This is a take home final exam. You can use your notes, my online notes on canvas and the text book. You are supposed to work on your own text without external help. I'll be available to answer question in person or via email. Please, write clearly and legibly and take a readable scan before uploading.

To solve the Exam problems, I have not collaborated with anyone nor sought external help and the material presented is the result of my own work.

Signature: \qquad

Name (print): \qquad

Question:	1	2	$[3$	4	5	6	$[7$	Total
Points:	30	15	25	20	10	0	0	100
Score:								

| Question: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bonus Points: | 0 | 0 | 0 | 0 | 0 | 15 | 15 | 30 |
| Score: | | | | | | | | |

Question 1

 30 pointLet X be a continuous r.v. with p.d.f. given by

$$
f(x)= \begin{cases}p+2(1-p) x & 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

where p is a parameter.
(a) (10 points) for which value of p is f a valid p.d.f.? (Hint: remember that there are 2 conditions you should check.)

Solution: We have

$$
\int_{0}^{1} f(x) d x=1
$$

for every p so that we just need to check that $f(x)>0$. Since f is linear in x it is enough that $f(0)>0$ and $f(1)>0$. Thus we get

$$
0 \leq p \leq 2 .
$$

(b) (10 points) Compute the expected value $\mathbb{E}(X)$ and the variance $\operatorname{var}(X)$ of X.

Solution: We have

$$
\mathbb{E}(X)=\int_{0}^{1} x f(x) d x=p \int_{0}^{1} x d x+2(1-p) \int_{0}^{1} x^{2} d x=\frac{p}{2}+\frac{2}{3}(1-p)=\frac{2}{3}-\frac{p}{6}
$$

and

$$
\mathbb{E}\left(X^{2}\right)=\int_{0}^{1} x^{2} f(x) d x=p \int_{0}^{1} x^{2} d x+2(1-p) \int_{0}^{1} x^{3} d x=\frac{p}{3}+\frac{1}{2}(1-p)=\frac{1}{2}-\frac{p}{6}
$$

so that

$$
\operatorname{var}(X)=\frac{1}{36}(p(2-p)+2)
$$

(c) (10 points) Show that

$$
\mathbb{E}\left(\left(X-\frac{2}{3}\right)^{2}\right) \geq\left(\frac{p}{6}\right)^{2}
$$

(Hint: use Jensen inequality.)
Solution: Use Jensen inequality to get

$$
\mathbb{E}\left(\left(X-\frac{2}{3}\right)^{2}\right) \geq\left(\mathbb{E}(X)-\frac{2}{3}\right)^{2}=\left(\frac{1}{2}-\frac{p}{6}-\frac{1}{2}\right)^{2}
$$

Let $N_{k}, k=1,2,3, \ldots$, be an infinite sequence of geometric random variable with parameter $p_{k}=\frac{\lambda}{k}$, that is

$$
\mathbb{P}\left(N_{k}=n\right)=\left(1-p_{k}\right)^{n-1} p_{k} \quad \text { for } n \geq 1
$$

and $\mathbb{P}\left(N_{k}=n\right)=0$ for $n<1$. Moreover let Y be an exponential r.v. with parameter λ, that is

$$
f_{Y}(y)=\lambda e^{-\lambda y} \quad \text { for } y \geq 0
$$

and $f_{Y}(y)=0$ for $y<0$.
Show that $Z_{k}=N_{k} / k$ converge in distribution to Y as $k \rightarrow \infty$. (Hint: compute the c.d.f. of Z_{k}, that is $F_{k}(x)=\mathbb{P}\left(Z_{k} \leq x\right)$ for every real number x.)

