\mathbb{P}\left(N_{1}=n_{1} \& N_{2}=n_{2} \& N_{3}=n_{3}\right)=\frac{3^{-N} N!}{n_{1}!n_{2}!n_{3}!}
$$

if $n_{1}+n_{2}+n_{3}=N$ and 0 otherwise.
Compute the marginal mass function $p_{N_{1}}$ of N_{1}, that is

$$
p_{N_{1}}\left(n_{1}\right)=\mathbb{P}\left(N_{1}=n_{1}\right)
$$

and the conditional mass function $p_{N_{2}, N_{3} \mid N_{1}}$ of N_{2} and N_{3} given N_{1}, that is

$$
p_{N_{2}, N_{3} \mid N_{1}}\left(n_{2}, n_{3} \mid n_{1}\right)=\mathbb{P}\left(N_{2}=n_{2} \& N_{3}=n_{3} \mid N_{1}=n_{1}\right)
$$

(Hint: you can answer the question without doing any computation. Think what situation is described by N_{1}, N_{2} and N_{3}.)

Solution: Observe that N_{1}, N_{2} and N_{3} are the result of repeating an experiment with 3 possible equiprobable outcomes (say $1,2,3) N$ times. $\mathbb{P}\left(N_{1}=n_{1}\right)$ represents the probability of obtaining $n_{1} 1 \mathrm{~s}$ when the probability of a 1 in $1 / 3$. Thus $\mathbb{P}\left(N_{1}=n_{1}\right)$ is a binomial with $p=1 / 3$ that is

$$
\mathbb{P}\left(N_{1}=n_{1}\right)=\frac{N!}{\left(N-n_{1}\right)!n_{1}!}\left(\frac{1}{3}\right)^{n_{1}}\left(\frac{2}{3}\right)^{N-n_{1}}
$$

On the other hand if you know you had exactly $n_{1} 1$'s, the remaining outcomes are 2 or 3 , with equal probability. Thus

$$
p_{N_{2}, N_{3} \mid N_{1}}\left(n_{2}, n_{3} \mid n_{1}\right)=\frac{2^{-\left(N-n_{1}\right)}\left(N-n_{1}\right)!}{n_{2}!n_{3}!}
$$

if $n_{2}+n_{3}=N-n_{1}$ and 0 otherwise.
In formulas we have

$$
\begin{aligned}
p_{N_{1}}\left(n_{1}\right) & =\sum_{n_{2}, n_{3}} p\left(n_{1}, n_{2}, n_{3}\right)=\sum_{n_{2}+n_{3}=N-n_{1}} \frac{3^{-N} N!}{n_{1}!n_{2}!n_{3}!}= \\
& =\frac{3^{-N} 2^{N-n_{1}} N!}{\left(N-n_{1}\right)!n_{1}!} \sum_{n_{2}+n_{3}=N-n_{1}} \frac{2^{-\left(N-n_{1}\right)}\left(N-n_{1}\right)!}{n_{2}!n_{3}!}= \\
& =\frac{N!}{\left(N-n_{1}\right)!n_{1}!}\left(\frac{1}{3}\right)^{n_{1}}\left(\frac{2}{3}\right)^{N-n_{1}}
\end{aligned}
$$

so that N_{1} is a binomial r.v. with N trials and $p=1 / 3$.

Moreover we have

$$
\begin{aligned}
p_{N_{2}, N_{3} \mid N_{1}}\left(n_{2}, n_{3} \mid n_{1}\right) & =\frac{3^{-N} N!}{n_{1}!n_{2}!n_{3}!}\left(\frac{N!}{\left(N-n_{1}\right)!n_{1}!}\left(\frac{1}{3}\right)^{n_{1}}\left(\frac{2}{3}\right)^{N-n_{1}}\right)^{-1}= \\
& =\frac{2^{-\left(N-n_{1}\right)}\left(N-n_{1}\right)!}{n_{2}!n_{3}!}
\end{aligned}
$$

if $n_{2}+n_{3}=N-n_{1}$ and 0 otherwise.
Thus N_{2} is a binomial r.v with $N-n_{1}$ trials and $p=1 / 2$.

Useful Formulas

- Normal Distribution: if Z is a standard normal r.v. then its density function is

$$
f(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}
$$

while $E(Z)=0$ and $V(Z)=1$. The moment generating function $M_{Z}(t)$ is given by

$$
M_{Z}(t)=e^{\frac{t^{2}}{2}}
$$

Moreover

$$
\Phi(z)=\mathbb{P}(Z \leq z)
$$

is given in the table on next page. Finally if X is normal with $\mathbb{E}(X)=\mu$ and $V(X)=\sigma^{2}$ then

$$
Y=\frac{X-\mu}{\sigma}
$$

is normal standard.

- Jensen's Inequality: If X is a r.v. and g is a convex function then

$$
\mathbb{E}(g(X)) \geq g(\mathbb{E}(X))
$$

- CLT: if X_{i} is a sequence of i.i.d. random variable with expected value μ and variance σ^{2} and

$$
S_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{X_{i}-\mu}{\sigma}
$$

then S_{n} converges in distribution to a normal standard r.v. Z.

- Convergence in Distribution: we say that the sequence X_{n} converge in distribution to X if

$$
\mathbb{P}\left(X_{n} \leq x\right) \rightarrow_{n \rightarrow \infty} \mathbb{P}(X \leq x)
$$

for every $x \in \mathbb{R}$.

Table 1b: Standard Normal Probabilities

The values in the table below are cumulative probabilities for the standard normal distribution Z (that is, the normal distribution with mean 0 and standard deviation 1). These probabilities are values of the following integral:

$$
P(Z \leq z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x
$$

Geometrically, the values represent the area to the left of z under the density curve of the standard normal distribution:

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