Solution: Observe that we have

$$
\mathbb{P}\left(Z_{k} \leq x\right)=\mathbb{P}\left(N_{k} \leq k x\right)=\sum_{i=1}^{\lfloor k x\rfloor}\left(1-p_{k}\right)^{i-1} p_{k}=1-\left(1-p_{k}\right)^{\lfloor k x\rfloor-1}=\left(1-\frac{\lambda}{k}\right)^{\lfloor k x\rfloor-1}
$$

while

$$
\mathbb{P}(Y \leq y)=1-e^{-\lambda y}
$$

Observe that

$$
\frac{\lfloor k x\rfloor-1}{k} \rightarrow x
$$

as $k \rightarrow \infty$ so that

$$
\left(1-\frac{\lambda}{k}\right)^{\lfloor k x\rfloor-1}=\left(\left(1-\frac{\lambda}{k}\right)^{k}\right)^{\frac{\lfloor k x\rfloor-1}{k}} \rightarrow_{k \rightarrow \infty} e^{-\lambda x}
$$

for every x.

Question 3

 25 pointA student is attempting a multiple choices exam. For each question there are 4 possible answers. He has a probability of 0.75 of knowing the correct answer. If he does not know the answer he chooses one answer uniformly and randomly. All questions and answers are independent.

To get a B he need to answer correctly 85% of the questions while to get an A he needs to answer correctly 95% of the questions.
To answer the questions below, you can use Matlab or R (or any other software) to compute the needed values c.d.f. of a Standard Normal r.v.. In case you do not have them available, this is an online calculator.
(a) (10 points) If the test contains 40 questions, use a normal approximation (CLT) to compute the probability p_{B} that the student will get at least a B and the probability p_{A} that the student will get a A .

Solution: Let p be the probability that the student give a correct answer. We have

$$
p=0.75+0.25 \cdot 0.25=0.8125
$$

Let X_{i} be 1 if he answer correctly to the i-th question and 0 otherwise. Thus $\mathbb{E}\left(X_{i}\right)=0.8125$ and $V\left(X_{i}\right)=0.1523$. We get

$$
\begin{aligned}
p_{B} & =\mathbb{P}\left(\sum_{i=1}^{40} X_{i}>0.85 \cdot 40\right)= \\
& =\mathbb{P}\left(\frac{\sum_{i=1}^{40} X_{i}-0.8125 \cdot 40}{0.390 \sqrt{40}}>\frac{(0.85-0.8125) \cdot 40}{0.390 \sqrt{40}}\right)= \\
& =1-\Phi(0.60)=0.274
\end{aligned}
$$

while

$$
\begin{aligned}
p_{B} & =\mathbb{P}\left(\sum_{i=1}^{40} X_{i}>0.95 \cdot 40\right)= \\
& =\mathbb{P}\left(\frac{\sum_{i=1}^{40} X_{i}-0.8125 \cdot 40}{0.390 \sqrt{40}}>\frac{(0.95-0.8125) \cdot 40}{0.390 \sqrt{40}}\right)= \\
& =1-\Phi(2.23)=0.013 .
\end{aligned}
$$

(b) (15 points) Let p_{B} be the probability that a student that knows 75% of the answers will get a B or more. If the teacher wants p_{B} to be less than 0.025 , how many questions should there be on the exam.

Solution: He wants to find N such that

$$
\mathbb{P}\left(\sum_{i=1}^{N} X_{i}>0.85 \cdot N\right) \leq 0.025
$$

This means

$$
\mathbb{P}\left(\frac{\sum_{i=1}^{N} X_{i}-0.8125 \cdot N}{0.390 \sqrt{N}}>\frac{(0.85-0.8125) \cdot \sqrt{N}}{0.390}\right)=1-\Phi(0.096 \cdot \sqrt{N}) \leq 0.025
$$

From the table we

$$
\Phi(1.96)=0.975
$$

so that he needs

$$
N>\left(\frac{1.96}{0.096}\right)^{2}=416
$$

questions.

Let X be a continuous r.v. with uniform distribution in $[-1,1]$ and Y be such that $\mathbb{P}(Y=1)=\mathbb{P}(Y=-1)=0.5, X$ and Y independent. Consider the r.v. $Z=X Y$.
(a) (10 points) Find the p.d.f. of Z.

Solution: Observe that

$$
\mathbb{P}(Z<z)=\mathbb{P}(X<z) \mathbb{P}(Y=1)+\mathbb{P}(X>-z) \mathbb{P}(Y=-1)
$$

Observing that $\mathbb{P}(X<z)=\mathbb{P}(X>-z)$ we get $\mathbb{P}(Z<z)=\mathbb{P}(X<z)$, that is Z is uniform in $[-1,1]$ and

$$
f_{Z}(z)= \begin{cases}\frac{1}{2} & -1 \leq z \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(b) (10 points) Are Z and Y independent?

Solution: For any $A \subset[-1,1]$ we have

$$
\mathbb{P}(Z \in A \& Y=1)=\mathbb{P}(X \in A) \mathbb{P}(Y=1)=\mathbb{P}(Z \in A) \mathbb{P}(Y=1)
$$

while

$$
\begin{aligned}
\mathbb{P}(Z \in A \& Y=-1)= & \mathbb{P}(X \in-A) \mathbb{P}(Y=1)=\mathbb{P}(X \in A) \mathbb{P}(Y=-1)= \\
& \mathbb{P}(Z \in A) \mathbb{P}(Y=-1)
\end{aligned}
$$

so that Z and Y are independent.

Question 5 10 point
Let X_{1} and X_{2} be two independent exponential r.v. with expected value λ. Find the joint p.d.f. of $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{1}-X_{2}$ and the marginal p.d.f. of Y_{2}. (Hint: pay attention to the possible values of Y_{1} and Y_{2})

Solution: The p.d.f. of X_{1} and X_{2} is

$$
f(x)=\lambda^{-1} e^{-\frac{x}{\lambda}} .
$$

Note: if students used λ as the parameter instead of λ^{-1}, do not penalize them.
Clearly we have

$$
X_{1}=\left(Y_{1}+Y_{2}\right) / 2 \quad X_{1}=\left(Y_{1}-Y_{2}\right) / 2
$$

and the Jacobian of the change of variables id

$$
\left|J\left(y_{1}, y_{2}\right)\right|=\frac{1}{2}
$$

and we need $y_{1}+y_{2}>0$ and $y_{1}-y_{2}>0$, so that we get

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=\frac{1}{2} \lambda^{-2} e^{-\frac{y_{1}}{\lambda}} \quad \text { for } y_{1}>0,\left|y_{2}\right|<y_{1}
$$

To find the marginal p.d.f. of Y_{1} we compute

$$
f_{Y_{2}}\left(y_{2}\right)=\frac{1}{2} \int_{\left|y_{2}\right|}^{\infty} \lambda^{-2} e^{-\frac{y_{1}}{\lambda}} d y_{1}=\frac{1}{2} \lambda^{-1} e^{-\frac{\left|y_{2}\right|}{\lambda}} .
$$

6. (15 points (bonus)) Let N_{1}, N_{2} and N_{3} be discrete random variables with joint probability mass function

$$
p\left(n_{1}, n_{2}, n_{3}\right)=\mathbb{P}\left(N_{1}=n_{1} \& N_{2}=n_{2} \& N_{3}=n_{3}\right)=\frac{3^{-N} N!}{n_{1}!n_{2}!n_{3}!}
$$

if $n_{1}+n_{2}+n_{3}=N$ and 0 otherwise.
Compute the marginal mass function $p_{N_{1}}$ of N_{1}, that is

$$
p_{N_{1}}\left(n_{1}\right)=\mathbb{P}\left(N_{1}=n_{1}\right)
$$

and the conditional mass function $p_{N_{2}, N_{3} \mid N_{1}}$ of N_{2} and N_{3} given N_{1}, that is

$$
p_{N_{2}, N_{3} \mid N_{1}}\left(n_{2}, n_{3} \mid n_{1}\right)=\mathbb{P}\left(N_{2}=n_{2} \& N_{3}=n_{3} \mid N_{1}=n_{1}\right) .
$$

(Hint: you can answer the question without doing any computation. Think what situation is described by N_{1}, N_{2} and N_{3}.)

Solution: Observe that N_{1}, N_{2} and N_{3} are the result of repeating an experiment with 3 possible equiprobable outcomes (say $1,2,3) N$ times. $\mathbb{P}\left(N_{1}=n_{1}\right)$ represents the probability of obtaining $n_{1} 1 \mathrm{~s}$ when the probability of a 1 in $1 / 3$. Thus $\mathbb{P}\left(N_{1}=n_{1}\right)$ is a binomial with $p=1 / 3$ that is

$$
\mathbb{P}\left(N_{1}=n_{1}\right)=\frac{N!}{\left(N-n_{1}\right)!n_{1}!}\left(\frac{1}{3}\right)^{n_{1}}\left(\frac{2}{3}\right)^{N-n_{1}} .
$$

On the other hand if you know you had exactly $n_{1} 1$'s, the remaining outcomes are 2 or 3 , with equal probability. Thus

$$
p_{N_{2}, N_{3} \mid N_{1}}\left(n_{2}, n_{3} \mid n_{1}\right)=\frac{2^{-\left(N-n_{1}\right)}\left(N-n_{1}\right)!}{n_{2}!n_{3}!}
$$

if $n_{2}+n_{3}=N-n_{1}$ and 0 otherwise.
In formulas we have

$$
\begin{aligned}
p_{N_{1}}\left(n_{1}\right) & =\sum_{n_{2}, n_{3}} p\left(n_{1}, n_{2}, n_{3}\right)=\sum_{n_{2}+n_{3}=N-n_{1}} \frac{3^{-N} N!}{n_{1}!n_{2}!n_{3}!}= \\
& =\frac{3^{-N} 2^{N-n_{1}} N!}{\left(N-n_{1}\right)!n_{1}!} \sum_{n_{2}+n_{3}=N-n_{1}} \frac{2^{-\left(N-n_{1}\right)}\left(N-n_{1}\right)!}{n_{2}!n_{3}!}= \\
& =\frac{N!}{\left(N-n_{1}\right)!n_{1}!}\left(\frac{1}{3}\right)^{n_{1}}\left(\frac{2}{3}\right)^{N-n_{1}}
\end{aligned}
$$

so that N_{1} is a binomial r.v. with N trials and $p=1 / 3$.

Moreover we have

$$
\begin{aligned}
p_{N_{2}, N_{3} \mid N_{1}}\left(n_{2}, n_{3} \mid n_{1}\right) & =\frac{3^{-N} N!}{n_{1}!n_{2}!n_{3}!}\left(\frac{N!}{\left(N-n_{1}\right)!n_{1}!}\left(\frac{1}{3}\right)^{n_{1}}\left(\frac{2}{3}\right)^{N-n_{1}}\right)^{-1}= \\
& =\frac{2^{-\left(N-n_{1}\right)}\left(N-n_{1}\right)!}{n_{2}!n_{3}!}
\end{aligned}
$$

if $n_{2}+n_{3}=N-n_{1}$ and 0 otherwise.
Thus N_{2} is a binomial r.v with $N-n_{1}$ trials and $p=1 / 2$.
7. (15 points (bonus)) Let $X_{i}, i=1, \ldots, N$ be independent and identically distributed continuous r.v. with median m, that is

$$
\mathbb{P}\left(X_{i} \leq m\right)=\frac{1}{2} .
$$

Show that

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(\min _{1 \leq i \leq N}\left(X_{i}\right) \leq m<\max _{1 \leq i \leq N}\left(X_{i}\right)\right)=1
$$

Solution: Observe that due to independence

$$
\mathbb{P}\left(\min _{1 \leq i \leq N}\left(X_{i}\right)>m\right)=\prod_{i=1}^{N} \mathbb{P}\left(X_{i}>m\right)=2^{-N}
$$

and similarly

$$
\mathbb{P}\left(\max _{1 \leq i \leq N}\left(X_{i}\right) \leq m\right)=\prod_{i=1}^{N} \mathbb{P}\left(X_{i} \leq m\right)=2^{-N}
$$

so that

$$
\begin{aligned}
& \mathbb{P}\left(\min _{1 \leq i \leq N}\left(X_{i}\right) \leq m<\max _{1 \leq i \leq N}\left(X_{i}\right)\right)= \\
& 1-\mathbb{P}\left(\min _{1 \leq i \leq N}\left(X_{i}\right)>m\right)-\mathbb{P}\left(\max _{1 \leq i \leq N}\left(X_{i}\right) \leq m\right)= \\
& 1-2^{N-1}
\end{aligned}
$$

